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ABSTRACT. Suppose S = {{an, j=l,2,...,kn}} is an infinitesimal system of
random variables whose centered sums converge in law to a (necessarily
infinitely divisible) distribution with Levy representation determined by
the triple (y,o2,M). If {Yj, j=1,2,... } are independent indentically
distributed random variables independent of S, then the system

s' = {{v.x ., j=1,2,...,kn}} is obtained by randomizing the scale parameters

Jnj

in S according to the distribution of Y We give sufficient conditions on

1
the distribution of Y in terms of an index of convergence of S, to insure
that centered sums from S' be convergent. If such sums converge to a dis-
tribution determined by (y',(c')2,A), then the exact relationship between

(y,0%,M) and (y',(c")2,A) is established. Also investigated is when limit

distributions from S and S' are of the same type, and conditions insuring
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products of random variables belong to the domain of attraction of a stable

law.

KEY WORDS AND PHRASES. General central Limit theorem, products of random
variables <n The domain of attraction of stable Laws, Lévy spectral function.
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1. INTRODUCTION AND SUMMARY.

The classical linear model for the relationship between empirical data
Y and theoretical or "true' data X is to assume Y = X + ¢ where € (the error)
is a random variable independent of X with E(e) = 0. In some cases however
the error tends to depend upon X. For example if X denotes the measurement
of some random phenomenon we may find the empirical data agrees well with X
for values of X which are small, but the error becomes increasingly greater as X
becomes larger. Such is the case when a measuring device has a constant per-
centage error. If we have selected a measuring device at random from a popu-
lation of devices whose constant percentage error Y follows the distribution
function G, then we may model the empirical data as YX where Y and X are
independent and E(Y) = 1. The empirical data can be considered as a random
scale change of the theoretical data X, or equivalently the scale parameter
of X has been subjected to a mixture with mixing distribution function G.

The problem we shall consider is the mathematical problem of limit dis-
tributions for sums when the scale parameter is mixed. Specifically, if
S = {{an, j=1,2,...,kn}} is an infinitesimal system of random variables
whose centered sums converge in distribution to some (infinitely divisible)
random variable X, and if {Yj’ j=1,2,... } is a sequence of independent iden-
tically distributed random variables which is independent of S, we seek
conditions on the distribution of Y, and the system S to insure that centered

1
sums from the randomly scale changed system S' = {{ijnj, j=1,2,...,kn}}
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converge, say to Z. In case S' does converge, we wish to determine the
exact relationship between X and Z.

Here we take an index of convergence BS of the system S and under

B 1D
the weak hypothesis E]Yll § < » for some & > 0, we obtain a necessary

and sufficient condition for convergence of the system S'. When S' con-
verges we then obtain the exact relationship between the limit distribu-
tions of X and Z. These results are then applied to a most commonly
occurring system, namely that consisting of normed random variables whose
distribution is attracted to stable laws with exponent a. In this case
we find BS=(1. In the classical central limit theorem (a=2) we find
that if EY2 < o, then X is attracted to the normal distribution if and
only if XY is attracted to the normal distribution, and moreover the same

+
atd < o and X is

norming constants work. For o < 2 we find that if E|Y1|
attracted to a stable of index a, then XY is attracted to the same stable
law, the same norming constants work, and the exact scale change between
the two resulting stable laws in calculated. We are also interested in
when the limit laws of S and S' are of the same type. A necessary and

sufficient condition for this to happen is that the limit law be either

of purely stable type, or a mixture of stable and normal type.

2. PRELIMINARIES -- AN INDEX OF CONVERGENCE

Let us recall several important facts from [3].
If S = [(an, j= 1,2,.‘.,kn}} is an infinitesimal system of random

variables, the functions Mn are defined by

k
n
Zj=1FX (x) for x< 0

M0 =q n, J 2.1
zjgl[FX (-1} for x>0
n,j

341
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where FX is the distribution function of an .
n, j

We shall say that the system S is convergent to X if there exists a
k

sequence of real numbers {C n=1,2,...} such that : X L -c converges
n =1m,j n

in distribution to X as n > ». In this case X is infinitely divisible
with characteristic function whose logarithm is of the form

22

o u

log fX(u)=iuc<- 5 +‘Y {elux—l-—l-u—)iz—}cm(x).
- 1+x

We shall simply write X~ (q,oz,M) to express the fact that X has such a
characteristic function. The symbol ‘S‘d represents li.m{yd+‘§b3 ai0
and bt 0}. All integrals are taken in-‘t;:he Lebesgue-Stielijes-(s:ense. The
set of points of continuity of a function g will be denoted Cont(g).

Discont(g) is defined to be the set of points at which g is not continuous.

k

We shall hence forth use I to denote ijl and Fnj to denote FX
nj

DEFINITION. Let S be an infinitesimal system. The index bS for the

system S is defined by

Bg = inf{® > 0: lim dMn(t) = 0]}

el
e > 0] S|t|>|X|

with BS = if no such & above exists.

