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ABSTRACT. Let S be a completely 0-simple semigroup and F be an algebraically closed field.
Then for each 0-minimal right ideal M of S, M = BUC U {0}, where B is a right group and C'
is a zero semigroup. Also, a matrix representation for S other than Rees matrix is found for the

condition that the semigroup ring R(F, S) is semisimple Artinian.
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1. INTRODUCTION.

A semigroup S is a set of elements together with an associative, binary operation defined on
S. A nonempty subset A of a semigroup S is a left (right) ideal of S if SA C A(AS C A). Aisa
two-sided ideal of S if it is both a left ideal and a right ideal of S. A is said to be a minimal (left,
right) ideal of S if, for any (left, right) ideal B, B C A implies B = A. A (left, right) ideal A of
S is said to be 0-minimal if whenever there is a (left, right) ideal B of S contained in A, either
B = A or B={0}. Sis a 0-simple semigroup if S? # {0} and {0} is the only proper ideal of S.

An element e in S is called an idempotent if €2 = e. Let E be the set of idempotents. Define
e < fif ef = e = fe. Then a nonzero idempotent is said to be primitive if it is minimal with
respect to < and S is said to be completely 0-simple if it is 0-simple and contains a primitive
idempotent.

Let F be a field. A semigroup ring R(F, S) is an associative F-algebra with the semigroup
S as its basis and with multiplication defined distributively using the semigroup multiplication
in S. If Iis a (left, right) ideal of S then the semigroup ring R(F,I) is a (left, right) ideal of
R(F,S). For each @ in R(F,S), @ = 3, c5 .. cr @ such that only a finite number of a,’s are

nonzero. The set

Supp(a) = {z € S|la; £0,a = Z az} (1.1)
z€S,a, €EF

is called the support of @ and by the length of @ we mean the number of distinct elements in
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Supp(a) and denote it by £(a).

An n x n matrix A = (a,;) is called a mono-row matrix if at most one row of A contains
nonzero entries; i.e. a,, = 0 for all 7,7 except + = 2o for some 129. Let T be a semigroup and let
M(n,T?) be the set of all the n x n mono-row matrices over T°. Then M(n,T?) is a semigroup
with matrix multiplication as its operation.

Throughout this paper, S denotes a completely 0-simple semigroup, F denotes an alge-
braically closed field, R(F,T) means the semigroup algebra gencrated by a semigroup T, and
R = R(F,S).

2. O-MINIMAL RIGHT IDEALS.

Since S is completely 0-simple, it is shown in [1] that S is regular and contains at least one
0-minimal right ideal. Let M be such a 0-minimal right ideal. Then M = eS for some primitive
idempotent e which serves as a left identity in M. Suppose there exists a nonzero element a in
S such that aS = 0. Then a ¢ aSa = {0} which contradicts the regularity of S. Therefore for all
nonzero a in S,aS # 0. Hence, M = BUC U {0} where

B ={be M|pS = M = bM} (2.1)

and

C = {c € M|cS = M andcM = 0}. (2.2)

PROPOSITION 2.1. B is a right group; i.e. B = G x E where G is a group and FE is a right
zero semigroup.

PROOF. B is a semigroup because, for all b, b; € B,
(b152)S = b1 (b, S) =M =M (2.3)

and

(b152)M = by (b M) = by M = M. (24)

In order to be a right group, B has to be right simple and contain a primitive idempotent.
Obviously, the generator e of M is in B for ¢S = M = eM. So B # 0. Given any b € B, if
bm, = bma, for my, my € M, then ebem; = ebem,, since e is a left identity of M. But from (1]

we know that eSe is a group with 0 and identity e. So ebe must have an inverse ' in eSe. Thus
m; = em; = b'(ebe)my = b'(ebe)mz = emy = m,. (2.5)

Therefore bm; = bm, if and only if m; = my. Now given a,b € B, a € M = bM implies a = bm
for some m € M. m must be in B; otherwise aM = b(mM) = 0 contradicts the assumption that
a € B. Hence bB = B for all b € B. Therefore, B is a right group and B = G x E where G is a
group and E is a right zero semigroup.

