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Section 1. Introduction.

Let P2 denote the space of entire functions of two variables.

@

n

If f(z,w) e Pz, f(z,wl= T ay nzmw , the series converging

m,n=0 !
absolutely for all (z,w) and uniformly in every
bicylinder centered at (0,0), [2]. Here, a metric is defined on

Pz and three classes of linear functionals on P2 are characterized.

We use the following notation.
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(1)

<a > = <a
m,n m+n=k

k,0,

(2) i am,n = a0,0+a1

ak-l,l"'ao,k’ak+l,0"'
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>,

,0t30,1%32,0%31,1% -~

m+n=0
N
Elimz an°
’
N+ m+n=0
e a4 . © . . P
.1. >
Definition 1.1 The sequence <am,n m+n=k +S said to have limit
a as m+tn + @, written 1lim a = a, if and only if for any
m,n
m+n-s

€ > 0, there exists an N

if m+n > N.

Lemma 1.2. If f(z,w) =

m

(z,w), the sequence <am,n

Proof. Given (z,w), let
exists, 0 = lim SN - lim
No N

Hence given ¢ > 0, there
N-3 J
. 2 < f
[aN_J’J w-| < e for ea
m n
<n <
0 <n <N and lam’nz W<
an M = M(e) such that m+n

. m n
lim a zw = 0.

m+nae T80

Lemma 1.3. A necessary a

= N(e) = 0 such that [am'n-al < e

@©

z ay nzmwn e P2, then for each
/n=0 !
m n e . . mn _
Z'W > in=g 1S such that &*ﬁﬂmam,nz w =0.
N .k . .
- i, |. sSince 1lim S
SN jfk:Olaj'kz w N N
. . ik
s = lim (S-S, _,) = lim £ |a, .zlw"|.
N-1 Nae N N-10 o jek=n I’k

exists an M = M(e) such that if N > M,

ch j, 0 <j <N. Let mtn = N. Then
e. Therefore given ¢ > 0, there exists

>M= |a_ _z"w'| < e. Hence

m,n

©
m n

nd sufficient condition that X a nZ

m,n=0



ENTIRE FUNCTIONS OF TWO VARIABLES

99

. . . . 1/m+n_=
>

is an entire function is that for the sequence <lam,nl m+n=1,

one has lim |a_ nll/m+n = 0.

m+nee !’
@
Proof. Let I ay nzmwn eTr? and T = Tin la, nll/m+n.
m,n=0 ' mnae 7

If T > 0, choose (z,w) such that |z| 2 |w| > 1/T. (1/T = 0 if

T = ). Then choose p such that |w| > p > 1/T. Then

L A o<1
Iz |™w | b
© @ . s
<(mk,nk)> k = 1 such that < mk+n.k>k=l increases monotonically to

1

| m*n, 5 1/p for all k. Hence |a
k' "k

n
mk,nkzmkw kl >

= and |a

m
( g ) k( % )nk > 1. This contradicts Lemma 1.2. Therefore T = 0.

Hence lim |a nll/m+n = 0.
m+n-e '
«©
Conversely, let X an nzmwn be a series such that for the
m,n=0 '
l/m+n‘° . 1/m+n _
sequence <[am’nl > 4ne1’ One has lim Lam,nl = 0. To

m+n-®

show this series is an entire function, it sufficies to show
[2] the series converges for each (z,w). Consider (z,w) fixed.
Choose p such that |z]| < p and |[w| < p. Let N be such that m+n

>N = |ag nll/m+n < 1/p. Then for m+n > N, |ag nzm'wnl_ <
© 4

(<]

(zhm () ™ 5 Ja 2| s I ™ W™ < =
P P m+n=N+1 ’ m+n=N+1 p P
Therefore T lam'nzmwnl< ®,

m+n=0

< T. By definition of T, there exists a sequence
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P
Let s = X Z a zmwn. To show the series converges,

Prq p=0 n=o0 ™"
it sufficies to show [1l] that given € > 0, there exists an

N = N(e) such that |s | < e if P>m>Nand g >n > N.

