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ABSTRACT. A model originally suggested by Greenhalgh 12] and later modified by that same

author [13,14] is considered under the assumption that the transmission coefficient is inversely

proportional to the total population size The purpose of this study is to see the effect of this density

dependent transmission coefficient on the stability criteria for the equilibrium of the model equations. It

is found that Greenhalgh’s results are still valid
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1. INTRODUCTION.
This paper uses a relatively simple deterministic mathematical model to describe infectious diseases like

measles, rubella, chickenpox and mumps The book by Bailey [4] describes much of the background in

the area of epidemic models up to 1975. We are interested in looking at a model where the parameters
which describe the transmission of the disease and the death rate of individuals are dependent on the

number of individuals in the population. We also take into account the fact that infected individuals

suffer a higher death rate than other individuals because they have the disease Some models for a

population with a density dependent death rate have been studied by Nisbet and Gumey [20] Anderson

[1] has analyzed an epidemic model with birth and death in which infected individuals suffer a higher
death rate than other individuals. He considers the death rate of individuals to be density independent
Dietz and Schenzle [10] and Mollison [19] considered the transmission coefficient to be dependent on

population density Anderson et al [2] have discussed models for rabies with a density dependent death

rate McLean and Anderson 17,18] also incorporated this feature in discussing a model of measles Gao

and Hethcote 11 studied SIRS/SIS models with restricted population growth by logistic equation due to

density dependence in both birth and death rates They also considered density dependent transmission

coefficient (inversely proportional to the total population size) They obtained four equilibria and

discussed their stability results

Mathematicians working in theoretical ecology have considered density dependence in death rate

and transmission coefficient recently. One may refer to Brauer [5,6], Busenberg and Hadeler [7],
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Busenberg and Van den Driesche [8], Diekmann and Kretzschmav [9], Greenhalgh [12-14], May and

Anderson [3], Pugliese [21,22] and Tuljapurkar and Merd,th-John [23]
Greenhalgh [12] described a mathematical model for a disease where the death rate is a

monotonically increasing function of the number of individuals in the population and infected individuals

suffer a higher death rate than other individuals The same author in [13,14] studied the modified model

with a class of ndividuals who are incubating the disease and vaccination of susceptible individuals In

our model we have considered density dependence in the transmission coefficient (inversely proportional

to the total population) together with the vaccination of susceptible individuals Considering density

dependence of the transm,ssion parameter, we can relax the assumption that the number of contacts per

unit time per susceptible individual increases linearly with the population size

2. MATHEMATICAL MODEL
We examine a model m which an individual starts as a susceptible, catches the disease and after a short

infectious period becomes permanently immune to it We assume the individuals who are susceptible are

vaccinated at a constant per capital rate c The spread of the disease is modeled by a set of differential

equations which describe the transfer of individuals between these classes The system of ordinary
differential equations which describe the spread of the disease is as follows

dx b
rN xy cx f(N)x (2 la)dt N

dy b
xy- f(N)y- (u + c)y (2 lb)dt N

dz
uy + cz f(N)z (2 lc)

dt
dN

rN- f(N)N- cy (2 ld)
dt

with suitable initial conditions, where one of the equations is redundant since x(t) + y(t) + z(t) N(t)
x(t) represents the population (or density) ofthe susceptible class at time t,
y(t) represents the population of the infected class at time t,

and z(t) represents the population of the immune class at time t, e. those individuals who have had
the disease, have recovered and are permanently immune

In our model, r is the birth rate, is the transmission coefficient, f(N) is the density dependent
death rate taken as a continuous, strictly monotonic increasing function of N (Greenhalgh [12-14],
considered - constant), c is the additional death rate suffered by infected individuals, and v is

the rate at which infected individuals become immune, so that v-1 is the average infectious period in the
absence of a death rate The probability that a susceptible individual meets and becomes infected by an

(At) + o(At) The per capita rate of vaccination of susceptibleinfectious individual in [t, + At] is

individuals is c, so that in a small time interval [t, + At] the number of susceptible individuals who are
vaccinated is cxAt + o(xt) This term cx must be subtracted from the equation (2. la) corresponding to

the fraction of susceptible individuals who are vaccinated and added to equation (2 c) corresponding to
new immune individuals. We are interested in performing an equilibrium and stability analysis of this
model The stability analysis helps us to determine the long-term behavior of the system, e whether the
disease persists

3. EQUILIBRIUM ANALYSIS.
The first step is to examine the possible equilibrium solutions of these equations First of all, we

shall suppose that f(o) -imf(N) > r, so that if the population size is large enough the death rate

exceeds the birth rate Setting all of the time derivative to zero in system (2 1), we deduce the following
theorem for the possible equilibrium solutions
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THEOREM Let , , and denote the equilibrium numbers of susceptible, infected and immune

individuals respectively Let N denote the total number of individuals at equilibrium

There are three possible equilibria

(i) When there is no disease present because the population has died out

===N-0. (31)