Let go be the identity of G. Then (go,e€), for any e € E, is a left identity of B and of M.
Given any b € B and ¢ € C, (bc)S = b(cS) = bM = M and (bc)M = b(cM) = 0 imply that



COMPLETELY 0-SIMPLE SEMIGROUPS 509

C = bC. In particular, (go,¢)c = c. Conversely, if (g,¢)c = ¢ for some g € G, then cs = (g0, €)

for some s € S because ¢S = M. Hence

(9,¢) = (g9,¢)(g0,€) = (g, ¢)es = cs = (go, ¢); (26)

ie. g =go. So(g,e)c =cforany c € C <> g = go. Using this result and denoting dy =(g,e)d
for g € G and d € C, we get

dy=dp < d=(¢"'h,e)d <= g 'h=go & g=h. 2.7

PROPOSITION 2.2. Fix an element e € E. Then there exists a subset D in C such that
every c € C can be uniquely expressed by d, for some g € G and d € D.
PROOF. For the fixed e, consider the collection

A={ACC|(g,e)AC C and (g,€)a; # (h,e)ay for all g,h € G and a; # az € A}. (2.8)

Suppose B is a chain in A. Then for any distinct a; and a; in UB there exist Ay, A; € B such
"that a; € A; and a; € A;. Without loss of generosity, assume 4; C A;. Then a;,a; € A,.
Then (g,€)a; # (h,e)as for all g, h € G; i.e. UB C A. By Zorn’s Lemma, A contains a maximal
element D and so every ¢ € C can be uniquely expressed as ¢ = d, for some g € G and d € D.
Otherwise D U {c} C A which is contradictary to the nature of D.

With the result of Proposition 2.2, let us denote (g,d) = (g, e)d for each (g,e)d € C. Then

(h, £)(g,d) = (h, f)(g,€)(90,€)d = (hg,d) (2.9)

forallg,h € G, f € E, and d € D. We conclude that (g, f)(h,z) = (gh,z) forallg,h € G, f € E,
andz € EUD.

According to the Rees Theorem in [1], a completely 0-simple semigroup can be represented
by a regular Rees m x n matrix semigroup, M°(H;m,n; P) over the group H, with an n x m
sandwich matrix P. While the group H means the H-class of an idempotent e, we can see that
G x {e} =eSe=H.

For each s € S, sM is either {0} or a 0-minimal right ideal. So S = Us, M, where s; = (go,€)
and s;M # s,M for all i # j. Furthermore, s,M = B, U C, U {0} for each i with

B, = {be s;M|bS = s,M = b(s,M)} (2.10)

and

C, = {c€ s,;M|cS = 5,M and c(s,M) = {0}}. (2.11)

Choose s € S so that sM is O0-minimal. Note that s € sM; otherwise s = tm for some other 0-
minimal right ideal tM. If m € B then sM = tmM = tM; while m € C implies sM =tmM = 0.

So 85 = sM = s; M for some i. Given m € M, we have

sm € B, &> (sm)S = s,M = sM = (sm)sM <= ms € B, (2.12)
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while sm =0 <= (sm)S =0 < s(mS)=0 < m=0. (2.13)

Now if ms € C then M = (ms)S = (ms)M = 0 causes a contradiction. So when sm € C,,

ms = 0. From here, we get
smy =smg <= ((97',e)m)smi = ((¢7", e)m)smy, (2.14)

for some m € M such that

ms = (g,¢) <= (97", e)(ms)m1 = (g7}, )(ms)mz

(2.15)
<> (go,e)m1 = (go,€)m2 <= m; = ma,.

3. SEMISIMPLE ARTINIAN SEMIGROUP ALGEBRAS.

Now consider the semigroup algebra R = R(F, S) where S is a completely 0-simple semigroup.
We learned from (2] that a simple ideal in a semisimple Artinian ring is isomorphic to a matrix
ring. With this in mind, we would like to see if this matrix ring can help us find a matrix
semigroup representing S.