One should remark here that the index BS as defined above has some
relation to an index defined in 1961 by Blumenthal and Getoor [2] and
later generalized by Berman (1965). They define the index BM for the Levy

spectral function M by

¥

1
Al - inf{c > O: ‘S‘ |X|CdM(X) < ©}, and proved
-1

1o inflc > 0: lim{ |x|S01(-[x[)M([x[)} = 0).
x>0
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As a similar result in [4] it was shown that then S converges to X ~ (Y,crz,M)
we have for a € Cont(M)

o) &
B =ine(e > 3™ [ [xlTa o +j| ] M ) 2.2)

X|<a x|<a

with [js=oo if the above set is empty. An easy way of calculating BS is

then given by noting that

lim 1im supj\ lx!YdM (x)=0 if y >p (2.3)
€>0 n>w |x|<e n S
1im infj‘ fx[YdMn(x) = for any € >0 if y < 4. .

n>e Y |x|<e S

We next recall a variational sum result proved in [4].

THEOREM 1. Suppose S is an infinitesimal system converging to

2
X~ (x,07,M), and suppose that g is a bounded function which satisfies

g(x) =0(Ix]Y) as x > 0 for some y > fg and which is either continuous or

is of bounded variation over (-«,0) and over (0,«) with discont(g) N

discont(M) = #. Then we have

lim 2 E(g(X_.)) = lim g(x)dM (%) = g(x)dM (x) .
> M nae X(-m,x) B ‘Y(-x,*)

REMARK 1. Some comments about the index ES are in order. If the
system S is convergent to X~ (cr,crz,M), then pM < bs < « and either of the
two equalities is possible. For an example where BS = E‘M, see [4] where
it is shown that if {Xl,Xz,...} is a sequence of independent identically

distributed random variables belonging to the domain of attraction of a

stable distribution with exponent «, and if S = [{XJ,/Bn ,§j=1,2,...,n}})
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a if a < 2

0ifa=2  m[3]an

then BS

example is given showing ﬁs can be anything. Namely for y < « a conver-

=a. It is clear that in this case BM={

gent system S is found such that BS =A. To show that BS measures 'how"

the system converges rather than to what it converges, an example in [3]

is given showing that for any Levy spectral function M and for any A > BM

there exists a system S converging to (0,0,M) with ﬁs=7\. The index [jS

has proved to be the appropriate index for studying variational sums of in-

finitesimal systems [4], and has been shown to be an extension of the Blum-

enthal-Getoor index for stochastic processes with independent increments

[5] which allows a unified treatment of variational sums of such processes.
Let us also state for reference the general limit theorem as found in

Gnedenko and Kolmogorov (1968) or Tucker (1967).

THEOREM 2. Suppose S= {{an: j=1,2, ...,kn}] is an infinitesimal

system. A necessary and sufficient condition that Zan - cn+X~ (a, GZ,M)

is that the following three conditions all hold

A) Mn(x) > M(x) for all x e Cont(M)

. lim sup 2 2{ _
B) lim L x"dM (x)-Z( xdF (%)) =0
e>0 {H.m 1nf}n+w 'S‘le<£ n 'S‘|x|<c an

2

x5/ (1 +x2)dM (x) -SI x/ (1 +x2)dM (x)
X

|<r

C) xdM (x)-c_ > a +
y|x|<r n n Slxl<'r

for any r > 0.

3. A LIMIT THEOREM FOR SCALE MIXED SYSTEMS AND APPLICATIONS
We shall now proceed to answer the questions posed in the introduction.
Namely when S is convergent, the index BS yields the needed tool for obtain-

ing conditions insuring S' is convergent. The precise formulation, and the
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exact relationship between the limit laws of S and of S' is given in the
following theorem. Also to be noted is that the convergence properties
of S' are the same as that of S (i.e., BS=BS,) and the behavior of the
limiting Levy functions are the same (BM= BA). In particular since an
infinitely divisible distribution is continuous if and only if the corres-
ponding Levy spectral function is unbounded, it follows that the limit
distributions of S and S' are simultaneous continuous or not continuous.

THEOREM 3. Suppose that S= {{an ,j=1,2, ...,kn}] is convergent to

d
~(Y,o M) i.e., X -cn——)x. Let {Yj, j=1,2,...) be a sequence of

nj
independent identically distributed random variables with non-degenerate
Btk
common distribution function Fy and and with E|Y| 5 < = for some k > 0.

Assume also that (Yj , 3=1,2,...) is independent of the system S. Then a

necessary and sufficient condition that S'= {[ijnj ,3=1,2,.. .,kn]

n=1,2,...} be convergent is

C.= lim lim sup‘y xszn(x)

0 e>0 nro |x|<e (3.1)
= 1lim 1im inf xszn(x)
e>0 n>o . “|x|<e

exists and be finite (so that by Remark 1 necessarily BS <2). 1IfS' conm-

verges to Z~ (Y', (cr')z,A), then the following are true:

10 The centering constants for S' can be chosen as

SN

+zj‘ x/(1+x ydF

xdFy (O -Zj' /A +EDdE, (0

lx|<'r an j <r nj j

(x)
X ij
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20
{I-FY(x/t)}dM(t) +‘Y(0 00)FY(x/t:)dM(t:) for x< 0
AX) = (-=,0) ’
- F, (x/t)aM(t) + {F, (x/t)-1}aM(t) for x> 0
S(-w,O)Y j(o,oo> ¥
3° @72 = ¢y Var(¥) + o2 E@)N?
where C, is as defined in (3.1)
0 -
4 BS - le

NOTE: 1. If BS < 2 then (3.1) is automatically satisfied with Co= 0
by (2.3) and necessarily 02==0 (otherwise BS > 2), so 3O says (o')2= 0 in
this case. Also when BS==2 and (3.1) holds we need only assume ECYZ) <

to obtain the conclusion.

