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ABSTRACT. It is shown that, for a large class of non-archimedean normed spaces E, a subset
X is weakly compact as soon as f(X) is compact for all f E E’ (Theorem 2.1), a fact that has
no analogue in Functional Analysis over the real or complex numbers. As a Corollary we derive
a non-archimedean version of the Eberlein-mulian Theorem (2.2 and 2.3, for the ’classical’
theorem, see [1], VIII, 2 Theorem and Corollary, page 219).
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INTRODUCTION

Let E be a two-dimensional normed space over R or C and let X :- {x E E: 0 < Ilxl[ _< 1}.
Each f E’ has zeros on X, so f(i) f({0} U X) is compact, while obviously i is not.

The same story can be told when we replace R or C by a complete non-trivially valued non-

archimedean field K that is locally compact. However, if K is not locally compact then, under

reasonable conditions, for a subset X of a normed space E over K compactness of f(X) for all

f E’ implies weak compactness of X (we point out that if such an X has more than one point

it cannot be convex). To prove this curious fact (in 2) we shall develop some machinery in 1.
PRELIMINARIES

Throughout K is a non-trivially non-archimedean valued field which is complete with respect
to the metric induced by the valuation I, and E is a normed K-vector space, where we assume

to satisfy the strong triangle inequality x + Yl] -< max(llxll, I[y[I). We write [KXl := {IAl:
g, o}, BE(O,):-- { E: Ilxll-< r}, BE := BE(0, 1).

E’ is the space of all linear continuous functions E K. Equipped with the norm f
sup{If(x)l x e BE} it is a Banach space (i.e. a complete normed space). E is called normpolar

if the norm is polar i.e. if IlxlJ sup{I/(x)l f e E’, Ifl -< II} ( e ), in other words, if

3 E E" is an isometry. E is always normpolar. We assume throughout this note that E is

normpolar.

A subset A of a (normed) space E is absolutely convex if it is a module over B K. A set

X C E is convex if it is either empty or an additive coset of an absolutely convex set. A
subset A of E is called edged if it is absolutely convex and, in case the valuation of K is dense,
A {AA A e K, IAI > 1}. The weak topology w a(E,E’)is the weakest topology on E

making all f E’ continuous. The weak-star topology w’ a(E’, E) is the weakest topology
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on E’ making all evaluation maps f f(a) (a E) continuous. For X C E’ we denote its

w’-closure by

For other notions used in this paper we refer to [4].
1. SEPARATION OF w’-PRECOMPACT SETS

LEMMA 1.1. Let X be a bounded subset o/E’ Then {x E" inf If(x)l > 0} zs open zn
.rEx

E.

Proof. X is equicontinuous, so for each n 1%1 the set U, {x E’lf(x)l > +/- for all f
X} is open. Then so is U, {x e E" inf If(x)l > 0}.
LEMMA 1.2. Let K be not locally corn.pact. Let X C E’ and a E be such that X (a)

{f(a) f X} is precompact. Suppose X C g + U where U zs an edged zero nezghbourhood

zn E’, U w’-closed and where g E’ \ U. Then for any e > 0 there exzsts a b E for whzch

Ila bll <_ and inf{ If(b) l" f X } > 0.

Proof. There exists an r IKI such that BE,(O,r) C U. Choose $ E K,0 < 151 < 1.