First, let us look at two important properties.

PROPOSITION 3.1. (see [3]) If R(F,S) is right Artinian, then S is finite.

PROPOSITION 3.2. (see [1]) R(F,G) is semisimple Artinian if and only if charF' does not
divide |G|.

When S is finite, w; = 3 c5(2) is an element of R. Let

Ji = {siw; = Z s:(g,z)|zr € EU D} (3.1)
9€G

for each i and J = UJ, in R. For t € S, if (go,x)t = 0 then (wz)t = 3 ¢s(9,2)t = 0 and if
(go,z)t = (h,y), for some y € EUD and h € G, then

(o)t = (g,2)t =Y (h,y) =wy (3:2)

9€G heG

because G = Gh. In addition, wew, = yw, with v = |G| and e € E. Consequently, each
J, = R(F, J;) is a right ideal and J = R(F, J) is an ideal of R.

LEMMA 3.3. If R is semisimple Artinian, then J, is a minimal right ideal of J such that
j;%’jjfora.llia.ndja.ndj’é$j,.

PROOF. Suppose A is a nonzero right ideal of J contained in J,. Find a nonzero element
@ € A so that £ = £(a) in A with respect to the basis J, is minimal. Suppose £ > 1 and write
a= 20,2 as,w;. Then for any j and any y € EU D,

as,wy = ZQs.w,sty €A 3.3)

a,z
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must be 0 otherwise @s,w, = Bs,w, has length 1 in A contradicting £ > 1. So aJ = 0. But
since R is semisimple, so {s J. Then a = 0, which is against the choice of @. So £ = 1 and then
i = as,w; for some a € F\{0} and 2 € E U D. Since there exists t € S satisfying (go, z)t € B;
i.e. (go,z)t = (h,e) for some h € G, and e € E, we obtain

&(a“l—y_ltwy) = (as,w,)(a']'y‘ltwy) = 'y'ls.wztwy
(3.4)

= 7‘13.(w,wy) = 'y_]s,('ywy) = S, wy.

But t(go,y) € tM = s, M for some j implies a1y 1w, € J. So S, wy € A forally e EUD,
and J, = A. That is, J, is a minimal right ideal of J.

Note that J, N J; = @ for all i # j implies J, N J, = 0. By mapping s,w; to s,w; from J, to
j] we obtain an isomorphism, hence J, = j]. Also J = U_, J,, hence VTR

PROPOSITION 3.4. If R is semisimple Artinian, Jisa simple ideal of R.

PROOF. Let A be a nonzero ideal of R contained in J. For each i, if AN J, # 0 then
AnJ, = J,. Givenany0 #Fa=y, as,w; in A, if (go,y)a = 0 for all y € EU D then Ja=0
and so @ = 0, contradicting @ 7 0. So there exists y € E U D such that

a,1,z

0 # (90,y)d = z a(go, y)siwz = Z Brw; € A. (3.5)

a,t,z B:E€F,z€EUD

It follows that s;(go,y)a € jJ N A for each j and so J = @J; C A. Thus J is simple.

Under the assumption that F' is algebraically closed, R is semisimple Artinian implies that
J is a matrix ring such that J & Mat,F. As was mentioned by Jacobson[4], there exists a
set of matrix units {e,;} such that Ji = e;,J. As we can see, each minimal right ideal J, is an
n-dimensional subspace of J with basis J,. So |E U D| = n and the number of the elements in
{J.} is also n.