P,q Sm,n
Since I |a 2™ n[ < », given e¢ > 0, there exists an M = M(¢)
m,n?
m+n=0
© k
such that N > max{M,1} = z aj szw < ¢. Choose such an N.
14
j+k=N+1

Then N = N(¢). For p >m >N and g > n > N, lsP,q_sm,nl

P q . m n . © .
=% £ oa 2w - E X oa2Wfs = a; 2k

j=0 k=0 I’ j=0 k=0 I’ jtk=m+n| I’

®© .
< z a. kszk[ < e.
j+k=N+1 | I’

. - m m 2

Definition 1.4. Given f(z,w) = Z a nZ v e I'" and
m,n=0 !
glz,w) = Z bm nzmwn e P2, define d(f,q) =
m,n=0 "’
1/m+n:

sup{]aol0 b0,0l’ [am n~Pm, ol m+n = 1}.

Theorem 1.5. The space (Pz,d) is a metric space.

Proof. Given f, g as in Definition 1.4, the set

1/m+ .
{lam,n-bm,nl /min, m+n =1} is a bounded set by Lemma 1.3, so d is

well defined. It is clear that d(f,g) = 0 if and only if f = g

@®
and that d(£,9) = d(g,f). Let h(z,w) = I c_ ™" e I
r’

m,n=0

. 1/m+n
T = - - . =
hen d(f,h) sup{lao’0 co'ol,la , , | : mtn 2 1} =

) ll/m+n

sup[](aolo-b0,0)+(b0,0-c0’0)l,l(a -b_ _)+(b

+
m,n “m,n m,n" m n :min > 1]

_ _ 1/m+n 1/m+n
< sup{|a lb0,0 cO,Ol' lam,n m,nl +|b l

ll/m+n

-b +
0,0 0,0l m, n~ m:n

-b

+ < -
min = 1} sup{[ao'o bO,OL'lam,n m,n

: mtn 2 1} + sup
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_ _ 1/m+n
{Ipg, 0%, 0l 7 1Pm, n=%m, nl :

d is a metric on P2.

m+n =2 1} = d(f,g) + d(g,h). Hence

Section 2. The class of continuous linear functionals on Pz.

Definition 2.1. A function F from Pz to ¢ (complex plane)

is a linear functional if and only if for all f,qg e Pz,a e ¢, F(f+g)

= F(f)+F(g) and F(af) = aF(f).

Definition 2.2. A function F from P2 to ¢ is said to be continuous

at £ ¢ P2 if and only if for any € > 0 there exists a § > 0 such
that if g ¢ I'* and d(f,9) < 6§, then |F(£)-F(9) |< e.

Definition 2.3. A function F from P2 to € is said to be continuous

if and only if it is continuous at each f ¢ Pz.

Lemma 2.4 The series Z a b converges for all sequences
. _ m,n m,n
m+n=0
® . 1/m+n_ . .
<@, 1 pen=o SUch that lim lam,n[ = 0 if and only if
m+n-&
<|b ll/m+n>m is a bounded sequence.
m,n m+n=1
Proof. Let <|b ll/m+n>w be a bounded sequence and <a >®
—_— m,n m+n=1 m,n m+n=0

be such that 1lim lam nll/m+n = 0. Choose M > 0 such that
m+nae ’

[b, nll/m+n$ M if m+n =1 and then N = 0 such that m+n > N =

14
la, |Y™™ <1 . Then if mn >N, |ag b | =1 LMl

’ v ’ ’ ——————

2M (ZM)m+n omtn
© ©
Therefore I la, Pn | = £ 1 < o,
m+n=N+1 (MDY pen=N+1  omen

2
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(=~}

Hence the series I a b converges absolutely, hence it
m+n=0 7 M0

converges.