The equivalence relation on g given by ’c / iff Ic-/1 < I/1 yields an open partition

of C {A E g 151re < IAI < re} that is infinite because g is not locally compact. By
precompactness X (a) cannot meet each equivalence class and there exists a g, C such that

If(a)-

U is w’-closed and edged, g U, so by [6], 4.8 there exists a c e E such that g(c)
for all f U. Set b :-- a-c. We have If(c)l < I/I for all f e BE,(O,r) so Ila- bll
Ilcll- 113(c)11 < I’lr -1 _< e. For each f X, writing f g + u where u U, we obtain

If(c) -/I- If(c) -g(c)l- lu(c)l < 13’1. This, combined with (,), yields If(a)-
for all f e X, so If(b)l If(a)- f(c)l max(If(a -1, If(c)-11) If(a -tl >- I/I It follows

that inf If(b)l > 0.
.fx

COROLLARY 1.3. Let K be not locally compact, let E be a Banach space. Let X C E’ be

w’-precompact. Suppose X C g + U where U is an edged zero neghbourhood n E’, U w’-closed,

g E’\ U. Then {x E" inf If()l > 0} s open and d n E.
.fx

Proof. Just combine Lemmas 1.1 (w’-precompactness implies w’-boundedness hence norm

boundedness by completeness) and 1.2.

DEFINITION 1.4. Let us call X C E’ a-decomposable n E’ if for each g E\ X

there exist f, f,... X and edged zero neighbourhoods U, U,... in E’ such that each U,, is

w’-closed and X C U(f + u,), g U(/, + u,).

THEOREM 1.. (SEPAItATiON THEOREM) Let K be not locally compact, let E

be a Banach space, let X C E’ be w’-precompact and a-decomposable ,n E’. Then for each

g E’\X there exists ana E such thatg(a) f(a) for allf 6X.
Proof. Without loss, assume g 0. Let {f,+ U n N} be a covering of X like in

Definition 1.4. By Corollary 1.3 for each n N the set {x E" inf If(x)l > 0} is open and

dense in E, where X, X fq (f, + U). By completeness and the Baire Category Theorem

{x E’f(x) 0 for all f X} D {x E E" inf If(x)l > 0} .
REMARK. It is not hard, by modifying 1.1 1.5, to prove the following dual form of

this separation theorem. Let K be not locally compact, let X C E be weakly precompact and

a-decomposable n E (see below). Then for each a E \ X there ex’tsts an f E’ such

that f(a)

_
f(X). Here, X is called a-decomposable in E if for each a E \ X there exist

x,xe,... X and edged zero neighbourhoods U,Ue,... in E such that each U, is weakly

closed and X C U(x, + u), a U(x + u).
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COROLLARY 1.6. Let K be not locally compact, let E be a Banach space, let X C E’ be

a-decomposable m E’. Suppose X(a)"= {f(a)" f e X} ,s compact for all a e E. Then X "ts

w’-compact.
Proof. The map f (f(a))ae E is a homeomorphism of (E’,w’) onto a subspace of K E

The image of X lies in the compact subset I-I X(a) so x is w’-precompact. Since E’ is W’-
aEE

quasicomplete by the p-adic Alaoglu Theorem [8], 3.1, it suffices to show that X is w’-closed.

To this end, let g E’ \ X. By Theorem 1.5 there exists an a E such that g(a) f X(a). Now

X (a) C (a) C X (a) X (a), so g(a) (a) i.e. g

To find examples of a-decomposable sets (in 1.9-1.11) we need the following Lemmas.

LEMMA 1.7. Let n N, let D be an n-&mensonal subspace o/E’. Then for each (0, 1)
there exist am,a2, a BE such that max f(a,) > tf (f e D).

Proof. First assume that the valuation of K is dense. The space H {x E f(x)
0 for all f D has codimension n in E. Choose s (t, 1) and let g,... g, be a -orthogonal
base of (E/H)’ such that s -; ]g,]] - for {1,... ,n}. There exist b,... ,b E/H
such that g,(b) , (i,j e {1,... ,n}). Let e {1,... ,n}, let g EAg e (E/H)’ Then