For each 1, let J; be isomorphic to the ith row-subspace in Mat, F' and use = to denote the

two correspoonding elements between the two sets. Then we have

0 0 ... 0
sswr; = | a1 a2 ... an |ith where ax € F for each x € EU D. (3.6)
0 0 0

Let us begin by studying the first row. For any e € E, recall that wew, = y(w,) and suppose

we = | . . . . Then
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a d2 ... dp a ay ... a, a, az a,
0o 0 ... 0 0 0 0 0 0 0
ey . . L= : :
0 0 0 0 0 0 0 0 0
(3.7)
ay, ap an
0 0 0
L B B it
0 0 ... 0
As to d € D, we know that wawg = 0. So
a az an a a2 ... Qg ay az Qan
0 0 ... 0 0 0 ... 0 0 0 0
we=f . . . . |=0= o T
0 0 0 0 0 ... 0 0 0 0
(3.8)
a az an
0 0 \
=a . . } = a; =0
0 0 0
/\tl /\1:2 )\zn
0 0
We conclude that, for z € EU D, w, & v . . where
0 0 0
A =d b ifzeE
21710, ifzeD
0 0 0
In general, since s;w.w; = vs,w, for each ¢, given s,we = | a1 a2 ... an | ith weobtain
0 0 0
0 0 0
. /\zl /\:2 /\zn
1. 0 0 0
w2 | a1 az ... an |ith-vy .
: 0 0 0
0 o 0
(3.9)
0 0 0
=ayY ’\zl /\22 /\zn ith-

0 o ... o0
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0 0 0
Consequently, s,w; = a; | Az1 Az2 ... Azn | ith. Suppose there cxists f € E\{e} and
0 0 0
0 0 0
sswp= | by b2 ... by |ith. Then
0 0 0
0 0 0 0 0 0
Swpw, =YS,wz = a1 | Az1 Azz ... Aza |ith=bi | Az1 Az2 ... Azn |ith, (3.10)
0 o ... O 0 o ... O
0 0 0
hence a; = b; # 0. Now let v, = a;. We get siw; = v, | Az1 Az2 ... Azn | ith for each
0 0o ... 0

z € EU D. In order to study A;,, we need to look at two different cases of s;(go, ) for each «

and each 1.

Case 1. If 5,(go, ) € C; then (go,z)s; = 0 and w,s,wy = 0 for all y € EU D. Thus

0 0 ... 0
A:I:l )\t2 ’\:n : . . .
0 0 0 :
0=wyswy, v . i | Anr Az Ayn | ith
0 0 0 P
o 0 0 (3.11)
Ay A2 Ayn
0 0 0
=7z % .
0 0 0

But v and ~; are not zero. So Az, =0.

Case 2. If si(go,z) € B, then (go,z)s; € B and (go,z)s, = (h,c) for some h € G and e € E.
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So wys, = we and w;s,wy = w,wy = ywy for all y € EU D. That is,

0 0 0
Ayt Az oo Aga Azl Az2 oo An .
; 0 o ... 0 0 o ... 0 :
52 . . . =7 . . . | A Ay Ayn | 2th
0 0 0 0 0 0 5
0 0 0 (3.12)
A1 A2 oo Ay
0 0 0
=7Azn :
0 0 0
Hence A;, = 'y'y,_l.
Let 7; = v, we obtain our next proposition.
0 0o ... O
PROPOSITION 3.5. saw, = v | Azt A2 ... Azn |ith, where A;y = y(y)7! if
0 0 0

s:(go,z) € By; and A, = 0 if s,(go,z) € C,. Thus, for all z,y € E U D, either \;, = )\,
with both s,(g0,z) and si(go,y) are in B, or Az, Ay, = 0.
With this result, we are ready to find a representation for each element of S. Given r € EUD,

let
R et S =
In particular,
o= {0 HIED n

Define a mapping ¢ : S — M(n,G°) by

0 0o ... O
¢(S,(g, .’E)) =g hzl h:2 e h:n ith. (315)
0 0o ... 0

¢ is well-defined for if s,(g,z) = s,(h,y) then ¢ = j and (g,z) = (h,y).
PROPOSITION 3.6. S is isomorphic to a left ideal of M(n,G%) and, for each i, there exists
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a € S such that

0O 0 ... 0
dla)=191 g2 ... gn |ith with g, #0. (3.16)
0 0 0

PROOF. We first claim that ¢ is a monomorphism. By letting s,(g, ), s,(h,y) be any two

elements in L, we have
0 0o ... 0
#(s:(9,2)) =g | har hza ... hzn |ith and (3.17)

