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ABSTRACT. The authors prove that the nonlinear parabolic partial diflerential equation

du n 92
—()_l - ‘g_:] aLal,]s"i](u) - f(u)

with homogeneous Dirichlet boundary conditions and a nonnegative initial condition has a nonneg-
ative generalized solution u. They also give necessary and sufficient conditions on the constitutive

functions ¢,;, and f which ensure the existence of a time to > 0 for which u vanishes for all ¢ > £o.
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1 INTRODUCTION.

We consider the nonlinear initial-boundary value problem

a LI .
8—1: = ‘glmgp,](u) — f(u)  in Qs =Q x (0,00)
d(u) = 0 on 99 x [0, 00) (1.1)
u(z,0) = wup(r)>0 on Q1

in which ® = (¢,,) is an n x n symmetric matrix and the domain  C R" is bounded. We assume
that the functions ¢,, and the nonnegative, nondecreasing function f are in C([0.00)) N C*((0, 00))
and satisfy f(0) = ¢,,(0) = 0. Furthermore, we assume that the matrix ®'(s) = 3‘-1;@(3) is positive

definite on (0,00) and there exists a positive function A € C((0,o0)) such that

Ms)E? < 32 @, ()66, < N(s)lel? (1.2)

t,7=1
for s > 0, £ € R™ where A(s) = tr(®(s)), the trace of the matrix ®(s), so that A’(s) = tr(®'(s)).
The main purpose of this article is to prove that the initial- boundary value problem (1.1) has a

solution and to give necessary and sufficient conditions on the constitutive functions ¢,;, and f to
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ensure the existence of a finite extinction time (i.e., a time {o > 0 such that any solution u satisfies
u(z,t) =0 for all (x,t) € 0 x [y, 20) ).

Such problems have been considered for over two decades for the isotropic problem in which
the matrix ® is a scalar multiple ol the identity matrix (i.e., ® = pI) . (See [1],{2].[3],[4],[5),[6].[7]
and their references.) The main thrust of these studies has been the determination of conditions on
the functions ¢ and f which ensure the existence o1 nonexistence of a finite extinction time. For
a single equation (see [2] for systems), the principal results can be summarized by those contained
in [6] which contains all of the other results when homogeneous Dirichlet boundary conditions are
specified. There it is shown that a sufficient condition to ensure the existence of a finite extinction

time is that (e > 0)
ds

< € ds
— <00 or / — < o0
/0 () o f(s)
holds. Conversely, the authors prove that if it is known that a solution has a finite extinction time,
then

€ ds
I EOEYOR
must hold.

For anisotropic diffusion, such results are virtually nonexistent. Indeed the authors know of
no results in which either existence of a solution or existence of a finite extinction time for problem
(1.1) has been treated. Other problems for special cases of (1.1) have been studied. For example,
Kersner [8] demonstrates some properties of the solution to the Cauchy problem for the equation
uy = (um)zz + (up)w'

It is well-known that classical solutions to (1.1) do not, in general, exist and hence weak
solutions must be considered. We prove the existence of such a solution. Our definition of a weak,
or generalized, solution is quite similar to that of Benilan et al [9]. In addition to existence of a
solution, we give necessary and sufficient conditions for the existence of a finite extinction time. In

particular, we show that if

¢ ds

— < 00 1.3

o 7 43
or if there exists some m € {1,2,...,n} such that
e ds

—— < 0, 1.4

/o ©mm(8) (14)

then any solution to our problem has a finite extinction time. On the other hand, we show that a
necessary condition for the existence of a finite extinction time is

€ ds
/o 7o) T @) < (1.5)

These results contain all of those for the isotropic problem for which a bounded domain and Dirichlet
boundary conditions are specified.
2 STATEMENT OF MAIN RESULTS.

Since problem (1.1) does not, in general, have a classical solution even in the isotropic case
(see [4]), it is necessary to work with a weaker formulation of a solution. In the following, we give
the definition of a generalized solution. It should be noted that our definition is similar to that of
Benilan et al (see p. 218 of [9]).
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DEFINITION. The sequence of problems (&, is the matrix (¢fj))

v n 2 R ‘

- = =, (ve) = filvr) in Qs

ot o2 0. 0r, 7Y .l
Pi(vx) = 0 on I x [0, oc) (2.1)
op(,0) = wou(r) >0 on 1

is called an approximating sequencc of problems for the problem if the scquences of (*3([0,00))
functions {f}72, and C''([0,00)) lunctions {fx}3=, converge to ¢,,, and [, respectively, uniformly
on compact subsets of [0,00) and the sequence {ugx} converges to ug in Lo ().

DEFINITION. A function u € Ly (Qs) is a generalized solution of the initial-boundary value
problem (1.1) if for each T' > 0, the [unction u can be written as the weak L;(@7) limit of a sequence
of classical solutions to an approximating sequence of problems for the problem (1.1).

