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ABSIRACT. Suppose S {{X., j=l,2,...,k }} is an infinitesimal system of
nj n

random variables whose centered sums converge in law to a (necessarily

infinitely divisible) distribution with Levy representation determined by

the triple (y,o2,M). If {Yj, j=l,2 are independent indentically

distributed random variables independent of S, then the system

S’ {{YjXnj, j=l,2,.o.,kn}} is obtained by randomizing the scale parameters

in S according to the distribution of YI" We give sufficient conditions on

the distribution of Y in terms of an index of convergence of S, to insure

that centered sums from S’ be convergent. If such sums converge to a dis-

tribution determined by (y’,(o’)2,A), then the exact relationship between

(y,o2,M) and (y’,(o’)2,A) is established. Also investigated is when limit

distributions from S and S’ are of the same type, and conditions insuring
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products of random variables belong to the domain of attraction of a stable

law.

KEY WORDS AND PHRASES. General central limit theorem, products of random
vaiabl in the domain of attraction of stable laws, Lvy spect function.
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i. INTRODUCTION AND SUMMARY.

The classical linear model for the relationship between empirical data

Y and theoretical or "true" data X is to assume Y X + e where e (the error)

is a random variable independent of X with E(e) 0. In some cases however

the error tends to depend upon X. For example if X denotes the measurement

of some random phenomenon we may find the empirical data agrees well with X

for values of X which are small, but the error becomes increasingly greater as X

becomes larger. Such is the case when a measuring device has a constant per-

centage error. If we have selected a measuring device at random from a popu-

lation of devices whose constant percentage error Y follows the distribution

function G, then we may model the empirical data as YX where Y and X are

independent and E(Y) i. The empirical data can be considered as a random

scale change of the theoretical data X, or equivalently the scale parameter

of X has been subjected to a mixture with mixing distribution function G.

The problem we shall consider is the mathematical problem of limit dis-

tributions for sums when the scale parameter is mixed. Specifically, if

S {{Xnj j=l,2,...,kn }} is an infinitesimal system of random variables

whose centered sums converge in distribution to some (infinitely divisible)

random variable X, and if {Yj, j=l,2 is a sequence of independent iden-

tically distributed random variables which is independent of S, we seek

conditions on the distribution of Y1 and the system S to insure that centered

sums from the randomly scale changed system S’ {{YjXnj, j=l,2,...,kn
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converge, say to Z. In case S’ does converge, we wish to determine the

exact relationship between X and Z.

Here we take an index of convergence S of the system S and under

+
hypothesis E IYII S < for some 8 > O, we obtain a necessarythe weak

and sufficient condition for convergence of the system S’. When S’ con-

verges we then obtain the exact relationship between the limit distribu-

tions of X and Z. These results are then applied to a most commonly

occurring system, namely that consisting of normed random variables whose

distribution is attracted to stable laws with exponent . In this case

we find S=. In the classical central limit theorem (= 2) we find

that if EY
2 < , then X is attracted to the normal distribution if and

only if XY is attracted to the normal distribution, and moreover the same

norming constants work. For < 2 we find that if E IY1
+ < and X is

attracted to a stable of index , then XY is attracted to the same stable

law, the same norming constants work, and the exact scale change between

the two resulting stable laws in calculated. We are also interested in

when the limit laws of S and S’ are of the same type. A necessary and

sufficient condition for this to happen is that the limit law be either

of purely stable type, or a mixture of stable and normal type.

2. PRELI>] NARIES AN INDEX OF CONVERGENCE

Let us recall several important facts from [3].

If S [{Xnj j 1,2, ...,kn is an infinitesimal system of random

variables, the functions M are defined by
n

k
n (x) for x < 07.
j=IFx

M (x) n,j
n

k
n

Zj=lFX (x)-l} for x > 0
n,j

(2.1)
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where F
X

is the distribution function of Xnj
n,j

We shall say that the system S is convergent to X if there exists a
k

of real numbers [C n= 1,2,...} such that E nIX -Csequence converges
n j= n,j n

in distribution to X as n + . In this case X is infinitely divisible

with characteristic function whose logarithm is of the form

2 2
u f iux iux

2log fx(U) iu- + [e -i }dM(x)
l+x

We shall simply write X (,2,M) to express the fact that X has such a
d d b

characteristic function. The symbol S represents l:n[f +S a 0
-c a -c

and b 0}. All integrals are taken in the Lebesgue-Stieltjes sense. The

set of points of continuity of a function g will be denoted Cont(g).

Discont(g) is defined to be the set of points at which g is not continuous.
k
n

We shall hence forth use % to denote %j=l and Fnj to denote F
X
nj

DEFINITION. Let S be an infinitesimal system. The index S for the

system S i__s defined by

S infiX. > O" lira
(x n) + (0,),J

dM (t) O}
n

with S if no such g above exists.