2. It should be noted that the mere meaningfulness of formula 20 may
not be sufficient for the conclusion of the theorem. Examples of this are
given in [3].

PROOF. 1) We first note that S' is indeed an infinitesimal system.

Now, an easy calculation yields

(1-Fy Ge/E)AF_((0) + y(o,w)FY (e/©)aF_ (£) (3.2)

Ry = O g,y 00
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Here XA(x)=1 if x e A and 0 if x é A. Let
xe A and 0 if x ¢ A. Let

0
Z‘.Fx v (x) for x <

G = i J (3.3)
z {FX Y.(x)-l} for x>0

nj j

and let

l-FY(x) x>0
g(x) =
FY(X) x < 0.

Then using (3.2) in (3.3) we have for x < 0
A_(x) = {1-F, (x/t)}aM_(t) + F, (x/t)dM_(t)
n X(_m’o) Y n \Y(o’m) Y n

=T g(x/t)aM_(t).
(' °°)°°)

while for x > 0 we have

/) () - [ gG/e)dr  (0))

A_(x) = Z(-
n S(-w,O)

- .j‘ g(x/0) @ (t).

(' °°9°°)

(0,)

Thus we have

S(X/t)dMn(t) for x< 0

= (' °°9°°)
An(x) = (3.4)

-‘S‘ g(x/t)dMn(t) for x> 0.
('°°’°°)
BS+5
2) In this part of the proof we shall show that if EIYI < o, then

we always have lim An(x) =A(x) for all x € Cont(A). Indeed since

B +6 n->ow
EIYI § < = we have [1-FY(t) +FY(-t)] =0(t-BS-6) as t > ., By the defi-
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B0
nition of g, we can thus see that for fixed x, g(x/t)=0(|t| 57y as

t > 0. Let us write gx(t) =g(x/t). By Theorem 1 we have

lim g (DA (t) = g, (t)dM(t) (3.5)
n>e X(-w,w) * oo ”S\(-m,w) x

for every x such that discont(gx) N discont M) =@. Thus using (3.5),

(3.4) and 20 we have 1lim A (x) =A(x) for all x such that discont(gx) N
n->o

discont(M) =f. Let %={x: discont(g ) N discont(M) =@). It remains to
8

show Cont (A) € ¥. Equivalently we show @ C discont (). If Yo € «® then

there exists a t. such that gy and M are both discontinuous at t For

0 0’
0

simplicity let us assume that Yo > 0 and t0 > 0. A similar argument can

be used in any other case. Thus we have g}'o(t0+0) -gyo(to-O) > 0 and

™ ({ to}) > 0, so that for any small h > 0 we have

y +h y -h
Alyg+h)-Alyy-h) > (Fy (—) Fy (g Ia((t,))
0
= (Fy (¢ -n) G +B)]dM([t n = {8yo(to+B)-syo(to-n)]dM({to])

v

(g, (5 + 0o, (£g-0))aM((tg)) =b > 0

where p = toh/ (yo-h) and n = toh/yo+h. Since A(y0 +h) -A(yo-h) >b>0

for all h, we must have Yo € discont (). Thus An(x) > A(x) for all

x € Cont(A). To see that A is a Levy spectral function, noted that A is
monotone increasing on (=-»,0) and on (0,») and A(+x) =A( -»w)=0. We
must also show thatj‘ xsz(x) < o, The proof of this is accomplished
in part 5) below. -L.v

3) In this part of the proof we shall determine how to calculate

integrals of the form j‘( )f(x)dAn(x) and 5’( )f(x)dA(x) where A_
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is given by (3.4) and A is given by 20. Now for 0 < a< b < =, let X

denote the indicator function of the interval (a,b] and calculate -
A ) -A (@) = S Y (R M (6)
(-2,2) 7 (-,@) £(a,b]
S X (a, p] (EW)Fy ()@, (E)
so that
j‘(_w’m) £ _(x) = j'(-m’m) j(_w’w) £ () dF (W) () (3.6)

holds when f is the indicator function of an interval in ( =»,x). Standard
approximation techniques now allow us to conclude (3.6) holds for the

function in question. Also (3.6) holds if we replace An by A and Mn by M.

4) In this part of the proof we show that 40 holds. We shall use

(2.4) to show BS=BS. . Now for any & > O we have

o) _ ) I}
‘lel<e|x| dAn(x)—S(_w’w) x| f(_m’w) X (g gy @RIAE ()1 (o)

- xS

ulPar, war o+ [x[° |u[Pary @ at_x).
Ix[>1

[x|<1 |ux|<e

[ux |<e

However concerning the second term above we see that

lim lim supj‘ le6 X |u|6dFY(u)dMn(x) = 0.
e>0 nro x>l Jux |<e
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Thus to show B =Bs, we must only show
o) A s
lim 1lim supS‘ ]u[ dFY(u)dMn(x) =0 if 5 > BS and

o}
x|
€>0 n > <1 ‘S‘

8 ®
lim inf x| [u|°dF, (u)@_(x) =w for any € > 0 if & < B
n>w LS‘|x|<1 Slux <e ¥ n S

|ux |<e

Suppose then that & < Bg and choose &, so thatj‘ |x|6dFY(x) > 0.