@
>
Conversely suppose for any sequence <am,n m+n=0 such that

@©

0, the series z a b converges., If

11/m+n _
m+n=0 M7 M/N

lim |a

mtnae 0

l/m+n_e . + .
nl >m+n=l is not bounded, for each k € Z there exists
1

l mk+ nk

<[bm'

> k and <m _+n is

@
an (m,n.) such that [b >

Ty r Dy
strictly incieasing. Choose an = 0 if (m,n) # (mk,nk),

4
n, +n
=k * X Then lim |a

m, ,n
k' "k m+n-w

1
m N,

ll/m+n -

m,n %;anamlamk,nk[

. 1

= lim I = 0. But |a b | > 1 for each k so
k+eo E R L L

@

m+r?=0 ay,nPn,n does not converge. Therefore <|b,

ll/m+n ®
>
/N m+n=1
is bounded. The series Za b does not converge since the
m,n m,n

only # 0 terms are > 1 and there are an infinite number of them.
We now characterize the class of continous linear functionals

on Pz.

Theorem 2.5. Let F be a function from Pz to the complex plane.

Then F is a continous linear functional on P2 if and only if there
1/m+n>Q

. . @
is a unique sequence <b > . _. such that <|b0,ol’lbm,nl mbn=1
is bounded and such that for all f(z,w)= z an nzmwn € Pz,
m+n=0 "'
@©
F(f) = Z a b .
m,n m,n

m+n=0
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1/m+n_«
Proof. Let <lbo,0l’ lbm’nl > +n1 Pe a bounded sequence,

ll/m+n

M > 0 be such that 1b0,0[ < M, lbm,n < M, mtn = 1 and

@

£(z,w) = T a_ _z™w"e 2. Then lim |a ll/m+n = 0 so
m,n m,n
m+n=0 m+n-®
z a b converges by Lemma 2.4. Hence we may define
min=o M/0 MmN
a function F from P2 to the complex plane by F(f) =
T a b . It is clear that F is a linear functional.
mén=0 M0 m,n
- 2
Let ¢ > 0 and f(z,w)= Z a z™%" ¢ I'° be given. We show

m+n=0 0

there exists a § > 0 such that if g e P2 and d(f,g) < &§, then

|F(£)-F(g) |< e. Choose & > 0 such that &M < 1 and

2 ®
5M + ( %:%ﬁ) < €. Then if g(z,w) = z Ch nzmwn € Pz and
m+n=0 !
a(f,9) < e, |[F(E)-F(9)|= |[F(f-9)] = lm+§=o(am,n-cm,n)bm,n|
s m+n
< - M+ - M
l2g,07C0, ol s |2, 0 Cm,
seMm+ T (sm)™R
m+n=1
=M+ T (sm)™ T ()"
m=1 n=1

oM + (Tg%_M_-)2<€.

Conversely, let F be a continuous linear functional on Pz.
@©

Let F(zmwn) =D for all m+n = 0. Given f(z,w) = I a zmwn,
m,n min=0 M0
N
- m n _ 1/m+n
let f(z,w) = m+§;0 ap n? W . Then d(fy,f) = sup{lam,nl :m+n

> N} » 0 as N + @ so by the continuity of F, F(fN) + F(f) as N » «.
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@ N
But F(f ) = T a b . Therefore lim r a b = F(£f).
N m+n=0 M7 M0 Naw m+n=0 /0 M/N
-]
Hence z
m+n=0

@
am,nbm,n converges and F(f) = m+§;0am,nbm,n' By

1/m+n_e is bounded. Suppose

Lemma 2.4, the sequence <lbo,ol “m+n=1

&

< C >
m,n m+n=0

is a sequence such that for all

(-] @©
m n 2
f(z = z f) = z a C then for
(ze) m+f——-0am’n voe B m+n=0 0 m,;n’

j, k e Z+, F(zjwk) = C But F(zjwk) =Db

3k ik

Hence Cjk = bj,k and the sequence is unique.

Section 3. The class of continuous scalar homomorphisms on r.
Let f,9 ¢ P2, a ¢ ¢ (complex field). Define

(f+g9) (z,w) = f(z,w) + g(z,w), (feg)(z,w) = f(z,w)g(z,w), (af)

(z,w) = avf(z,w). Then P2 becomes a commutative algebra with

a unit. In this section we characterize the continuous linear

functionals on P2 that preserve multiplication. That is the

. . 2
continuous scalar homomorphisms on I'".