One should remark here that the index S as defined above has some

relation to an index defined in 1961 by Blumenthal and Getoor [2] and

later generalized by Berman (1965). They define the index M for the Levy

spectral function M by

I
M= inf[c > 0" S IxlCdM(x) < }’ and proved

-i

i= inf[c 0: lim[ IxlC(M(-Ixl)-M(Ixl)} 0}
x+0
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As a similar result in [4] it was shown that then S converges to X~ (,2,M)
we have for a e Cont(M)

S inf[[, > 6M" S Ix[SdMn (x) * !xI%dM(x)] (2 2)Ix I<: Ix <

with S if the above set is empty. An easy way of calculating S is

then given by noting that

lim lim sup ’IxIYdM (x)= 0 if Y "> -ES (2 3)

I im inf
n+ Olxi<

,}xlYdMn,,[x)= for any e > 0 if Y < >S"

We next recall a variational sum result proved in [4].

THEOREM I. Suppose S is an infinitesimal system converging t__o

X (,2,M), and suppose that g is a bounded function which satisfies

g(x) 0(Ixl) a__s x 0 for some > S and which is either continuous o__r

is of bounded variation over (-,0) and over (0,) with discont(g) Q

discont(M) @. Then we have

lim Z E(g(Xnj)) lim
n+ n+< (-,)

g(x)dM
n
(x) f(_ ,") g(x)(x).

R]D4ARK I. Some comments about the index S are in order. If the

system S is convergent to X~ (cr,e2,M), then M <_ S <-- and either of the

.M see [4] wheretwo equalities is possible. For an example where S
it is shown that if [XI,X2, ...] is a sequence of independent identically

distributed random variables belonging to the domain of attraction of a

stable distribution with exponent , and if S [{Xj/Bn, j 1,2, ...,n}}
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M if < 2 In [3]then S =aJ. It is clear that in this case
0 if 2

an

example is given showing S can be anything. Namely for <_ a conver-

gent system S is found such that S =%" To show that S measures "how"

the system converges rather than to what it converges, an example in [3]

is given showing that for any Levy spectral function M and for any % > M
there exists a system S converging to (0,0,M) with S =%" The index S
has proved to be the appropriate index for studying variational sums of in-

finitesimal systems [4], and has been shown to be an extension of the Blum-

enthal-Getoor index for stochastic processes with independent increments

[5] which allows a unified treatment of variational sums of such processes.

Let us also state for reference the general limit theorem as found in

Gnedenko and Kolmogorov (1968) or Tucker (1967).

.,k
n

THEOREM 2. Suppose S [[Xnj j i, 2, is an infinitesimal

A_ necessary ___and sufficient condition that. EXnj-Cn+X~ (,2,M)system.

is that the following three conditions all hold

A) Mn(X + M(x) for all x e Cont(M)

Jlim sup [B) +01im llim inffn
x (x) -7 xdFx (x))

2 2

ixl<e n Ixl<e nj

C) xdM (x)-c + + x /(I+ )dM(x) x/(l+x2)dM(x)
Ixl<T n n ixl<T ixl<r

for any r > 0.

3. A LIMIT THEOREM FOR SCALE MIXED SYSTEMS AND APPLICATIONS

We shall now proceed to answer the questions posed in the introduction

Namely when S is convergent, the index S yields the needed tool for obtain-

ing conditions insuring S’ is convergent. The precise formulation, and the
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exact relationship between the limit laws of S and of S’ is given in the

following theorem. Also to be noted is that the convergence properties

of S’ are the same as that of S (i.e., S S ’) and the behavior of the

limiting Levy functions are the same (M= ). In particular since an

infinitely divisible distribution is continuous if and only if the corres-

ponding Levy spectral function is unbounded, it follows that the limit

distributions of S and S’ are simultaneous continuous or not continuous.

THEOREM 3. Suppose that S [[Xnj j 1,2, ...,kn}] is convergent t_9_o

2 d
yjXN (, ,M) i.e., EXnj -c >X. Let J= 1,2,...} be a sequence of

n

independent identically distributed random variables with non-degenerate
S+

common distribution function Fy and with E IY < for some > O.

Assume also that [Yj, j=1,2,...} is independent of the system S. Then a

necessary and sufficient condition .th.at S’ [YjXnj J I, 2, ...,kn}
n=1,2,...] be convergent i_s

CO= lim lim sup
e+O n+oo ixl<e n

lira llm inf x dM (x)
+0 n+.

