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ABSTRACT. Several representations for a complete residue system in the

Euclidean domain Z() are presented in this paper.

i. INTRODUCTION.

Throughout this paper, small case Latin letters with the exception of e and i

will represent rational integers. The Latin letters e and i respectively repre-

sent the base for the natural logarithms and the imaginary unit. We let

2i/3
m e and Z(m) {a + bmla,b e Z}. The Greek letters e, 8, Y, 6, o, and

will always represent integers in Z().

We will illustrate the integers in Z() by the lattice points in a Cartesian

coordinate system formed by the intersections of the lines through the points

(x,0), x a real integer, and making angles of 60 or 120 with the x-axis.

This system is composed of equilateral-triangles.

In Uspensky and Heaslet (4), we find many representations for a complete

residue system modulo n. Two of the most well-known complete residue systems
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molulo n are the set of integers {0, i, 2, --.,n-l} and the set of integers

{x n/2 < x <_ n/2}. The latter representation is the one with least absolute

values.

Jordan and Portratz (2) exhibit several representations for a complete resi-

due system in the Gaussian integers and in Potratz (3) we find several represen-

rations for a complete residue system in the quadratic Euclidean domain

Z(//) {a + b/Z la,b e Z}. It is the purpose of this paper to exhibit several

representations for a complete residue system in the Euclidean domain Z(m).

We say that el8 iff there exists a 6 such that 8 e. Furthermore,

-= 8(mod y) iffyl (e 8). It is a trivial matter to show that congruence modulo

y is an equivalence relation on Z(m) and hence, as in the real case, it is

reasonable to define a complete residue system modulo y as a nonempty collection

S of elements in Z(m) such that (i) no two elements of S are congruent modulo

and (2) every element of Z(m) not in S is congruent to some element in S. A

complete residue system modulo y is abbreviated as C.R.S. (mod y). We define the

norm of y, denoted by N(y), as N() I(I 2. If a + b then

N() a2 ab + b2.

2. REPRESENTATION I. The first representation of a C.R.S. (mod y) appears to

be a natural generalization of {0, i, 2,-..,n-l} modulo n. Let y a + bm,

d- (a, b), and y d(aI + bl d.

THEORE 2.i If d is even, T
1

{x + y/i I0 < x < d ll
2
-i, 0iYi },

1 i /i I0 <_ x < dll 2 ---and T
2

{(x + ) + (y +-) i, 0 <_ y <_ d 2} then T TIUT2
is a C.R.S. (mod y). (See Figure i).

PROOF. It is a trivial matter to show that T is a subset of Z(m). Suppose

el’ 2 e T and el e2 (md Y) then there exists a
2 + b2 such that
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d
If aI xI + yl/i and a2 x2 + y2/i then Yl Y2 (alb2 + bla2 blb2)

so that - (Yl Y2 )" But, lyI y21 < so that Yl Y2 and xI x2(nod y),
2 2

Since the smallest real number that y divides is d l and IxI x21 < d l
we have x

1 x2 and 1 2"
If i and a2 are both in T2 the same argument will again show that al 2"
If l and 2 are such that I Xl + Yl/I and 2 (x2 + ) + (Y2 + )

1then d/2 divides (Yl- (Y2 + -)) which is impossible since 21d. Hence, no two

distinct elements of T are congruent modulo y.

Let a x + y. Find ql and rI such that y dql + rI where 0 <_ rI
< d.

Since d (a, b), there exists u and v such that au + bv dql. If rI 2nI

find q2 and n2 such that x nI au av + bu d lvl
2
q2 + n2 where

2 2
0 < n2

< d l If rI 2nI + i find q2 and n2 such that 0 < n2
< d l where

x nI i au av + bu dlvl 2
q2 + n2" When rI 2nl, we flnd that

=x+y

dll12q2 + (v + u(1 + (o))y + n2 + nl’’i
n2 + nli (nod y)

so that a is congruent to an element of TI. On the other hand, if rI 2nI + I,

we find that

a=x+y

d]12q2 i i+ (v + u(l + ))y + (n2 + ) + (nI +_
i i /i(mod-= (n2 +) + (nI + ) Y

so that a is congruent to an element of T2. In either case, is congruent to

an element of T and T is a C.R.S. (nod y).