Lemma 3.1. Given e > 0 and (b,c) e @x¢, there exists a § > 0

such that if £, g e I'? and d(f,g) < 6§, then |f(b,c)-g(b,c)| < e.

Proof. Given € > 0 and (b,c) e ¢x¢, let R = max{|b|,|c]|}

choose § > 0 such that 6R < 1 and &+ (1E§R) < e. Then if
© @ 2
f(z,w) = z a, nzmwn and g(z,w) = z bm nzmwn are in I’
m,n=0 "' m,n=0 '/
-]
and d(f,9) < &, |E(b,c)-g(b,c)|= | £ (a _-b _)pMc?l
o e I
©
+n
< la, »=by ol + T |a - [R™™ < 5+ T (sR)™™ =
0,0 70,0 mtn=1 ™R mn m+n=1
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- m; sR)™ = 5 + —-——GR)2
E ( ) = (1_6R < e.

5 + (8R)" =
=1 n=1

Theorem 3.2. Let F be a function from I'2 to ¢, F § 0.
Then F is a continuous scalar homorphism on Pz if and only if

there exists a unique (b,c) e ¢x¢Z such that for all f(z,w) =

™8

F(f) = £(b,c).

Proof. Let F be a § 0 continuous scalar homomorphism on r2.

s . -]
By Theorem 2.5, there is a unique sequence <bm,n>m+n=0 such that
- m n 2 -
for all f(z,w) = mlﬁ;oam,nz w eI, F(f) = m+§;0am,nbm,n' For
_ mn, _ n_ .m n
each m and n, bm,n =F(zw) = F(z) F(w) = bl,ObO,l' Therefore

F(f) = r a
m+n=0

m .n _
m,nP1,0P0,1 = £(Py, o 1)-

Conversely, given (b,c) e ¢x¢, define a function F from P2
to ¢ by F(f) = f(b,c). Then F is clearly a # 0 scalar homomorphism.
Given ¢ > 0, let § > 0 be such that if f,g ¢ P2 and d(f,qg) < &,
then |f(b,c)-g(b,c)| < e. Then |F(f)-F(q)| = |F(f-g)]| =

| (f-g) (b,c) |=|£(b,c)-g(b,c)| < €. Hence F is continuous.
Section 4. The class of bounded linear functionals on Pz.

Definition 4.1 . Let F be a linear functional on FZ. Then F

is said to be bounded if and only if there exists an M =2 0 such
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that for all f ¢ I'?, |F(f)| < MA(£,0). Here, 0 denotes the

function identically zero on ¢x¢.

Lemma 4.2. Let F be a linear functional on Pz. If F is bounded,

F is continuous but not conversely.

Proof. Let F be a bounded linear functional on P2. Let foe P2 e >0
be given and let M = 0 be such that for all f ¢ r?, |F(£)]| < Md(f,0).
Choose § = e¢/M+1l. Then if g ¢ P2 and d(fo,g) < §, lF(fo)-F(g)l =

lF(fo-g)l < Md(fo—g,o) < (m+l)d(fo,g) < (M+1l) 8 < €. Therefore
F is continuous at fo. Hence F is continuous.

For an example of a continuous linear functional that is not

= 1/m+n_ = .
bounded, let bm,n = n. Then <|n]| >n4n=1 1S @ bounded sequence.
2 © -
Define a function F from I’ to € by F ( I ay nzmwn) = z na_ .
m,n=0 "' m+n=1 !