(3.1)

exists and be finite (so that bl Remark i necessarily S <- 2). l_f S’ co___p_n-

verges to Z (’, (")2,A), then the following are true:

0I Th_..e centering constants fo___[r S’ can be chosen a_s

d Z S XdFx .Yn Ix I< n3 j
(x)- -Z SI x l<rx3/(I + x2) dFXnjYj (x)

+ Z SI x i>Tx/(I + x2) dFXn3"Y’3 (x)
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0
2

S [l-Fy(X/t)}dM(t) + S )Fy(x/t)dM(t) for x < 0

A(x) (- , 0) (0,

-S(_,0Y (x/t)dM(t) +S(0,m)[Fy(x/t)-l}dM(t) for x > 0

30 (,)2 CO Var(Y) + 2(E(Y))
where CO is as defined in (3.1)

4 Ps s’

5
0 pM.

NDTE: I. If S < 2 then (3.1) is automatically satisfied with CO= 0

by (2.3) and necessarily q2 0 (otherwise S >- 2), so 30 2
says () 0 in

this case. Also when S 2 and (3.1) holds we need only assume E(Y2) <

to obtain the conclusion.

202 It should be noted that the mere meaningfulness of formula may

not be sufficient for the conclusion of the theorem. Examples of this are

given in [3].

PROOF. I) We first note that S’ is indeed an infinitesimal system.

Now, an easy calculation yields

F
X .y (x) S [l-Fy(x/t)dFnj(t) + S(0,)Fy(x/t)dFnj(t) (3.2)
n j (- , 0)

+ e[Xnj 0]X[0,) (x).
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Here XA(X I if x e A and 0 if x 4 A. Let

x e A and 0 if x 4 A. Let

and let

(x)
n

Z Fx .y (x) for x < 0

n] j

7. IFX .y.(x)-l) for x > 0

nj 3

g(x) = 1 -Fy(x)

Fy (x)

x>O

x<0.

Then using (3.2) in (3.3) we have for x < 0

(3.3)

(x)
n o(- oo, O)

while for x > 0 we have

[l-Fy (x/t) ]dM
n
(t) + S(0,)Fy (x/t)dMn (t)

g (x/t)dMn(t)

(x) z{-
n (- , O)

g(x/t)dFnj (t) S(0,)
-I- g(x/t)dMn(t).
(-,)

g(x/t) dF (t)nJ

Thus we have

g (x/t)dM
n
(t) for

A
n (x) (- ’)

(,)
g(x/t)dMn(t) for

x<0

x>O.

2) In this part of the proof we shall show that if EIY

(3.4)

< , then

we always have lim A (x)=A(x) for all x e Cont(A). Indeed since
n

Ejyl S < we have [l-F,,(t) +Fy(-t) =O(t’S -5) as t + . By the defi-
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nition of g, we can thus see that for fixed x,

t + O. Let us write gx(t)= g(x/t). By Theorem i we have

as

lim S gx(t)dMn(t) S gx(t)dM(t) (3.5)
n+ (- ,) (_ ,)

for every x such that discont(gx) N discont(M)= . Thus using (3.5),

(3.4) and 20 we have lira An(X)--A(x) for all x such that discont(gx) N

discont(M) . Let /= [x: discont(gx) discont(M) }. It remains to

show Cont (A) c . Equivalently we show c discont(A) If Y0 e then

there exists a to such that gYo and M are both discontinuous at to For

simplicity let us assume that Y0 > 0 and to > 0. A similar argument can

be used in any other case. Thus we have __o(tO +0)-__o(t0-0) > 0 and

dM({t0}) > 0, so that for any small h > 0 we have

A(Y0+h)-A(Y0-h) >_ [Fy( to )-Fy( )}dM([t0}
Y0 Y0

Fy(t--)-Fy(t+-)}dM([tO}) [gYo (tO+)’gyO(tO-)}dM({t0})
>_ [gy0(t0 + 0)-gy0(to-0) }riM([to}) b 0

where =t0h/(Y0-h) and N=t0h/YO+h. Since A(Y0 +h) -A(Y0-h) >_ b > 0

for all h, we must have YO e discont(A). Thus A (x) A(x) for all

x Cont(A). To see that A is a Levy spectral function, noted that A is

monotone increasing on (-,0) and on (0,) and A(+)--A(-)=0. We

2dAmust also show that x (x) < The proof of this is accomplished
(-, )

in part 5) below.