(ii) If f(c) > r > f(0), the population has reached an equilibrium level but the dsease has died

out

f(N)N cN- =0, "2= (32)
c + f(N) c+f(N)

and

r= f(N). (33)

(iii) The disease is present and the equilibrium values of susceptible, infected and immune

individuals, are

(u + + f(N))N (r f(N))N
b Y= a

.{ub(r f(1")) + ca(. + a + f())}
" abf()

(34)

Population value N satisfies the equation

b (f(N) + c)(u + a + f(N)).... (3 5)
a f(N)

This equilibrium exists if and only if b _>
PROOF. This theorem is proved along similar lines to the corresponding results for the related

models in Greenhalgh [12-14] Setting the time derivatives to zero in system (21), we deduce that

r b’ c rf(/) 0 (36a)
b’- f(/’)- (u +a) 0 (3 6b). + c f() 0 (3 6c)

r f(’)/" a 0.
(3 6d)

From equation (3 6b) either - 0 or fVl+f"+)r NOW 0 implies from equation (3 6d)

that N-0 or r--f(N) Hence ifr:/=f(N) then =y=z=N=0 Ifr=f(N) then it is

straightforward to show that equations (36a) and (36c) yield

f(N)N cN= =o, =c + f(N) c + f(N)

an equilibrium solution for any value of If f()+("+) then from equation (3 6a) we have

r c f(r) r./" (c + f(/))
Y b’ f(N) + u + a b

and from equation (3 6d)
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(r f(N) )N

Equating these expressions for , we get an equation for N which can be reduced to

b (f(N) + c)(u + a + f(N))
c f(l’- + (. + a, r)f()

Thus the equilibrium values 5, , 2 and N must sausfy the values given in (i), (ii) and (iii) of the theorem

The first equilibrium is always possible The second equilibrium is well defined if and only if

f(0) < r < f(c) The third equilibrium exists if and only if

(r + c)(u + c + r)
b.

,s well defined using the following lemma
LEMMA. The equation b_

f(9)+iu+c,-r)fl)-"r has a unique positive root N, if and only if

f() #, where + is the unique positive root of t 0 Here

That value ofN satisfies r _> f(N,)ensuring ")s positive if and only if

(r + c)( + a + r)
b>

PROOF. Consider the equation

b (:(N) + )(, + , + :(N))
c f()2 + (, 4- r)f(//) r

With the transformation f(N) Then

b ( + )(. + + )
+(.+-)-

(+c)(++)Consider g() +(.+_)_.,.. Here g(’) has roots c, c

roots of Q() O, where

Q() 2 + (. + r)

The asymptotes are the

Q(() has two real roots (_ and (+ given by

1
(a + t,- r) -4-

1_, +, [( +. ) + 4.]

The function g() is negative for 0 < < + and monotonically decreasing for > +. Hence the

equation

b

has a unique positive root ( if and only if f(o) > (+ Otherwise, if f(c) < (. this equation has no

positive root for ( Since f(oo) > (+ denote the unique root by ( and let N be the corresponding value

of N For the solution to be feasible we require f() _< r or < r as __b is constant and g(() is

monotonically decreasing in (, it follows that
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is monotonically increasing in ( and zero at ( [see the graph of g(()] Hence r _> ( if and only if

g() _> 0.

This condition is equivalent to

b>
(r + c)(u + c + r)

This completes the proof of the lemma

b

4. STABILITY

Stability Analysis of Equilibrium (i).
By Liapunov’s (Jordan and Smith 15]) indirect method we determine the stability behavior of the

system of differential equations (2 1) which describe the spread of the disease at the equilibrium
2 N 0 Consider the Liapunov function L z + y + z which leads to

L’=(r-f(N))N-ay<(r-f(O))N-ay<O when N>0 and r<f(0). (41)

We conclude that the zero solution of (2 1) is globally asymptotic stable (GAS) for r < f(0) since

L < 0 and unstable for r > f(0). Therefore it follows that the zero solution of the original system (2 1)
is GAS for r < f(0) and unstable for r > f(0)
Analysis of Equilibrium (ii).

The equilibrium values are

f(N)N cN= =0, =c + f(N) c + f(N)

Consider a small perturbation about this equilibrium level

X’--+Xl, Y=+Yl, Z+’+Z and N N +n.

Substituting these into the differential equations which describe the spread of the disease, and using the

approximation f(N + nl) f(N) + nlf’(N) + O(nl) we get the stability matrix A as
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Substituting these into the differential equations which describe the spread of the disease, and using the

approximation f( + n f() + nf’() + o(n) we get the stability matrix A as

which gives the characteristic equation as

(f(N) + A)(c + f(N) + A) (f() + u + a) A (I’(). + A) O. (4 3)

From equations (3 2), (3 3) and (4.3) we get the equilibrium (ii) to be locally stable for small
perturbations if Ro < 1 and locally unstable if Ro > I where

Ro (4 4)
(,: + ,,.)(,,- + ,,, + )

Local Stability of Equilibrium (iii).
Using the same procedure as for equilibrium (ii), we get the stability matrix 6’ as follows

---f(9) -4 0
N

0 0C N

u f(gr)
0 -a 0

,. + f’ (9)’
-j, )y-

f’
r f(.r) f’(/)2

(4 5)

The determinant ofC- AI is IC- All (f(Fr) + A)IDI, where

----f(N)-a

D=

0

-A -1 )Y-

o r- f() f(l)ll ,k

(4.6)

The corresponding characteristic equation for D is

(4.7)

where

(4.8)

The Routh-Hurwitz (May 16]) stability criteria for the third order system is

(i) a >0, a2>0 and as>0;
(ii) ala2 > a3.