By Theorem 2.5, F is a continuous linear functional on PZ. 1f F

[e2]

is bounded, there exists an M = 0 such that | Z na
m+n+1

mnl <M

l/m+n: m+n 2 1} for all <a

©
sup {laolol' lam,nl m,n>m+n=0 such that

[am nll/m+n +0asmén + . Let k e 27, k > max{M,2}. Let
r

— _ . _ 1/m+n
ag = k, S 0 if (m,n) = (0,k). Then lam,nl + 0 as

m+n -+ « since the sequence has only one non-zero term. But
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-]

2 1/m,n
z =k M a a ' tm+n = 1} =
| 3 nay ol =% sutlag ol lag, men = 1)
Mbkl/k < k'kl/k <k'»kl/k < k2, a contradiction. Hence F is not
bounded.

Definition 4.3. Let B denote the class of bounded linear

functionals on Fz. For F,G e B, a ¢ &, f ¢ P2, define (F+G) (f) =
F(£) = G(£), (aF) (£) = avF(f), ||F|| = inf{M = 0 | for all £ e T'?%,

|F(£)] = mMd(£,0)}.

Theorem 4.4. With respect to Definition 4.3, B is a normed

linear space.

proof. Let F ¢ B. Then |F(f)| s ||F|| d(£,0) for all F ¢ r2.

2
If not, for some £ e T° , |F(f))] > IF d(£, o). Then d(£,,0) # 0
so choose ¢ > 0 such that |F(f))| = |[F|[a(f_,0) + e d(f_,0). By
Definition of ||F||, there exists an M = 0 such that |F(f)| < Md

(£,0) for all £ ¢ T2 and ||F|| + ¢ > M. Then d(f_,0) (|[F[| + o
= |F(£)| < Ma(£_,0). Hence ||F|| + ¢ <M, a contradiction.

Therefore |F(£)]| < ||F||d(£,0) for all £ e T2 and ||F|| is the
smallest number to satisfy this inequality for all f e F2.

For F, G e B, a ¢ &, F+G and oF are clearly linear functionals
on 2. For £ e I'2, |(F+G) (£)]| = |[F(B)+G(E)| < |F(E)]| + |a(B)] =
[IF]] a(£,0)0 + [|G|| at£,00 = (||F|| + |lG|]) 4@ (£,0). Hence
F+G ¢ B and ||F+G|| = ||F]] + |le]|. Also [(@®) (£)]| = |asF(£)]| =
la] |F(E)] = |a] [|F]] d(f,0). Hence aF ¢ B and ||aF]| = |a]

|IF||. sSuppose it is possible to have ||aF|| < |a| [|F|[. Choose
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e > 0 such that ||aF|| + ¢ |a| ||F|| = |a] ||F||. Then for all
£er?, |a| |F()] = |@(6)] < ||aF||a(£,00 = (1 - &) |a]
||F|] d(£,0). Therefore |F(f)| < (1 - ¢) ||F]]| 4(£,0), a
contradiction. Hence ||aF|| = |a] ||F]|].

It is clear that |[|+|]| evaluated at the zero linear
functional on I'? is 0 and if ||F|| = 0 then |F(f)| = 0 for all

fe PZ, hence F = 0. Also the remaining properties required for B

to bea normed linear space follow trivially. Hence B is a normed
linear space with respect to Definition 4.3.

Theorem 4.5. Let F be a function from P2 to ¢. Then F e¢ B if
and only if there exists unique (a,b,c,) e ¢Zx¢x¢ such that for

all f(z,w) = T ay nzmwn € Pz,
m,n=0 '

Also, |[|F|] = |a] + |b| + <.

Proof. Let F ¢ B. Then F is continuous so there exist a unique

© @
© m n
sequence <b > __such that F ( T a zZw) = r a b
m,n n+n=0 m,n=0 m,n n+n=0 m,n m,n
- 1/m+
n
and | E_ am,nbm,nl < ||F[|sup{laolol, lam’nl :m+n = 1 for
m+n=0
© 1/m+n
all sequences <am,n>h+n=0 such that lam,nl + 0 as m+n + =,
Suppose bk . # 0 for some (k,j) with k+j = 2. Choose a = 0 if
r] m,n
(m,n) # (k,3j) and choose a, j such that IIFl] >
4
1- _l_ 1/m+n
lak,j‘ k+7 . lbk,jl‘ Then lam,nl + 0 as m+n + «,
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- k_}_.,.
| +E . am,nbm,nl = lak.jbk,jl < ||Fl| Iak,jl }  fTherefore
m+n=