3) In this part of the proof we shall determine how to calculate

integrals of the form S(.,) f(x)dAn(x) and S(-oo,) f(x)dA(x) where A
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is given by (3.4) and A is given by 20 Now for 0 < a < b < let

denote the indicator function of the interval (a,b] and calculate

(a,b]

Xi (u) dry (u)dM
n
(t)An(b)-An(a) S(_,)S(_,) (a,b]

S S X (tu)dFy (u)dM
n
(t)

so that

S f(x>dA (x) S S f(ux)dFy(u)dMn(x) (3.6)
(_ ,) n

(_ ,) (_ ,)

holds when f is the indicator function of an interval in (-,). Standard

approximation techniques now allow us to conclude (3.6) holds for the

function in question. Also (3.6) holds if we replace A by A and M by M.
n n

0
4) In this part of the proof we show that 4 holds. We shall use

(2.4) to show S S’ Now for any 5 > 0 we have

S Ix [gdAn(x) S Ix g S lu [8X (ux)dFy (u)dMn(x)
[xI<e (-,1 (- ,) (-’)

SI xl<IIxl Sluxl<EIul gdFY(u)d:Mn(x) +SI xl-I uxl <E
dFy (u)dM

n (x).

However concerning the second term above we see that

lira lim sup Ix ul dFy(U)dMn(x) 0.
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Thus to show S S’ we must only show

lim lira sup Ix lu dFy(U)dMn(x) 0 if 5 > S and

lira inf S Ix15 S lulgdFy(U)dMn(X) for any e > 0 if 5 < S"
Suppose then that 5 < S and choose eI so that f Ix lSdFy(X) > 0.

Now Slxl<l fluxl<eluxlSdFy(U)dMn(X) >_Slxl<IIXl5 Slul<elulSdFy(U)dMn(X)
n - Ixl<l IXUl<eI

S lulSdFy(U) lira inf S Ix]5
luI<eI n - Ix I<1

dFy (u)dMn(x) >_

dMn(x) =, and thus S <- s’ To see

that S >- S’ let y > S be such that EIYI%’ < and pick > 0 such that

5 "Y < < 5 "S i.e., such that S < 5 " < " Then EIYIS" < and also

SIxI<IIXlS"dM (x) is bounded in n. Now Slx]<l Slux]<e]uxlSdFy(U)dMn(X)<n

E IY - Ix 15"cccIM (x).e SIxI<1
n

Thus

luxlgdFy(U)dMn(X) 0. I.e. S’ <- S and hence

S’ =S
05) In this part of the proof we shall show 5 holds by showing

< if 5 >M
II(x)

Ixl<l if 5 < M.

Suppose 5 >_ M and that oj -IxlSdM(x) < . Now we know by hypothesis
(-,)

that there is some y >_ S >- M such that E IYI < . Without loss of

generality we may assume 5 < "y so that we have
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IxI<l
Ixl 5 Sluxl<llUlSdFy(U)dM(x)

dFy(U)dM(x) <_ EIYI 5 Slxl<l IxldM(x) +M(-I)-M(1) <

i.e. A <__ M. On the other hand, if < M so that S
1then choosing 1 >_ c > 0 such that P[ < -] > 0 we have

15Ix d(x) oo,

Thus A >_ M and hence A= M. In particular, choosing 5 2 we see A is

indeed a Levy spectral function.

6) An elementary calculation using the Helly Bray theorem and Theorem

2 shows that the centering can be taken as in I0 when (3.1) holds.

7) In this part of the proof we shall show that the finiteness of

the limit in (3.1) is necessary. We shall show that if

then

2dMlim sup x (x)
n+ Ixl<e n (3.7)

xdFx .y.(X))2} =oo. (3.8)
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Hence by the general limit theorem S’ cannot be convergent.

and for simplicity of notation let us write

Let e>l

o" (e)= x (x)-Y. xdF
X y (x)) 2

n xl<e n xl<e nj j

Then

(e)>
n

x2 S
ux l<eu2dFY (u) dM

n
(x) (3.9)

ixi<e2 luxl< dFnj

2Y.[S x S udFy(U)dFnj (x)}[S x S UdFy (u) dF
2 lux I< nj

(x)]

E[; x S UdFy (u)dFnj (x)2.

lira sup Y’[S x S l<eudFy(U)dFnj(x)]2= O.

PROOF. By the Schwartz inequality,

; {:x S UdFy (u) ]dFnj (x))

<-- (S Ix S UdFy(U)}2dFnj(X)>P[ IXnj
_

e2]

< max P[ IXnj
_

e2] S x2 S u2dFy(U)dFnj(X).
Ix 2
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Using the infinltesimality of the system, we have the first term converging

to zero. The sum of the second terms is bounded, since by the Helly-Bray

theorem

2 S 2dFylim sup x u (u)dMn (x)
n ->oo

ix i>_e2 ux I<

< {E(Y2) x (x) +
2 IXl>e<II<

dM(x)].

This completes the proof of Claim I.

have

Note that using the above we actually

lim lim sup
e+O

2 S 2
x u dFy(U)dMn(x) Oo

2 lux l<e
(3.10)

CLAIM 2.