Ilgll mxll I111 and I(,)1- I,1 so I(,)1 mxll mll Ibll 1111.
So IIb, < . Thus, with E E/H denoting the canonical quotient map, there exist

a,... ,a BE with r(a,) b, for each i. The adjoint ’ of maps (E/H)’ isometrically

onto D. Now let f D. Then f r’(g) where g e (E/H)’, ]g]] ]]f]]. We have, writing

g- Ag, max I(a,)l- max 19(,)1 x Ix,I tmax Ix, I1,11 tllX,g, II- tllll- tllll.
Now, if the valuation is discrete we can modi the above proof by taking s 1. Then

the b hve norm (rather than < 1), but one can use that E/H is a strict quotient i.e. there

exist a,..., a with [[a,[[- [,[ and (=,)- 8, for ech .
LEMMA 1.. e D e a suspace o/R’, D of countable pe. Ten ere ,s a sequence

Proof. Let D C D= C be finite-dimensional subspaces of D, D is dense in D. Let

(0, 1). By Lemma 1.7 there exists a finite set < C B such that max /(z)[ [/[ for all
xF

fD.
So, forF := F weobtain

(,) II:II >- sup I:()I _> tll:ll (: UD,)
xEFt

Now F := U F is countable and (,) implies Ilfll sup If(x)l for all ]’ U D., hence, by
tQn(0,1) xF

continuity, for all f D.

PROPOSITION 1.9. Let X C E’ be such that X (a) := {f(a) f X} is separable .for
each a E and IX] ,s of countable type. Then X ,s a-decomposable zn E’

Proof. Let g E’\ X. Then D := [{g} U X] is of countable type so by Lemma 1.8 there

exist al,au,... BE such that

For each m,n N the set U,, {h E’’lh(a)l <_ i} is an edged w’-zero neighbourhood.

Its cosets, except for g + U,,, cover X \ (g + g,,) and by separability of X (a,) there exists

a countable subcovering F, no member of which contains g. Then U,,, F,,, still avoids g; it

remains to be shown that it covers X. Suppose f X is not covered. Then f g + U,, for all
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m,n so If(a,)-.q(a,)] 0 for all n. Now f-g E D, so by (,)we obtain IIf-gll 0 i.e. f g,

a contradiction since g X.

COROLLARY 1.10. Let X C E’. If X ’is norm precompact, or X zs w’-precompact and

IX] zs of countable type, then X zs a-decomposable zn E’.
PROPOSITION 1.11. Let X C E’ be such that X (a) ,s separable ]’or each a E. Suppose

that ,for each h - the set X t2 h zs w’-metmzable. Then X ’ts a-decomposable ,n E’.
Proof. Let g E’ \ X. If g --v then there exists a w’-zero neighbourhood U such that

(g + U) X O. We may assume that U is of the form {f E’: If(al)l <_ ,..., If(a,,)l <_ }
for some > 0, n N, al,... ,a, E E. Then U is w’-closed and edged. By separability of

X(al) X(a,) only countably many of the cosets f + U f E X cover X and none of

them contains g. Now let g E --v By w’-metrizability there exist w’-neighbourhoods of zero

U1 D U2 D such that X g (g + U,) O. We may suppose that the U, are w’-closed

and edged. By separability, like above, for each n the set X \ (g + U,) is covered by countably

many additive cosets of U, none of them containing g. Their union is a countable covering of
X avoiding g.

2. EBERLEIN-MULIAN THEORY

We now apply the theory of 1. Recall ([5], p. 57) that E is said to have property (,) if for each

subspace D of countable type, every f D’ has an extension f E’. By the non-archimedean

Hahn-Banach Theorem [4], 4.8 every normed space over a spherically complete K has (,). For
general K, spaces with a base, in particular spaces of countable type, have (,) ([5], p. 58), and

so have strongly polar spaces ([6], 4.2). Recall that E is assumed to be normpolar.

THEOREM 2.1. Let K be not locally compact, let X be a subset of E such that f(X)
zs compact for all f E’. Then each one of the followzng propertzes zmples that X zs weakly

compact and weakly metrizable.

(i) E has property (,).
(ii) E’ ,s of countable type.

(iii) IX] s of countable type.