(4 9)
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Now we will show the positivity of all the constants appearing in (4 8)
Let

(4 10)

Rewriting equation (4 8) as

al 7dl -I--

a2 731 _[_ ft (.//")732
a3 Wl -[- f’()w2

(4 ll)

Since f(N) is monotonic increasing in N, f’(N) > 0 Hence to show (i) of equation (4 9) we will show

that u l, u2, Vl, v2, Wl and w2 are all positive

Using equation (3 5) we get

U --(r +f(N) +c,

where r > f(N) and from equation (3 4) b > a, therefore u > 0

Then since u2 N > 0, it must be that al > 0

Now 731 can be rewritten as

{ b
(r f()) + f() + c} (r f(l’))(u + a + f())731 (7"- f(N)

b
+ -(r- f(N))(u + a + f(N)).

Now vl > 0 if

bb(r f(N)) (f(l’) + c) (u + a + f(.l’)) + -(u + a + f(l’)) > O.

With the help of equation (3 4), the above inequality reduces to the following form

---(r-f(.))-b__{o f(’)(f(l)(u + +f(/r))+u-l-a)-r(f()’)
b

(u + a + f(N)) + -(u + a + f(l’)) > O.

(u + a + f())2 (b a) bra
or

a(f() + u + a)
> O. (4 12)

Hence

vl > 0 if (u + a + f())2(b a) > bra. (4 13)

From equation (3 4)



812 Q A KHAN AND B S BHATT

(u + a + f(N))(r- f(N))

Since < /, from equaUon (6) r f() < a, so that

r- f(N) < a+u+ f(N).

(4 4)

(4 5)

Inequalities (4 14) and (4 15) combined to show that the inequality (4 13) is true i.e v > 0

Now

_, > 0 f b + 9f(-/- 5 +9 > 0,

or

(b a) + Nf(N) + cN > 0

From equation (3 4), b > a, therefore the above inequality is true and hence a.2 > 0

Using equauon (3 5) the terms inside the bracket can be written as

Thus w 0

Now w2 > 0 if the sum of all terms inside the bracket is positive. Using equation (3 5), the terms inside

the bracket become

a --(r f(lr)) (f(/r) + c) + --(u + a + f()) (. + a + f(/)) (4.16)

We have already shown above that the sum of all terms of (4 16) is positive

Hence, a3 > 0

Now we have to show that a a2 a3 > 0.

alag. a3 (UlVl Wl) + f/()(UlV2 + U2Vl w2) + f"2(l)(u2v2)

where w 0 and ul, u2, v, v2, w2 all are positive i.e. to show aa2 as > 0 we will show that

UlV2 + u,2v we > 0 We have U2Vl w2 hence the inequality
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5. SUMMARY AND CONCLUSIONS
In this paper we have studied a simple mathematical epidemic model with vaccination There are

three possible equilibrium situations which arise Equilibrium wth population extinct will be globally

asymptotically stable if r _< f(0) and will be unstable if r > f(0) Equilibrium with steady population
b, < and locally unstableand no disease present will be locally stable to small perturbations if

if ..+( > 1 Local stability of the equilibrium with disease present is examined analytically and is

found stable In this paper we have extended the work of Greenhalgh [12-14] It is unrealistic to

consider the transmission parameter a constant because this assumes contact per unit time per susceptible

individual increases linearly with the population size This assumption can be relaxed by taking a density

dependent transmission parameter Here we consider the transmission coefficient as inversely

proportional to the total number of individuals in the population Gao and Hethcote [11] have also

considered density dependence in transmission coefficient similar to ours but they have taken density

dependent restricted growth due to a decreasing birth rate and an increasing death rate as the population

size increases towards its carrying capacity They have obtained four equilibria The first equilibrium

when disease fades out and population size tends to zero and showed that it is always a saddle The

second equilibrium where the population size is up the carrying capacity is found to be GAS under certain

threshold conditions The third equilibrium occurs when the birth rate is density independent and the

death rate is density dependent and is LAS when certain conditions are met The fourth equilibrium is

achieved when the birth rate is density dependent and the death rate is density independent and it is also

LAS under different threshold conditions The SIRS models reduce to SIS models when the immunity

loss rate is zero All the stability results of SIRS models hold good for SIS models provided there is

some inflow into the susceptible class We can make our model more realistic by the introduction of a

class of individuals who are incubating the disease and taking into account the fact that immunity may

only provide temporary protection
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