0 0o ... 0

0 0 ... 0
é(s;(h,y)) =h h;l h;z h;,. jth. (3.18)
0 0 .. 0
So
0 0 ... 0
#(s:(9,7))9(sj(h,y)) = ghz,h h;l h;z h;.. ith. (3.19)
0 0 .. 0
If (9o, z)s; € B, then (go,z)s; = (h,,e) and

¢(si(g,7)s;(h,y)) = ¢(si(g, €)(hs, , €)(h, ¥))
= ¢(si(ghs, h,y))

o0 (3.20)
= ghs;h h;, h;;z h;m ith.
0 0 .. 0
But if (go,z)s; = 0 then k,, = 0. In both cases, we see that

¢(3t(gv z))¢(3j(hv y)) = ¢(s.(g, :IJ)SJ (hv y)) (321)
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Suppose ¢(s:(g,2)) = 4(s,(h,y)). Then

0 0o ... 0 0 o ... 0
g hzr hza ... hgn |ith=h hyl hy2 cee hyn jth. (322)
oo o) \ee

First, ¢ = j. Next, gh;, = hhy, for all k. Then, for each k, either A, hy, € Gor by, =0 =h,,.
Consequently, A;, = Ay,, for all k, and ¢ = y by Proposition 3.5. Thus g = h and s,(g,z) =
sy(h,y); i.e. ¢ is a monomorphism.

Now we want to show that ¢(S) is a left ideal of M(n,G®). Given any s;(g,z) € S with

0 0o ... 0
$(s:(9,2)) =g hll h;2 h;n ith (3.23)
0 0 .. o
0 0 0
and any b:l bz b:n jth € M(n,G®), the product
0 0 . 0
0 0 ... 0 0 0o ... 0
b:l 5:2 b:n jth-g h:zl h;Z h;n ith
0 0 .. 0 o 0 .. o
(3.24)
0 0 0
= by h;l h;2 h;,, jth
0 0 .. o

is still in ¢(S). Therefore ¢(S) is left ideal of M(n, GP).

For each i, there exists ¢ € E such that s,(go,z) € Bi, hence (go,z)s, = (hz,,e) for some
e € E. Thus ¢(s:(go,z)) is an element in ¢(S) whose 7ith entry is nonzero.

In order to show that R is semisimple Artinian, let us assume the following on a 0-simple

semigroup S:
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(1) S is finite,
(i1) S is isomorphic to a left ideal of an n x n mono-row matrix semigroup over a finite group

G, denoted by M = M(n,G®), such that for each i, there exists an element a € S with

0 o0 ... 0
a= | g1 92 ... Ggn |ithandg, #0,
0 0 0

(iii) the characteristic of F' does not divide |G|.
By assumption(iii), G = R(F,G) is a semisimple Artinian ring. Then it is stated in [2] that G is
the direct sum of its minimal left ideals which are generated by a set of orthorgonal idempotents

{fi,f2," - fp} and the identity 1 = fi + fo + - -- + f,. Note that M = R(F, M) = Mat,(G). Let

jth
o ... 0 ... 0

()= 1o ... § 0 |jthfor1<i<pand1<j<n. (3.25)
o ... 0 ... 0

Then {(fi),;li = 1,2, ..., p; j = 1, 2, ..., n} is a set of orthorgonal idempotents in M
such that 3, .(fi),; is equal to the identity matrix in M.

LEMMA 3.7. M(f,),, is a minimal left ideal of M for each i and j.

PROOQF. For each 7 and j, the left ideal

a

M(ft)ji = {(

Qin

: ) (fi)jslaxi € G for each k and 1}

Gn1 Gnn
jth (3.26)
0 al_,-f, ... 0
={ : lax; € G,k =1,...,n}.