Moreover, in case (i) X ,s norm compact and the weak and norm topology co,nczde on X.

Proof. The natural isometry j E E" is easily seen to be a homeomorphism of E with

the weak topology onto 2(E) with the restriction of the w’-topology a(E", E’). We show that

j(X) is a-decomposable in E". First note that the predual E’ is normpolar. In case (i), from
weak precompactness of X it follows that X is norm precompact by [7], Th. 3 (the assumption

made throughout [7] that E is complete is easily seen to be superfluous here). So j(X) is norm

precompact in E" and therefore a-decomposable by Corollary 1.10. For case (ii) observe that

every (w’-) bounded subset of E" is w’-metrizable ([8], 6.1) which applies to (X)t2 {9} for

any 0 E". For each f E E’ the set j(X)(f) f(X) is compact hence separable so j(X) is

a-decomposable in E" by Proposition 1.11. For case (iii) we can directly apply Corollary 1.10.

Thus, .(X) is a-decomposable, and from Corollary 1.6 we conclude that 2(X) is w’-compact, so

X 2-1(j(X)) is w-compact. Observe that X is w-bounded hence bounded by normpolarity

([], .).
We have seen in passing that 2(X) is w’-metrizable in case (ii), so X is weakly metrizable. Now

let X satisfy (iii). Then [j(X)] is of countable type so by Lemma 1.8 there exist f,f2,... BE,
such that 113(x)l suplf,(x)l for all x X. The formula d(x,y) suplf,(x f,(y)12

nl
defines an ultrametric d on X (if d(x, y) 0 then If,(x)- f,(Y)l 0 for all n so IIx -Yll 0).
By boundedness of X the induced topology is weaker than the weak topology on X, but by
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weak compactness these topologies coincide and so X is weakly metrizable. Finally, in case (i)
apply [6], 5.12 to conclude that on X the weak and norm topology coincide, and that therefore

X is norm compact and w-metrizable.

REMARKS.

1. If K is not spherically complete the space l does not have property (.) ([4l, 4.15 (6) (-))
but since (t)

_
co ([4], 4.17)it satisfies (ii)of the above Theorem, and so do the non-reflexive

space i0 ([3], 2.3) and the space D of [4], 4.,1.

2. Let K be not sphericaliy complete, let E t, let X {0} O {el,e2,... } C t, when

el, e.,.., are the unit vectors. Then (ii) and (iii) above hold. X is weakly compact (since
lim e, 0 weakly) but is obviously not norm compact.

3. The following example indicates that extending Theorem 2.1 to, say, metrizable locally convex

spaces is doubtful. Let E KN with the product topology. Then E (K. Let X

{el, e2,... } where el, e2,.., are the unit vectors of gN. Then E is of countable type so (i),
(ii), (iii) of Theorem 2.1 are (formally) satisfied. For each f e E’ we have f(e,,) 0 for

large n, so f(X) is finite (hence compact) and contains 0. Yet, Z is not (weakly) compact

as0-w- lim e,CX.
The following is now an almost trivial consequence of Theorem 2.1.

COROLLARY 2.2. (p-adic Eberlein-mulian Theorem I) Let K be not locally compact

and let X, E satisfy one of the conditions (i), (ii), (iii) of Theorem 2.1. Then the following are

equwalent.

(a) X ,s weakly compact.

() X ,s weakly sequentially compact.

(’f X ,s weakly countably compact.

Proof. Each one of the properties (a), (fl), (’) implies compactness of f(X) for all f E E’.

By Theorem 2.1 X is weakly metrizable and from that the equivalence of (a), (), (’f) follows

easily.

NOTE. In Corollary 2.2, (a), (), ("t) are obviously equivalent to: ’for all f E E’ the image

f (X) is compact.’