UdFy (u)dFnj (x) {:S x S UdFy (u)dF

Ixl>--e 2 lux l<e nj
(x):

2dM %< [E (Y2) }1/2o(I) S x (x)}
n

PROOF. By the Schwarz inequality for sums, the sum in the claim is

no larger than
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Applying Claim I to the second term and the Schwarz inequality to the

first term in the above product we have that the left hand side does not

exceed

{:S
x l<e2x2(S lUx I<udFY (u))2dMn (x) 1/20 (:) <- [E 0f2) 1/2 (I) IS Ix i<Cx2d:Mn

which completes the proof of Claim 2.

Now using the inequality

2
x Slux l<eudFy (u)dFnj (x)

<-- S x2:S udFy (u)]2dM
n
(x)

Ixl<e2 luxl<

and using Claims i and 2 in (3.9) yields

2 X2[S u2dFy (u) (S UdFy(U))2}dMn (x)

2(E(y2))o(:)[S x (x)} +o(1).
2 n

(3.11)

Since (3.7) implies S >- 2, we know E(Y2) < =. Let > 0 be chosen such

that War(Y)- > 0 and choose eO
2 > 0 so small that if xl < e, then

u2dFy (u) (S UdFy (u))2 <- Var(Y)+.
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Then for <_ 0 in (3.11) we have

2 S 2dM 2 f 2 1/2() > [Var(Y)-5} x (x)-2E(Y )o(I)[ x dM (x)} +o(i)n nixI<2
n

2Ixl<e (3.12)

S 2dM (S 2dM 1/2 2x (x) 1/2[ (Var (Y) -5 x (x)) -2E(Y )o(i)} +o(I)

ixl<e2
n

ixl< n

By (3.7) the lim sup as n + of the right hand side of (3.12) is + ,
2

i.e., lira sup n(e) =, and S’ cannot be convergent.

8) In this part of the proof we show that if (3.1) holds, then S’

is convergent to X (’, (’)2,) Since we have already shown that

lim A (x)=A(x) for all x e Cont(A), to obtain this part of the proof,n

we need only show that with .2(:) as given we have
n

2
sup n(e) lim lim inf 2() (,)2.lim lim

n

2Now, if #S < 2, then by (2.3) we must have 0, and CO= 0. However by

part 5 of the proof #S’ =#s so that

2dA0 <_ (,)2 <_ lim lim sup x (x) 0

so that 3
0

holds with (0’)2=0, and consequently S’ converges to

X (’, 0,A). We are thus left to consider the case when S 2 (recall

(3.1) implies S <- 2). Then we assume E(Y2) < and as before we have
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2 S 2S 2dFyo" (,) x u (u)dM
n
(x) (3.13)

+S x2 S u2dFy(U)dMn(X -Z(S x S UdFy(U)dFn
II>_ lul< II< lul<

(x))

-Z (S x SIUX l<eudFy (u)dFnj (x))

ux l<l::UdFy (u)dFnj (x)) (S x S
it>_2 luxl<

UdFy (u) dFnj (x)).

Applying (3.10) to the second term, Claim 2 to the last term and Claim i

to the 4th term on the right hand side of the last equality in (3.13)

and upon adding and subtracting

we have

Z(S x S UdFy (u) dFnj (x))

I< I<,} lul<:/

: (e)=
2 u2dFy (u)dMn (x)

(3"
u iI<

2

ii<<

I <e2 ux i<e
nj

+ gl (n, e)

(3.14)
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where lira lira sup gl(n’E) =0.

PROOF. Using the equality a
2

b
2

(a-b) (a +b) we have

Ix i<E2 u I<:/
)dFnj

(S x S UdFy (u)dF (x))
2

UdFy (u)dFnj (x)

UdFy (u)dFnj (x) {S udFy (u)dFnj (x) }.

For simplicity we denote

UdFy (u) dF
nj

(x).

Then the right hand side of (3.15) becomes equal to

2fnj(E) S x S UdFy(U)dFnj(X) + f2nj().
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Thus to complete the proof of Claim 3 we must show

llm lim sup I f2
9-0 n+ nj

() 0 (3.16)

and

lira lira sup[E f (e) S x S UdFy(U)dFnj (x)] 0.

e 0 n 9-
nj

x l<e2 lu I<i/
(3.17)

Concerning (3.16), note that by the Schwarz inequality

f2 2 2
nj

() <- S x S u dFy(U)dFnj (x)

2dM 2
and letting a(e2) lira sup x (x) we have a(e CO

as e 0 and
nn+m 2

hence Ixl<

S 2dFy (u)alim lira sup Z f2 () < lim u (2)) 0

so that (3.16) holds. In a similar manner, concerning (3.17) we have

fnj () S x S UdFy (u)dFnj (x)

Ixl<e2 lul<I/

lu dFy (u)dFnj (x)) [E IYI S 2

< E (Y) [S 2oluldFy(U)}[ x dF .(x)}.

ixi<e2
n3

Ix IdFnj (x)]
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lu IdFy(U) 2
x dM (x)) from which (3.17) follows

easily.