1 |x|<e
1
wf oS
so that lim 1nfj‘ [uxl dFy (W)@ (x) >
8 5 -
lul< [u] dFg (u) lim_)mfj‘ <1|x[ @ (x)=x, and thus By < Bg, - To see
u <€ 5]

n > o |x|<1 lxul<e
1

that Pg 2 B

qu] dFy (w) @ (x) >S . x|65' ]u,6dFY(u)dMn(x)

[x|<1 ¥ |ux|<e <1 |ul<e

+» let y > B, be such that E|Y Y < » and pick a > 0 such that
S S

8-y <a<®-Bg i.e., such that f, <& -a<Y. ThenElYlg-O"<oo and also

6-q“dM (x) is bounded in n. Now ux 6dF (uWdM (x) <
Y n -
|x|<1 [x]|<1 * |ux|<e

€ EIY|8 Q‘S‘ dM (x). Thus
[x| <1

lim 1lim supy
€e>0 n>o Y| x|<l

BS'=BS .

) =
Lg‘lux|<':|ux, dFY(u)dMn(x)—O. I.e. BS' < BS and hence

5) In this part of the proof we shall show 50 holds by showing

M

<o if 35>p
‘S‘ [x|8dA(x) = M
|x|<1 w if 3 < B .

Suppose d > BM and that ‘S‘ ]xIBdM(x) < ©. Now we know by hypothesis

b

that there is some y > Bg 2 BM such that EIYIY < . Without loss of

generality we may assume 8 < Yy so that we have
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S |x|6dA(x)=lY |xl8'y [u|6dFY(u)dM(x)
|x|<1 [x|<1 |ux|<1
+ °f |u[Par, a0 < EfY|° Ix[P@1(x) +M(-1) M(1) <o
[x|>1 Jux|<1 |x|<1
i.e. BA < BM. On the other hand, if 8 < BM s0 thatj‘ | IxISdM(x) =00,
x (<1

then choosing 1 > ¢ > 0 such that P[Y < %] > 0 we have

o o o}
x|CdA(x) > x| |u]”dF,, (u)dM (x)
S|x|<1' | ‘S“x|<c S|ux|<1 ¥

>(f el julfary ) -

x|<c |u|<Z

Thus GA > BM and hence BA¥=BM. In particular, choosing =2 we see A is

indeed a Levy spectral functionm.

6) An elementary calculation using the Helly Bray theorem and Theorem

2 shows that the centering can be taken as in 10 when (3.1) holds.

7) In this part of the proof we shall show that the finiteness of

the limit in (3.1) is necessary. We shall show that if

lim sup xszn(x) = (3.7)
n->o |x|<€

then

1lim sup[y X dA (x) - Z(‘S‘

x| Fy v @) ==, (3.8)
n->o x <€

|x<e nj j
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Hence by the general limit theorem S' cannot be convergent.

and for simplicity of notation let us write

cﬁ(e) = 5' x2dAn(x) -2(‘5'

|x|<e

Then

2
u dF_ (u)dM_(x)
2 |ux|<e ¥ n

S x)

' % '<€2 I ux |<€

- 22{5’ xj‘

Ix'<52 |ux]<€

) )

Y
IXIZEZ [ux [<e

CLATM 1. xS

lim sup Z{S
x|

n>w |ux |<e

PROOF. By the Schwartz inequality,

2
udF_ (u) }dF . (%))
|ux |<e ¥ ™

(S {x‘S‘

|x|>€?

<  «=f

,xl2€2 ux |<€

IA

max P IX

ik x|>€2

|x|<e

udEy (WdF_ ()] {j‘ )
Ix[>e

udFY

2
\1dFY (u)} anj

ndZGZ]‘S‘ xzj\

Let € > 1

xde ¥ (x))z.

nj j

(3.9)

2
udFY (u)anj x)}

x udF_ (u)dF_, (%)}
Sluxks LAY

2
udF, (u)dFnj x)}".

(u)an:.| (x) ]2 =0.

G)ORLIx ] > €]

2
u dF_(u)dF_, (x).
Jux |<e ¥ nj
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Using the infinitesimality of the system, we have the first term converging

to zero. The sum of the second terms is bounded, since by the Helly-Bray

theorem
2 2
lim sup X u dFY (u)dMn(x)
n > lx'Z‘:z |ux|<e
< tge) Cae + el [ @)
52<|x|<e x|

This completes the proof of Claim 1. Note that using the above we actually

have
2 2
lim 1im sup x u dFY(u)dMn(x) = 0. (3.10)
e>0 nrw ]x]>ez lux|<e
CLAIM 2
2(f x | udFy (u)dF ([ x udFy (WdF_ ()} |
2 “Jux|<e 2 Y ux|<e nj
|x|<e |x|>€

2 2
< B0 Lo ek
2
[x|<e
PROOF. By the Schwarz inequality for sums, the sum in the claim is

no larger than

ef  xf wr e e x W )%

le<£2 IUX l<€ |x|2€2 'ux|<£
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Applying Claim 1 to the second term and the Schwarz inequality to the

first term in the above product we have that the left hand side does not

exceed

A wrela @i < meoof  Aar )
|xI<€2 |ux |<e |x|<e

which completes the proof of Claim 2.