1- i

lay .1 k+3 . lbk,jl < |[F|], a contradiction. Hence b,y =0

r]

@

. . mn, _
if k+j = 2. Hence F (m,ﬁ;o am’nz w ) = a0,0bO,o + al,Obl,o +

©
Also |F( I am’nzmwn)l < la0,0l lb0,0I +

a b .
0,170,1 m, n=0

21,01 1oy, 0l * lag, 11 Ipg, 1 = (Ibg oI + Iby ol + Iby 4 Dace,0).
Therefore |[|F|| < [by | + |b; 4| + |by ;. To show equality

here, it sufficies to show there exists an fo e P2 such that

|F(£ )| = (lbo'ol + 1b1'01 + lbo'll)d(fOIO). If b, , =
ig i ig
1 - 2 3
| o,ol r by o= lbl,ole R lbO,lle , choose
- iel —i92 -ie3
£ (z,w) = e + e z+e w. Then [F(f )] =
lbo,ol + lbl,ol + l'bO,ll = (lb0,0l + Ibl,ol + lbo'll)d(fo'o)'

Conversely, given (a,b,c) e ¢x¢x¢Z, define a function F from

a+ a b + c, f(z,w) =

P2 to ¢ by F(f) = a 1,0 ao’1

©

0,0

m n 2 . . .
am nz w e I'". By Theorem 2.5, F is a continuous linear
m,n=0 ’

functional on I'2. Since |[F(f) | = Iao,ol la] + lal,Ol |b| +

laO,ll el = (|la] + |b] + |e])da(£,0), F ¢ B.

Corollary 4.6. With respect to Definition 4.3, B is a Banach

space.
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Proof. Let <Fn>:=1 be a Cauchy sequence in B, Fn corresponding
to (an,bn,cn). Then for any e > 0, there exists an N = N(e) such
that m,n > N(e) = lan-lel < e. That is lan-aml+lbn—bm[ + h%—cm[

< e. Hence each of <an>, <bn>,<cn> is a Cauchy sequence. Let

a -+a, bneb, C,?C as n + @. Define a function F from Pz to ¢ by

(.-}
F( I am,nzmwn).= a0,0a + a b+ a c. By Theorem 4.5, F ¢ B.
m,n=0

Given e > 0, there exists an N = N(e) such that |a -a| + [bm—bnl
+ |leg-e i < €/2 if myn > N (e). Let m a4 = to get la-a | + |b-b_|

+ [c-cnl < ¢/2 if n > N(e). Hence given ¢ > 0, there exists an

N = N(e) such that if n > N(e), |a-a | + [b-b | + |c-c | < e.
That is ||F -F|| < ¢. Therefore B is a Banach Space.

If (al,bl,cl) and (az,bz,cz) are in ¢x¢g¥X¢ and a ¢ ¢, it 'is
clear that if addition and scalar multiplication are defined by
(al,bl,cl) + (a2,b2,c2) = (a1+a2, b1+b2, cl+c2), a(al,bl,cl)
(aal, abl, acl), that ¢x¢Zx¢ is a vector space over €. Also if

||*]| is defined by ||(a,b,c)|]| = |a|+|b]+]|c|, |[*]]| is a norm
on ¢Zx¢Zx¢ making ¢Zx¢x¢ into a Banach space. Define a function ¥
from B to ¢x¢x¢ as follows: For F ¢ B, let (a,b,c) be the unique

element of ¢x¢x¢Z such that F(f) = a0,0a + alrob + 29,1°€ for all

[--]
r a 2% e PZ. Let ¥ () = (a,b,c). The following

f(z,w) = m,n

m,n=0

theorem is straightforward to prove so the proof is omitted
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Theorem 3.4.7. The spaces B and £x¢x{ are isometrically isomorphic Banach
spaces.
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