THEOREM 2.2. If d is odd, TI {x + y/il0 < x < d[l 2
i, 0 < y < dl}

i i I, 0 <y <---and r
2 {(x + ) + (y + )/i[0 < x < dll

2 d 3} then T TIUT2
is a C.R.S. (nod y). (See Figure 2).
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The proof of Theorem 2.2 is very similar to that of Theorem 2.1 and hence

has been omitted. Furthermore, examining the results of Theorems 2.1 and 2.2,

we see that the following is true.

2
COROLLARY 2.1. The cardinallty of a C.R.S. (mod y) is 171

3. REPRESENTATION II. Let y a + b. Let TI be the collection of points

inside the rhombus ABCD whose vertices are respectively (i + )7/2, (i )7/2,

(-i -)7/2, and (-i + )7/2. Let T
2 be the collection of points on the half-

open line segments (+(-i + )7/2, (-I )7/2).

5).

THEOREM 3.1. Let T TIUT2 then T is a C.R.S. (mod 7). (See Figures 3, 4,

PROOF. --If eI aI + bl then

el i + i--+ + + +
7 2 N(7) N(7)

I
Let CI (ala- alb + blb)/N (Y), DI (abI alb)/N(7), rI [CI + ],

CI rl, sI [DI + 21--], S1 DI sI where is the greatest integer

i i
function then C

1 + DI el/y (rI + Sl) + (RI + SI) where < RI
<

1 i
and - < S

1
< . Hence, eI (rI + Sl)7 + ( + Sl)7 so that

+ Sl) 7 e Z() and eI (R1 + Sl)7 (rood y).

For each of the following; CASE I. a + b # 0, 2a b # 0, CASE 2. a + b 0,

2a b # 0, and CASE 3. a + b # 0, 2a b 0: it can be shown by using the

equations for the sides of the rhombus that (R
1
+ Si)7 is in TI if RI and SI

1 1
are in the open interval (-, ) and (R

1 + SI)7 is in T2 if eigher P1 or S
1

is equal to-1/2. Hence, every element of Z() is congruent to some element of T.

Using the equations for the sides of ABCD, it can be shown that if eI e T

then rI sI 0.



COMPLETE RESIDUE SYSTEMS 79

Let al, a2 e T be such that Ul 2 (rood 7) then there exists a
3 + b3

such that Ul/7 u2/7 + . However, al ( + Sl)7 and 2 (R2 + S2)7
i iwhere- <_ Rj, Sj < for j i, 2 so that ( R2) + (SI S2) a

3 + b3.
Therefore, RI R2 a

3 and SI S
2

b3. Considering the possible values for

Rj and Sj for j i, 2, and using the fact that a
3

and b
3
are integers, we have

a
3 b3 0 or Ul u2 so that T is a C.R.S. (rood 7).

It is interesting to observe when T2 is empty. To do this, we first note

that the following is true.

THEOREM 3.2. If 7 a + b then 21N(7) iff 217.
We are now able to show

THEOREM 3.3. Let 7 a + b and T TIUT2. The set T
2 is empty iff 27.

PROOF. --Let i al + bl" CASE I. a + b # 0 and 2a b # 0. If al is

on CD then N(7) 2(alb ala blb) while N(7) 2(alb abI) if"uI is on BC.

CASE 2. a + b 0 and 2a b # 0. If i is on CD then N(7) 3a2 2a(bI 2aI)
whereas Ul on BC implies that N(7) 2(alb abl). CASE 3. a + b # 0 and

2a b 0. If i is on CD then N(7) 2(alb ala blb) and N(7) 2a(2aI bI)
if al is on BC. Therefore, T

2 # implies that 217.
Conversely, it is easy to see that if 217 then the vertex C of the rhombus

iis a point of T2 since the value of CI in Theorem 3.1 is -.
4. REPRESENTATION III. In Hardman and Jordan (i) and Potratz (3) we find a

discussion of a "better" or "absolute minimal representation of a C.R.S. (mod 7).

For consistency, we have

DFINITION 4.1. A representation T of a C.R.S. (rood 7) is said to be an

absolute ml representation iff for any representation R of a C.R.S. (mod 7),

we have

aT R
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It is the purpose of this section to exhibit a representation of a C.R.S.

(rood ) which is a "better" or "absolute minimal representation". As before,

we let a + b.

Let TI be the set of points interior to the hexagon ABCDEF whose vertices

are given respectively by 3(i )eki/3 where i < k _< 6. Let T2 be the set of

points on the llne segments [- (i ), (i )ei/3], (i )e

5i/3 (i m)). Let T TIOT2.3(i )e5i/3] and [3(i )e

THEOREM 4.1. The set T described above is a C.R.S. (mod y). (See Figures

6,7,8,9).