Now using the inequality

2
2(f 2x S|ux keudFY (W)dF ()
|x|<e
< (f

) udF (u)) Zam L@
|x|<e

|ux |<e
and using Claims 1 and 2 in (3.9) yields

2 2 2 2

o (e) > x{ u“dr_ (u) - ( udf_ (u))“}dM (%)

n —‘Y 2 ‘Y|ux l<e ¥ S‘qu |<e ¥ n
|x|<e (3.11)

2B e @) o).

|x |<e2

Since (3.7) implies BS > 2, we know E(YZ) < o, Let & > 0 be chosen such

that Var(Y) -5 > 0 and choose €2 > 0 so small that if |x| < €2, then

0 0’

Var(Y) -8 55‘ u2dFY(u) - (S udFY(u))2 < Var(Y) +5.
|uxl<eo lux|<t:0
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Then for € < £ in (3.11) we have

o2(e) > (Var (¥) -5} | X2 (x) - 2E “Hoy(f X2 (x)) 2+ 0 (1)
2 n 2 n
Ix|<e Ix|<e 5.12)
- Aa e eaem-o e e -22adem)) o).
n
|x |<e |x|<e

By (3.7) the 1lim sup as n > » of the right hand side of (3.12) is + o,

2
i.e., lim sup cn(e) = «, and S' cannot be convergent.
n > o«

8) In this part of the proof we show that if (3.1) holds, then S'
is convergent to X~ (a', (c')z,A). Since we have already shown that

lim A (x) =A(x) for all x e Cont(A), to obtain this part of the proof,
n -»>oo
we need only show that with oi(e) as given we have

lim 1lim sup crfl(e) = lim lim inf O'i(e) = (o')z.
e>0 n->w e>0 n >

Now, if BS < 2, then by (2.3) we must have cz= 0, and CO=0. However by

part 5 of the proof ﬁS‘ =BS so that

0< (cr')2 < lim 1lim supj‘ xzd./\.n(x) =0
e>»0 nH>ow |x|<e

so that 30 holds with (c')2= 0, and consequently S' converges to
X~ (',0,A). We are thus left to consider the case when BS=2 (recall

(3.1) implies BS < 2). Then we assume E(Yz) < o and as before we have
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o2 (e) = < [ u?ar, a1_(x) (3.13)
Ix|<e |ux |<e
2 2 2
+ x u“dF_ (u)dM (%) -Z( x udF_ (u)dF_, (x))
‘S\ 2 ‘Y]ux|<c ¥ n ‘Y 2 ‘Y ux |<e Y nj
|x|>e |x|<e
-2(f x udFy (W) F, | %
lx|>€2 lux I<€
-2 (5' % j’ udFy (u)dF (x))(j x 5’ udFy (w)dF, ().
|x|<e |ux |<e

|x].>_€2 |ux |<e

Applying (3.10) to the second term, Claim 2 to the last term and Claim 1

to the 4th term on the right hand side of the last equality in (3.13)

and upon adding and subtracting

=(f * { udFy (u)dF | )2
|X‘<€ ,u|<1/c
we have
2 = | 2 u?ar ()@ (x) (3.14)
n |x|<c2 |ux |<e
- (‘S\ udF. (u))ZZ(S Xanj (x))2
|ul<l/e |x|<€2
2
+ 2{( udF,, (u)dF_, (x))
X|x|<sz S'“kl/e ) ™
2
-« x udF,, (u)dF_, (x))"} +g, (n,€)
S|x|<82 "Y|ux|<s ¥ nJ
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where 1lim 1lim sup 8, (n,e) =0.
€E>0 n >

CLAIM 3. 1im 1lim sup|3{ x udF,, (u)dF (x))2
€e>0 n>w "Y|x'<£2 [ul<l/e ¥ n}
2
- ( X udFY(u)dF x)“}| = o.
SIX ,<€2 lux |<£ nj

PROOF. Using the equality a2 -b2= (a=b) (a+b) we have

2
[ ¢ x udF,, (u)dF_, (x)) 3.15
X|x|<e2 X|U|<1/€ oo o

- (5‘ X udFy (u)dF (x))2|

2 Y ux|<e ]

|x|<e

- {25 x udF (u)dF_, (x)

Y 3
le<€2 Jul<1/e

+f x
2

|x|<e

udFy (u)dF ] ) }{ udFy (u)dF | x)).

1/e<|ul<e/ x| 1/e<|ul<e/ | x|

For simplicity we denote

£,50) ) (x).

udF_, (u)dF
9 n
[x|<e

1/e<|ul<e/ | x| ¥ 3

Then the right hand side of (3.15) becomes equal to

(e) 5’ xj‘ udF,, (u)dF . (x) + fij(c)-

2f
n lul<i/e ¥ 3

3
|x|<e?
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Thus to complete the proof of Claim 3 we must show

lim lim sup 2 f (s) (3.16)
e>0 n>ow

and

lim lim sup(2 £ ,(€) 5‘ xj‘ udFy (w)dF , (x)} = 0. (3.17)
>0 n>w |x]<t:2 lul<l/e

Concerning (3.16), note that by the Schwarz inequality

£ RORS) x* o’ar, (@), ()
2 [ul>1/€
|x|<e

. 2 . 2 2

and letting a(e”) = lim sup X dMn(x) we have a(e”) ¢C0 as € {0 and
n > oo 2

hence lx|<e

14 2 2

m lim sup 2 f (e) < lim{ u dFY(u)a(s Y}=0
e>0 n>o nJ e>0 " |u|>l/e

so that (3.16) holds. In a similar manner, concerning (3.17) we have

,f . (g) x udFY(u)dF ,(x)l
" 5|x |<e? lul<i/e i
< {5 | x| [u’dFY(u)anj(x)]{E|Y| S |x|anj(x)}
x|<e? luP>1/e |x|<€?
< E(Y)( [u]dF,, (u)}{ x dF (x)}
‘S‘ [ul>1/e ¥ S

|x|<e
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Thus |Z{f_, (¢) x udF,, (u)dF_, (x)} |
™ j‘,xkez ‘S‘I“|<1/e ! ™

<kely|(f lular, @ x*@_(x)), from which (3.17) follows
|u,>1/e lxl<E2

easily.