0 an,fy ... 0

Also
jth

aii ce. Qin 0 0 0 a“b“f,- ... 0
(; ) : =} . : T (3.27)
@n1 .- Gnn 0 0 0 anjb”-f, ... 0
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an v.o. Q1
for all ( e ) € M. Since Gf, is a minimal left ideal of G, either Gbj; f; = Gf;
ani «e. Qpn
jth
0 ... byfi ... 0
or Gb,,f, = 0. But if Gb,, f, = 0 then b,, f, = 0. So M : is either 0 or
0 ... bofi ... 0
jth
0 ... bijf ... 0
M(f;),, for any : € M(f.),;- That is, M(f:)); is a minimal left ideal
0 ... bnjfi ... O
of M.
ith
0 0 0
Letew= | o ... 1 ... o |ithforeachi. Then M= @M(fj);.- because
0 0 0
Meii = M(f1)ii ® - ® M(f,)ii and (3.28)
M=Men ® - ® Mepn. (3.29)

Therefore M is semisimple Artinian.

PROPOSITION 3.8. R = M.

PROOF. For each i, there exists an element a € S such that

0 0 ... 0
a=| g1 g2 ... gn |ith (3.30)
0 0 0

and g, # 0 by assumption (ii). Then
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ith
0 0 0
()= |0 ... o7 ... 0 ith - a € R(F, ¢(5)), (3.31)
o ... 0 ... 0

hence 0 # R(F, $(S))(f;)ue = M(f,)u- It follows that R = M.

With all the properties found here, we obtain the major result,

THEOREM 3.9. Let F be an algebraically closed field and S be a 0-simple semigroup. Then
R is semisimple Artinian if and only if the following hold:
(1) S is finite;
(2) S is isomorphic to a left ideal of a mono-row matrix semigroup M(n,G®) where G = eSe

and e is an idempotent of S, such that for each 7, there is an element a € S with

0o 0 ... 0
a=| g1 g2 ... gn |ithandg; #0; (3.32)
0 0 0

(3) The characteristic of F' does not divide |G]|.

According to Theorem 5.20 in [1], the sandwich matrix P in the regular Rees matrix semi-
group, M(G; h,k; P), is nonsingular (in particular, h = k). Here h = k means the number of
distinct 0-minimal right (and left) ideals of S. So the size of P is the same as that of the mono-row
matrices found in this part.

Some readers may find that the representation described in Theorem 3.9 is a special case of
the dual Schutazenberger representation mentioned in [1]. But the approaches are different.

4. RELATION TO REES MATRIX REPRESENTATION.

Hereafter, we would like to check if we can find the Rees matrix representation from the
Main Theorem directly. First let us look at the left ideals generated by elements from E U D.

LEMMA 4.1. S(go, ) # S(go,y) for all distinct z,y € EUD."

PROOF. Suppose there exist z,y € E U D such that S(go,z) = S(go,y)- Then

(90,%) = (g0, €)(g0,2) € S(go,z) == (g0, ) = 5(90,Y) (4.1)

for some s € S. s € M for if sM # M then (go,z) ¢ M is a contradiction. If s € C then
(90, ) = s(go,y) = 0 which causes another contradiction. So s must be in B and s = (g, f) for

some g € G and f € E. Hence

(90,2) = (9, f)(90,¥) = (9,y) =>go=g and z = y. (4.2)
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Since the set E U D is finite, we can list the elements in an order with one of the element

e € E to be the first. Using the same notations in (1], let (go,zx) = qa, s:(g0,€) = 7, and

_ faar,, ifqar, € Hyy
Pa = {0, otherwise  ° (43)

The lemma above helps us obtaining the nonsingular sandwich matrix P = (p»,) over HY, (which

is the same as G°). Note that for each 7, px, = (go,21)s:(go,€) = hz,,. So

hei  hea ... hen
P= h,:kl h,:ﬂ . h,;,, (4.4)
h,:"l hz:,.2 . h,:nn
and for each s € S
0 0 ... 0
s=g hz.,\l hz:.)ﬂ hr.,\u ith
o o .. o (45)

= Si(g,z,\) = 3'(90’6)(gre)(90’xt\)

=r1,(g,€e)gr = (9)ir; the Rees matrix.

This shows the relation between the Rees matrix and the matrix described in this article.
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