Now using Claim 3 in (3.14) and upon adding and subtracting

(lul<leudFY(u)> 2 S 2
x dM (x), we obtain from (3.14),n2

359

G (c) S x (u)- UdFy(u))2n
ixl<,2 I,,1</I,1

+ g2(n’E) where lim lira sup g2(n’E) O.
:+0 n+oo

(3.:8)

Then, if we use the inequalities

{S x
2
dM (x) {S u

2
dFy (u)

ix j<(::2
n lu i<1/(:

iI<2 u ii<2
n

2
in (3.18), we obtain the following two sided bound for d (E):

n
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(3.19)

Using the fact that ElimIlim+0lim
sup

equal when (3.1) holds, we obtain

of the extremities in (3.19) are

C
0
Var(Y) + (E(y))22 <_ lim lim inf 2(e)n

e+O n

2<_ lim lim sup n (e) <- CO Var(Y) + (E(y))22
e +0 n+

where C
O

is the constant given in (3.1), so that (0’) 2 exists and is given

by (,)2 C
0
Var(Y) + (E(Y)) 2 2

(y

9) In this part of the proof we show that if S’ is convergent

2 2(so that lim lira sup n () (’) lim lira inf 2()) then necessarilyn+0 n 0 n

(3.1) holds. By part 7) we know that we may assume

S 2dNlim sup x (x) < so that all of the previous equations leading
n + Ixl<e n

up to (3.19) still remain valid. Let us then subtract the quantity
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UdFy (u))2{ x (x) Y. xdF (x))2
Ix I<i/e x i<2

n 2 nj
+ g2 (n, )

throughout the inequality (3.19) to obtain

2dM [S u dFy(U)-(S
i<i/e{S x (x)

2 UdFy (u))

ix i<2
n Ixl<i/e

2 (S S 2dM< (g) XdFy(X))2{ x (x)
n ixl<i/g xl<g2

n

Z (S xdF (x))2
2 nj g2(n’e)

2dM< {S x (x)}{E(y2) (S UHFy (u))2}"
2

n lul<I/e

2 (3.20)

Now, lim lim sUPn (E(Y))
o|lim inf

of the inside of (3.20) equals ()2 2 2

while on the outside of (3.20) the above limits yield

Var(Y) lim I lim sup S 2dMn
+0

lira inf xl (x). We thus conclude (3.i)

n+ Ixl<E2

holds with Var(Y)C0= (,)2_ (E(y))22. This completes the proof of the

theorem.

Let us now turn to the frnework of the more classical central

limit theorem. If [XI,X2,...} is a sequence of independent identically

distributed random variables with common distribution function F, we

shall write XI e () to denote the fact that F (or XI) is in the domain

of attraction of a stable law with characteristic exponent . That is,
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there exists norming constants [B n= 1,2,...} and centering constants

[An, n= 1,2,...} such that En IX /B -A converges in law to a distri-
j= j n n

bution which is stable with exponent < 2.

In this case the relation between the scale mixed system S’ and

the original system S takes on a particularly appealing form. Our con-

dition for convergence only depends upon the moments of Y and the index

THEOREM 4. Le__t [XI,YI,X2,Y2,...} be independent random variables

x having distribution function F
X and Y havin$ distribution functionn n

Fy

I) l__f EIYI 2 < , th.en X (2) .implies YX e (2) an__d the sne

norming constants work. Conversely i__f YX e D2) .t.he.n X D(2) an__d

the sne norming constants work.

2) l_f E IYI+8 < for some > 0, then X e D() implies YX e

and the sme norming constants .wprk.

PROOF. The direct statement in I) and 2) will follow from Theorem

3 once we show that (3.1) holds. Let S= {[Xj/Bn, j= 1,2,...,n}} then

as proven in [4], X e O() implies S =" For < 2 we have (3.1)

holding with CO=0 by (2.4). For =2 we know (see Feller (1971), [6]

pg. 314) that necessarily

B- Yl<B
y dFX (y) + C0 as n + (3.21)
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Using the fact that
n f 2dFx S 2

y (y) y dM (y) and that

n
[y [<Bne Ix [< n

S y2dFx(Y) is a slowly varying function of t yields (3.1) in this

case also. Applying Theorem 3 we obtain the convergence of

S’ [[XjYj/Bn, j 1,2,..o,n}}. If = 2 then Mm0 so by 20 of Theorem 3,

A= 0 and S’ converges to a normal distribution. If < 2, then by 30 of

2
Theorem 3 (’) 0 and with

363

Cllx[-C if x < 0

M (x) --C2x if x > 0
(3.22)