Now using Claim 3 in (3.14) and upon adding and subtracting

udFY(u))z‘Y xszn(x), we obtain from (3.14),

x|<e?

g

Jul<i/e

2 2 2 2
o (e) x{ u“dF,, (u)-( udF_ (u))“}aM_(x)  (3.18)
T Ve Clukeesixl ujeuse™®™ n”

g

gz(n,e) where 1lim 1im sup gz(n,c)=0.
€e>0 nr>row

<+

wr, @)’ L e 0)?)

Jul<1/e 'xkez |x|<e nJ

+

Then, if we use the inequalities

a0 u?dr (u))
lxl<52 Jul<l/e
<f x2 olar, a0 < B [ xa_(x)

B 2
|x|<e Jux|<e [x|<t:2

in (3.18), we obtain the following two sided bound for otzl(s):
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2 2 2
a (%)} u“dF_ (u)-( udfF, (u)"} + g, (n, €) (3.19)
{Skaezx S lul<tre ¥ ] ul<tze ¥

2
+ wr, @)X Aa o2 e 6D
luf<t/e x| <€ |x|<e?
2
<o) < (f xszn(x)}(E(Yz)-(j'l udFy (1))} + g, (0, €)

ul<l/e
|x|<e

2
+ (5‘ udF, (u))Z{S xszn(x) 2 (j‘ 2xanj 2y,
|uf<1/e |x|<52 |x|<e

e>0 lim inf

Using the fact that 1lim {Hm sup} of the extremities in (3.19) are
n->o

equal when (3.1) holds, we obtain

2
C. Var(Y) + (E(Y))zcr2 < lim 1lim inf o (g)
0 = n
€>0 n->o

2 2
< lim 1lim sup o‘rzl(e) < CO Var(Y) + (EX)) o
e>0 n>o

where C0 is the constant given in (3.1), so that (cr')2 exists and is given

by (012 =c, Var (@) + € X)) 2%

0

9) In this part of the proof we show that if S' is convergent
(so that lim 1lim sup cz(e) = (o‘)2= lim lim inf oi(c)) then necessarily
€>0 n>ow n €e>0 n >
(3.1) holds. By part 7) we know that we may assume
lim sup xszn(x) < « so that all of the previous equations leading
n>o “lx|<e
up to (3.19) still remain valid. Let us then subtract the quantity
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¢

2 2 2
udf_ (u)) [\S‘ x dM (%) -Z(y xdF_,(x)) )+ g,(n,¢€)
Y n nj 27
|x|<1/e Ix|<e? Ix|<e?

throughout the inequality (3.19) to obtain

2 2 2
{ x“dM_(x) )} ( u“drF,, (u) - ( udF, (1))") (3.20)
jﬂ!x|<52 W g O g

<@ - ( xaby, G2 a0
|X’<1/€ 'x|<€
2
2 w0 - gy )
|x|<e

2 2 2
() HEQE™) - ( udfF,_ (u))"}.
{‘S‘ x n x S|u|<1/e Y

IN

|x|<e

e>0 lim inf

Now, li.m{]'un sup} of the inside of (3.20) equals (cr')2 - (E (Y))Z(I2
n->o
while on the outside of (3.20) the above limits yield
Var(Y) 1lim iﬂ i:l;} ‘Y |x|2dMn(x). We thus conclude (3.1)
e>0
n>o |x|<e
2 2 2
holds with Var(Y)CO= (0')"-(E(X)) 0o”. This completes the proof of the

theorem.

Let us now turn to the framework of the more classical central
limit theorem. If [Xl,Xz, ...} is a sequence of independent identically
distributed random variables with common distribution function F, we
shall write X, € D(a) to denote the fact that F (or Xl) is in the domain

1

of attraction of a stable law with characteristic exponent a. That is,
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there exists norming constants {Bn ,n=1,2,...} and centering constants

{An, n=1,2,...} such that " X./B -An converges in law to a distri-

=13 ™n
bution which is stable with exponent o < 2.

In this case the relation between the scale mixed system S' and
the original system S takes on a particularly appealing form. Our con-

dition for convergence only depends upon the moments of Y and the index

a.

1!x2’Y2’

Xn having distribution function F

...} be independent random variables,

THEOREM 4. Let (X;,Y

and Yn having distribution function

X

Fy

1) EEIY'Z < o, then X € D(2) implies YX € D(2) and the same

norming constants work. Conversely if YX € D(2) then X € D(2) and

the same norming constants work.

2) 1£ E|Y|*™ < » for some & > 0, then X € D(a) implies ¥X € D(x)

and the same norming constants work.