PROOF. Let aI aI + bl. In Theorem 3.1, it was shown that there exist

integers rI and sI together with rationals R
1
and S

1
such that

i/Y (rI + Sl) + (R1 + Sl)

where-i <_ 2RI
< i and-i <_ 2SI

< i. Consider the follwoing cases:

CASE i. -i < 2 < 0 and -I < 2SI
< 0, CASE 2. -i < 2RI

< 0 and 0 < 2SI < i,

CASE 3. 0 < 2 < i and -i <_ 2SI _< 0, and CASE 4. 0 < 2 < i and 0 < 2SI
< I.

It can be shown in each case that there exist integers r and s together with

rationals R and S such that

Cl/’ (r + s) + (R + S)

where (i) -i <_ R + S < i, (2) -i < R 2S <_ i, and (3) -i < S 2R <_ i. We

shall say that a number in this form is in standard form. Note that (R + S)y

is an element of Z() and that aI (R + S)y (mod ).

Let us now consider the following possibilities for y: CASE i. a # 0,

b # 0, and a # b, CASE 2. a 0 and b # 0, CASE 3. a # 0 and b 0, and

CASE 4. a # 0, b # 0, and a b. As in the proof of Theorem 3.1, if we use the

equations for the sides of the hexagon together with the restrictions placed on

a number aI in standard form we find in each case that (R + S)y e T and in
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particular that it is on DE if R + S -i, on CD if S 2R i, and on EF if

R- 2S i. Therefore, every element of z() is congruent to some element of T.

Let Sle T in standard form. Since eI is between AB and DE, we have

r + s -i, r + s 0, or r + s i. Similarly, r 2s equals -I, 0, or i since

i is between BC and EF while s 2r equals I, 0, or -i since eI is between CD

and FA. Examining the twenty-seven possibilities, it is easy to see that all

cases lead to a contradiction except where r + s 0, 2r s 0, and r 2s 0.

Hence, r s 0 and eI (R + S)y.

Suppose el, e2 e T in standard form where el (R + S)y and e2 (U + V)y.

If el 2 (mod y) then there exists a 6 such that el e2 Y6" Using the

standard form restrictions, it can be shown that 6 +i + , +, -+i, or 0.

However, e2 + Y6 el is not solvable in T for these ’s unless 6 0; therefore,

any two distinct elements are incongruent modulo y and T is a C.R.S. modulo y.

In a paper to follow, the author will investigate necessary and sufficient

conditions for the boundary of the complete residue system to be empty.

LEMMA 4.1. If -I < a < 1 or -i < a < i and r is any integer then 0 < r 2 + ar.

The proof of Lemma 4.1 is straight forward and hence the details have been

omitted.

LEMMA 4.2. Let e T then el < 181 for all

PROOF. Let /y R + S be in standard form. Now, s + y for some

therefore 8/Y (R + S) + (c + d) where c and d are integers. Hence,

IBIYI [(R + c) 2 (R + c)(S + d) + (S + d)2] 1/2

Rc cS + c2 cd + 2Sd Rd + d2 +

--ID-I-l/y12] 1/2
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Suppose c d then D Rd + Sd + d2 d2 + d(R + S) > 0. If c > d and c < 0

then-c I < 2S R- c < 1 c < -d or -d2 > (2S R- c)d. Therefore,

D d2 + d(2S R- c) + c2 + c(2R- S) > 0. If c > d and c 0 then we have

D d2 + d(2S R) > 0. If c > d and c > 0 then -c < -d i < 2R- S d < 1 d

or (2R- S d)c + c2 > 0. Hence, D c2 + c(2R- S d) + d2 + d(2S R) > 0.

Similarly, D >_ 0 if c < d and either c 0, c > 0 or c < 0. Hence,

That T is an absolute minimal representation of a C.R.S. (rood y) is an

immediate consequence of Lemma 4.2.
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FIG. 1 C.E.S. (d 4 + 8)

FIG. 2 C.R.S. (mod 5 + i0)

FIG. 3 C.R.S. (rood 4 + 60)
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FIG. 6 C.R.S. (mod 5 + 10o)
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FIG. 9 C.R.S. (rood 5 + 5)

FIG. 8 C.R.S. (mod 7)
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