20we have by of Theorem 3

A(x)
Fy(X/t)d(t-) ifI-Fy (x/t)d t -) -C2 f(0, )’(_ oo, o)

C I

-C1 S Fy(X/t)d([tl-c)-C2 f {Fy(X/t)-l)d(t -c) if
(- ,o) (o,)

x<O

x>O,

or equivalently, upon integrating by parts

A(x)
(-,o) (o,)

(- ,o) (o,)

(3.23)

Upon simplifying (3.23) we obtain

A(x) :I al ]x[-- if x < 0

-a2x if x > O,

(3.24)
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i.e., X Y is in the domain of attraction of a stable law with character-
n n

istic exponent , and the same norming constants work.

Let us suppose now that YX e (2) and EIYI 2 < . We shall use the

general limit theorem to show E n.
i
X /B -A converges to a normal distri-

j= j n n

bution. With M given by (2.1) and A given by (3.3)we shall show
n n

A (x) + 0 for x0 implies M (x) + 0 for x 0. Indeed let t be such thatn n

P[ IYI > t] > O. Then

dA (x)= Sf dFy(U)dMn(X)O--S
2

n
2Ixl>t luxl>t

f 2dFy(u)dMn(X) >- SIxI>tP[IYI > t]dMn(X)"

Since P[ IYI > t] > O, dM (x) O, thus the limiting Levy function

is 0.

Let us complete the proof by showing

E 0 lim inf
x (x)-n XdFx(x))

n->oo Ix[<e n

exists and is finite. In view of part 7) of the proof of Theorem 3 we

know we must have

2dMlim lim sup x (x) <CO
e ->" 0 n->oo Ixl<e n
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Utilizing the inequality (3.20) of Theorem 3 we see that we must only

show for

SCI im lim inf x (x)
0 n+ Ixl<e n

we have CO= CI Now by Fatou’s lemma and by (3.21)

C
2

lim x (x) lim inf x u dM (x)dFyU
n+ Ixl<e n n

n + {ux

<_ lim S lira inf u2 S 2dMx (x)dFy (u) C E (y2)
e 0 n +oo lux I< n 1

On the other hand for 7 > 0 choose 5 so small that f u2dFy(U) >

(I-)E2). Then C
2 >_ lim sup u x (x)dFy(U) >

n -->- u I Ix n

2dM.(I-G) E (y2) I im sup x (x) Thus
n + ix i<e/5 n

(I-D)E(y2)c
0 <_ C

2 <_ E(y2)cI <_ E(y2)c0

Since 7 > 0 is arbitrary C

distribution.

I =C0 and Zn.j=Ixj/Bn-An converges to a normal

REMARK 2. i) The first part of Theorem 4 should be compared to a

result of H. Tucker (1968) who considered sums of random variables in the

domain of attraction of the stable distributions instead of their pro-

2
ducts. He shows that if EY < and X e () then X+Y e () and the

2
same norming constants work. If X +Y e () and E(Y) < m, then a
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slight modification of his methods yields X e D(). Combining our re-

sult with his we find that if X,Y,e are independent random variables,

Ey2 2< and EE < , then X e D()YX+ e D(o)and the same norming

constants work. For =2, X e )12)=> YX+E e D(2) with the same

norming constants.

ii) In Theorem 4 we can actually calculate the scale change in-

volved in the distribution of the limit laws of S and S’ when < 2.

Namely, in going from (3.23) to (3.24) we have

x<O

x>O

where al=C1 f tdFy(t) +C
2 f tlCdFN(t) and

(o,) (-,o)

a2=C2 S tdFy(t) +C
I f ItldFy(t). This follows immediately

(o,) (-,o)
-1

from (3.23) by the change of variables z= xt

iii) It can be shown that for < 2, YX e D() and EIYI+ <

implies that EIXIc’ < and EIXIc+6= for all 8, hence S " I

suspect that in fact X e D() however, I have been unable to establish

this for #2.

iv) Suppose that

lira
lira sup Ix[ dMn(x) =C

O+0
lira inf + ixl<



EFFECT OF RANDOM SCALE CHANGES ON LIMITS 367

C
I C0C 1then for i -Fy(X) +Fy(-X) ---- we have A (x) + + A(x) where A(x)n IS

0
is given by 2 of Theorem 3. This is a Levy spectral function when

S < 2. Thus we see that some random scale changes introduce a stable

component into the limit law.

We can also use Theorem 4 to derive some interesting statements

about slowly varying functions which would be difficult to prove by

other means. The precise formulations are given in the following

corollary.

i
0

Suppose EY
2 < Then

o
o x2dFx(X) is a slowlyCOROLLARY

varying function of t if and only if-
o S xmumdFx(X)dFy(U) is a

lu l<t
slowly function o__f t.