PROOF. The direct statement in 1) and 2) will follow from Theorem
3 once we show that (3.1) holds. Let S= {{Xj/Bn, j=1,2,...,n}) then
as proven in [4], X € D(a) implies BS=a. For a < 2 we have ( 3.1)
holding with C0= 0 by (2.4). TFor a=2 we know (see Feller (1971), [6]

pg. 314) that necessarily

2 y2aF (y) > C. as n>w . (3.21)
2 X 0
B, “lyl<,
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Using the fact that — 5‘ y dF (y) = 5 y dM (y) and that
y <B € x <e

j\ yzdFX(y) is a slowly varying function of t yields (3.1) in this
|y l<t

case also. Applying Theorem 3 we obtain the convergence of
= {{X Y /B ,j=1,2,...,n}}. If a=2 then M=0 so by 20 of Theorem 3,
A=0 and S‘ converges to a normal distribution. If a < 2, then by 30 of

Theorem 3 (or')2= 0 and with

c lx|™ if x<o0

M(x) = (3.22)

_sz-cx if x>0

we have by 20 of Theorem 3

c, [ (1R x/0d(fe]™-c, [ Fo@/oae™  if x<o
A(x) = (-oo, 0) (O’GO)

-C F, (x/t)d(]t|Fy-c (F, (x/t)-1}d(t™™) 1f x> 0,
1S(-m,m ¥ 2‘Y(o,m) ¥

or equivalently, upon integrating by parts

-a x -a Xy
Cly(-w O)Itl dFY(-t-)+czj‘0 e %aF, ) 1f x <0
A(x) = ’ (3.23)
- X
c [t]ar, D) + C, dFY(—) if x> 0.
1S(-w,O) Tt S<o,f>
Upon simplifying (3.23) we obtain
allx[-(L if x<0
Ax) = (3.24)
-a x-cL if x> 0,

2
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i.e., )(“Yn is in the domain of attraction of a stable law with character=-

istic exponent a, and the same norming constants work.

Let us suppose now that YX e D(2) and EIYIZ < . We shall use the

general limit theorem to show z?=1xj/B -An converges to a normal distri-

bution. With Mn given by (2.1) and An given by (3.3) we shall show

An(x) > 0 for x#0 implies Mn(x) > 0 for x#0. Indeed let t be such that

P[|Y| > t] > 0. Then

0 a o= dF (0) @1_ (%)

'X,>tz [ux >t

> dF (W) (x) Zyl l PLIY] > el (x).
X |[>

T xp>e [ux >t t

Since P[|Y| > t] > 0, S d (x) > 0, thus the limiting Levy function
|x|>t
is 0.

Let us complete the proof by showing

. lim sup 2 2
h.m{ . } x dM_ (x)-n( xdF_ (x))
ecoltimintf oo j‘,x|<t: n Slx|<s X

exists and is finite. 1In view of part 7) of the proof of Theorem 3 we

know we must have

C0 = lim 1lim sup‘S‘ xszn(x) < o,
e>0 n>ow |x|<€e
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Utilizing the inequality (3.20) of Theorem 3 we see that we must only

show for

C1 = 1lim 1im inf xsz (%)
n
€10 n>o Yx|<e

we have CO=C1 . Now by Fatou's lemma and by (3.21)

C, = lim x2dA (x) = lim inf SX X u dM (x)dF u
n>w " |x|<e n n>w |ux |<e

lim Sllm inf uzj x2dM (x)dF, (u) =C E(YZ).
n Y 1
€l 0 n>o |ux|<e

IN

On the other hand for 7 > 0 choose & so small thatj u2dFY(u) >

lu|>8
. 2 2
> lim sup u x dM (x)dFY(u) >
n>eo lul> |x|<e/s n
(1-7])E(Y2)lim sup xsz (x). Thus
n>w °|x|<e/s n

(1-m)E (Yz). Then C2

a-mEE?C, < ¢, < ExAC, < EXDC,.

] L = n -
Since 1 > 0 is arbitrary C1 -C0 and Zj=1Xj/Bn An converges to a normal

distribution.

REMARK 2. i) The first part of Theorem 4 should be compared to a
result of H. Tucker (1968) who considered sums of random variables in the
domain of attraction of the stable distributions instead of their pro-
ducts. He shows that if EY2 <o and X € D(a) then X+Y € D(a) and the

same norming constants work. If X+Y € D(a) and l:".(Y)2 < o, then a
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slight modification of his methods yields X € D(a). Combining our re-
sult with his we find that if X,Y,e are independent random variables,

EY2 < « and E€2 < o, then X ¢ D(a) =YX +€ € D(¢)and the same norming
constants work. For a=2, X e D(2) < YX+¢ € D(2) with the same

norming constants.

ii) In Theorem 4 we can actually calculate the scale change in-
volved in the distribution of the limit laws of S and S' when a < 2.

Namely, in going from (3.23) to (3.24) we have

allxl-(’“ x <0
A(x) = o
-a,x x>0
where a, =C LS‘ t%dF, (t) +C 5‘ [t|“dF, (t) and
1 Y 2 Y
(0,) (=,0)
,=C ‘S‘ t dF (t) +¢C ‘Y |t|%dF, (t). This follows immediately
2 1 Y
(0,) (=,0)
from (3.23) by the change of variables z=xt-1.

+
iii) It can be shown that for a < 2, YX ¢ D(a) and E[Y[CL <o
implies that Efxla“6 < = and E,X]aﬁ=oo for all 8, hence pg=c. 1T
suspect that in fact X € D(ax) however, I have been unable to establish

this for a#2.

iv) Suppose that

B
: lim sup S
lim . lxl M _(x)=C
€+0{ lim 1nf}n_)(JO ‘Ykae n 0
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C c.C

é we have An(x) > OBI

x| ® x| ®

is given by 20 of Theorem 3. This is a Levy spectral function when

then for 1 -FY(x) +FY(-X) ~ + A(x) where A(x)

BS < 2. Thus we see that some random scale changes introduce a stable
component into the limit law.