We have seen in the Introduction that Theorem 2.1 fails if K is locally compact. We now

investigate what happens to Corollary 2.2. Note that every normed space over K has (.).
THEOREM 2.3. (p-adic Eberlein-mulian Theorem II) Let K be locally compact, let X C

E. Then each one of the above statements (a), (fl), (’f) s equivalent to ’X s norm compact’

Proof. We have (a) = (-f), (fl) == (’),). It suffices to prove that (-),) implies that X is a norm

compactoid (then X is weakly metrizable since the norm and weak topology coincide on X ([6],
5.12)). Suppose not. Then by [7], Wh. 2 there is a (0, 1] and a t-orthogonal sequence e, e2,...

in X such that inf ]]e,][ > 0. By ("t) there is a weak accumulation point a of {e, e,... }. This

a is in the weak closure D of [[e, e2,... which equals the norm closure, so a A,e, where

[],k,e,]] 0. If # 0 for some j, let U := {x e E" ]6(x)] < ]A[} where e E’ is an extension

of the jth coordinate function E,e, on D. Then a + U is a weak neighbourhood of a but

for each n 1%1, n#j we have [$(a-e,)]- ]A] so e, a+U, acontradiction. Hence, a= 0.

But then {x E E’]f(x)] < 1} is a weak neighbourhood of a containing no e, if f E’ is such

that f(e,) for all n. Contradiction, so X is a norm compactoid.

REMARK. Corollary 2.2 for strongly polar spaces E and Theorem 2.3 were first proved

directly by the first author.
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REMARK. The following ’relative’ version of the Eberlein-mulian Theorem holds. (Com-
pare {1], VIII 2, Theorem 1). Let X C E. ,guppose one of the condtwns (i), (ii), (iii) of
Theorem 2.1 ’ts satu/ied. Then the following are equwalent. (c) X s weakly relatwely compoct.

(/) X "s weakly relat’tvely sequentzally compact. (’7) X zs weakly relat’vely countably compact.

We leave the easy proof to the reader.

COUNTEREXAMPLES. We show that the previous theory fails for certain subsets X of

t(I) where I has at least the cardinality of the continuum, but is non-measurable, and where

K is not spherically complete. The K-valued characteristic function of a subset S C I is denoted

s and is given by (x):-- if x .9, 5(x):- 0 if x I \ S.

1. Let X := {s S C I}. Then X zs a weakly compact but not weakly sequentially compact
subset of I(I).
Proof. X is bounded and since i(I)

_
co(I) ([4],4.21) the weak topology on X is the

topology of pointwise convergence. Clearly the map f (/(z)),e, is a homeomorphism X

{0, }1 hence X is weakly compact. To prove that X is not weakly sequentially compact, let

I Y beasurjection where Y := {A: A C N} C /. The formulae(x)= (s(X),s(X)
(x I) defines subsets S,$2,... of I. Ifs,,s,,... is a subsequence ofs,s then,

by surjectivity of , there is an x I for which (s,, (x), s, (x),...) (1, 0, 1, 0, 1,... ), so the

subsequence is not weakly convergent.

2. Let Z := {s: S C I, S countable} C t(I). Then Z zs weakly sequentzally compact but not

weakly compact.

Proof. Clearly the weak closure of Z equals X of above, so Z is not weakly compact. On
the other hand, if s, s,... is a sequence in Z then S :: WS, is countable and by a standard

diagonal procedure one obtains a subsequence converging at all points of S, hence at all points

of I, to an element of Z.

3. Let T :: {{} I} C/(I). Then f(T) zs compact for all f t,(I)’ but T zs not weakly

countably compact.

Proof. Let f i(I)’. As i(I)’
_

Co(I) we have that f({,}) 0 except for {i, i2
where we may assume the , I to be distinct. Then {,,) 0 weakly so T := {0} k/{{,)
n N} is weakly compact and f(T) f(T) is compact. However the only weak accumulation

point of {{,,), {,},... } is 0 T so that T is not weakly countably compact.
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