20 Suppose

a) S x2dFx(X) varies regularly with exponent 2- a__s a

function of t and also

P[X > x] P[X <-x]
P[ IXl >_ xl x + - p’ p[Ixl

_
x] x + q

b) an__d EIYI+ < for some 8 > 0, then

S(_ ,) Slux l<tx2u2dFy (u)dFx (x)

varies regu!arly with exponent 2- a__s a function of t and also
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PItY >_ x]dFx(t
(o)

S P[ ItYl >-- x] dFx (t)
(-,)

S PItY <_ -x]dFx(t)<- ). q’

S P[ ItYI >- x] dFx (t)

for some p’ q >__ 0 .w.ith p’ +q’ > 0.

PROOF. This follows immediately from Theorem 4 by utilizing the

necessary and sufficient conditions given in Feller (1971) for a dis-

tribution to belong to the domain of attraction of a stable law.

In the previous theorem we observed an interesting phenomenon.

Namely we took an infinitesimal system S and subjected it to an arbitrary

random scale change with EIYI S < and we obtained a new system S’

which was convergent. Moreover the limit distributions of S and S’

were of the same type. In problems where X represents a "true" or
nl

theoretical measurement of some occurrence and Y the scale change in
1

the measuring device used to measure the occurrence, we obtain as an

observation the product X .Y. It is of interest to determine when
nl I

limit distribution calculated from the empirical data

[[XnjYj, j 1,2,...,kn}} is of the same type as that from

[[Xnj j 1,2,...,kn }" For normed sums in the domain of attraction

of a stable law, Theorem 4 answers the question and Remark 2ii) allows
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us to calculate the scale change. In general the following theorem tells

us that in non-stable limits the empirical data may yield a different

type distribution than the theoretical data [[Xnj J 1,2,...,kn }"

THEOREM 5. In order that a limit distribution b__e preserved i__n type

S+5
under all random scale mixtures with E IYI < it is necessary an__d

sufficient that the limit distributio type be either purely stable or a

mixture of stable and normal.

PROOF. The sufficiency follows from 20 and 30 of Theorem 3 of

Theorem 3 as we calculated in Theorem 4, and in fact the scale change

involved is given in Remark 2ii).

Suppose now that the limit distribution is preserved in type when

subject to random scale change. Then with S and S’ as defined in Theorem

3 we know Z~ (’, (’)2,A) is of the same type as X~ (,2,M), thus

(,)2 2 2
a and A(x)=M(x/a) for some constant a. As in 2) of the proof

of Theorem 3 we know that

I f IM(x/t)IdFy(t)
A(x)

IM(x/t) IdFy (t)

x<0

x>O

(3.25)

If M(x) 0, then both X and Z are normally distributed. If M(x) 0,

then we must show M is given by (3.22) of Theorem 4. Using the fact

that A(x) =M(x/a) in (3.25) and letting

h(t) j(x/t)[ we see that h is a function of t (3.26)
M(x/a)
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alone, the equality holding a.eo [dFy]. Since Y could be chosen to be

absolutely continuous we have (3.26) holding on a dense set of points t.

For simplicity in calculation we shall consider the case x O, t O,

a > 0 and denote N(x)=M(x)/M(1). The other cases may be considered

similarly. Rewriting the equation (3.26) yields

N(x/a)h(t) N(x/t)

and hence for x= a

Thus

h(a/y) N (xy/a N(y).
N (x/a)

N(y2) N(y)h(a/y) (N(y))2

and by induction for any k

N(yk) N(yk-l)h(a/y) Nk(y).

Letting U(x)=-nlN(ex) I, the above equation becomes

I/k U(knx) U(n x) or

i/k U(ky)=U(y). By Lemma 3, page 277 of Feller (1971), this implies

U(x) x0 or equivalently N(x) xO. That -2 < 0 < 0 follows from M being
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a Levy Spectral function. Thus M(x)=M(I for x > 0. Similarly we can
X

show M(x)=M(-I) for x < 0. We see that = since the limit distribution

is of the same type whether multiplied by Y < 0 or Y > 0. The result then

follows easily from the calculation of A(x) in both cases. This completes

the proof of the theorem.

REMARK. The problem considered here could have been solved by de-

fining the class C
S

of random variables by

[Y" lim lira sup[C
S [l-Fy(xt) +Fy(-Xt)}dMn(x) 0}}

and proving the main theorem for members of this class. Some such account

must be made of the complex interaction of M (t) as (t,n) + (0,) and
n

l-Fy(t) as t + . Since moment conditions are perhaps a more natural

approach, we choose to introduce the index S instead. To avoid the

"s s+
borderline case l-Fy(y)~y we choose to assume E IYI < .
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