We can also use Theorem 4 to derive some interesting statements
about slowly varying functions which would be difficult to prove by
other means. The precise formulations are given in the following

corollary.

0 2 2
COROLLARY 1°. Suppose EY < «. Then S x dFX(x) is a slowly

[x|<t
: . . 22
varying function of t if and only 1_f_j‘j‘ x u dFy (x)dF (u) is a
Jux |<t
slowly varying function of t.
0
2°. Suppose
a) j x dF (x) varies regularly with exponent 2 -a as a
x <t
function of t and also
P[X > x] . PIX < -x]
P[[X| > x] x>w > P P[IX[ > x] x> > 4

b) and EIYICH6 < » for some & > 0, then

S5

x2u2dFY (u)dFX(x)
(- ,0) Y [ux|<t

varies regularly with exponent 2 -a as a function of t and also
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PltY > x]dF_(t)
- X
(-oo’oc) } pl

j‘ P[|ty] > x]dF, (t)
(-00,00)

P[tY < -x]dF, (t)
- X
(' OC:OO) ,} q

X > ©
‘S‘ P[|tY] > x]dF (£)
(-oo,oo)

for some p', q' > 0 with p'+q' > 0.

PROOF. This follows immediately from Theorem 4 by utilizing the
necessary and sufficient conditions given in Feller (1971) for a dis-
tribution to belong to the domain of attraction of a stable law.

In the previous theorem we observed an interesting phenomenon.
Namely we took an infinitesimal system S and subjected it to an arbitrary

B.1O
random scale change with E,Yl s < » and we obtained a new system S'
which was convergent. Moreover the limit distributions of S and S'
were of the same type. In problems where Xni represents a ''true" or
theoretical measurement of some occurrence and Yi the scale change in
the measuring device used to measure the occurrence, we obtain as an
observation the product XniYi . It is of interest to determine when
limit distribution calculated from the empirical data

{{anY ,j=1,2, ...,kn]} is of the same type as that from

3

{[an, j= 1,2,...,kn]]. For normed sums in the domain of attraction

of a stable law, Theorem 4 answers the question and Remark 2ii) allows
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us to calculate the scale change. In general the following theorem tells
us that in non-stable limits the empirical data may yield a different

type distribution than the theoretical data {{Xn , i=1,2, ...,kn]}.

3
THEOREM 5. 1In order that a limit distribution be preserved in type
B0
under all random scale mixtures with E|Y| 5 cw it is necessary and

sufficient that the limit distribution type be either purely stable or a

mixture of stable and normal.

PROOF. The sufficiency follows from 20 and 30 of Theorem 3 of

Theorem 3 as we calculated in Theorem 4, and in fact the scale change

involved is given in Remark 2ii).

Suppose now that the limit distribution is preserved in type when
subject to random scale change. Then with S and S' as defined in Theorem
3 we know Z~ (y', (0')2,A) is of the same type as X~ (Y,UZ,M), thus
(cr')2=a2c72 and A(x) =M(x/a) for some constant a. As in 2) of the proof

of Theucem 3 we know that

[ee]

5‘ M (x/t) |dFy (t) x<0

Ax) = i (3.25)
-j' M(x/t) |aFy (t) x>0

- 00
If M(x) =0, then both X and Z are normally distributed. If M(x)#0,
then we must show M is given by (3.22) of Theorem 4. Using the fact

that A(x) =M(x/a) in (3.25) and letting

M (x/t) l .
= ti f t (3.26)
h(t) M(x/a) we see that h 1is a function o
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alone, the equality holding a.e. [dFY] . Since Y could be chosen to be

absolutely continuous we have (3.26) holding on a dense set of points t.
For simplicity in calculation we shall consider the case x >0, t > 0,
a > 0 and denote N(x) =M(x)/M(1). The other cases may be considered

similarly. Rewriting the equation (3.26) yields

N(x/a)h(t) = N(x/t)
and hence for x=a

h(aly) = %l = Ny).

Thus

2
NGP) = N@h(aly) = (N))?
and by induction for any k
k k-1
NG = 8¢ DHhly) = o).
Letting U(x) = -anN(ex) |, the above equation becomes

1/k Uk £nx) = U(n x) or

1/k U(ky) =U(y). By Lemma 3, page 277 of Feller (1971), this implies

U(x) = x° or equivalently N(x) =x°. That -2 < p < 0 follows from M being
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a Levy Spectral function. Thus M(x) =}%l for x > 0. Similarly we can

x
show M(x) =}%-T]é2- for x < 0. We see that a=p since the limit distribution
X

is of the same type whether multiplied by Y < 0 or Y > 0. The result then
follows easily from the calculation of A(x) in both cases. This completes

the proof of the theorem.

REMARK. The problem considered here could have been solved by de-

fining the class C_, of random variables by

S

C.={Y: lim 1lim sup{ {1-F, (xt) +F_ (-xt)}a_(x) = 0}) ,
S e>0 n>w ‘Y]x]>e ¥ v a0 =)

and proving the main theorem for members of this class. Some such account
must be made of the complex interaction of Mn(t) as (t,n) > (0,) and
1-FY(t) as t > . Since moment conditions are perhaps a more natural
approach, we choose to introduce the index BS instead. To avoid the

-B Bgto

borderline case 1-FY(y) ~y S, we choose to assume E|[Y| 57 <w.
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