The main purpose of this article is to prove the following three theorems.

THEOREM 1. (FEnistence) Suppose ug is a nonnegative function continuous on 1. Then the
initial-boundary value problem (1.1) has a nonnegative generalized solution u and ||u(-,t)|lcc.0 <
llwol|oo, for all ¢ > 0.

We are also interested in establishing both necessary and sufficient conditions on the matrix

. ® and the function f which ensure the existence of a finite extinction time for these weak solutions.
The following two theorems are natural extensions of similar results for the isotropic case [6].

THEOREM 2. (Necessity) Let uo be a nontrivial nonnegative function continuous on Q. If
any nonnegative, bounded, generalized solution to the problem (1.1) has a finite extinction time,
then (1.5) holds.

THEOREM 3. (Sufficiency) Let ug be a nonnegative function continuous on Q. If either (1.3)
holds or (1.4) holds for some m € {1,2,...,n}, then any nonnegative, bounded, generalized solution
of (1.1) has a finite extinction time.

It should be noted that there is a gap between necessity and sufficiency which the authors
have been unable to fill. That is, we show that a sufficienct condition to ensure the existence of
a finite extinction time is to have either strong absorption (i.e., f satisfies (1.3)) or fast diffusion
in (at least) one direction (i.e., for some m, (1.4) holds). However, necessity requires only that
some combination of the absorption and diffusion be “fast” (i.e., (1.5) holds). Thus, suppose that
one has absorption and diffusion terms for which the integrals in (1.3) and (1.4) are infinite for
all m = 1,...,n while inequality (1.5) holds. (Such functions do exist.) Does any solution to the
resulting problem (1.1) have a finite extinction time? The authors have been unable to answer this
question.

3 PROOF OF EXISTENCE.

PROOF OF THEOREM 1. Let {uox} be a sequence of C5°(0) functions converging uniformly
on § to ug. Furthermore, we choose uok 50 that ||uoklleoe < |lto]los = M. Let {<pf‘1}$°=l, 1<
i,j <n, and {fi} be sequences of functions such that ¥ € C?([0,00)), the matrix ®}(s) (i.e., the
matrix (&% (s))) is positive definite on compact subsets of [0,00), fi € C*([0,00)) has a positive
derivative everywhere and (,ofj — ¢,, and fi — f uniformly on compact subsets of [0, 00) as k — oo.

The existence of the sequences {®;} and {fi} are fairly easy to demonstrate. To produce the
sequence {®;}, we set Wi(s) = ®(1/k) for s < 1/k and let Wy(s) = ®'(s) for s > 1/k. Let ®x(s) =
Js ¥i(o)do. Clearly, the sequence {®;} has the required properties (except for smoothness). In
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particular. we note that
1 , .1 . .
NDIE < € @()e < V(e (3.1)

for all s € [0, M] and £ € R". Au appropriate smooth approximation to this &, will provide the
required sequence. The sequence {f;} can be constructed similarly.

From Ladyzenskaja et al [10] (see p. 157) we know that the sequence of initial-boundary value
problems given by (2.1) with &4 and fi as just defined has a unique nonnegative classical solution
on Qrif0< 7T < oc.

We now establish that a classical solution to (2.1) exists on Q... This is easy to do as follows:
Let w; be a classical solution on @) and define v; = w; on @Q; and u; = 0 elsewhere. Similarly,
let w, be a classical solution on Q, and define uy = w, on Q; and u, = 0 otherwise. Continue
this process to produce a sequence {u,,} for which u,, = w,, on Q,, and w, = 0 otherwise.
Since the classical solution on @,, is unique, we get w, = Wm41 on Q. Furthermore, we get
0 < tum S Umsr < |uok|leot £ M on Qo for all mn.

Thus the sequence {u,,} couverges pointwise on Q. Let v = lim, .o, U, and notice that
v = Uum on @Qn for all m. Thus, given any point in Q., m may be chosen sufficiently large that
v = U, at that point and thus v is a (not necessarily unique) nonnegative classical solution to (2.1)
on Q.

Since this classical solution obviously depends on &k, we now let it be denoted by v and
observe that ||vk(-,t)]lson < ||tto]|o,2 for all k and ¢ € [0,00). To obtain a generalized solution to
our problem, we let T € (0,00) and note that we need only prove that the sequence {vi} has a
subsequence {v,,} which converges weakly in Ly(Qr). Then, after reindexing the sequences {},},
{f} and {uox} replacing k with k,,, we obtain the desired result. Thus, we let ' € (0,00) and
prove that the sequence {vx} has a subsequence {v, } which is weakly convergent in L;(Qr). For
ease of notation, we let w = vg, multiply the differential equation in (2.1) by w and integrate over

Q:. Integration by parts produces

1 1
§Lw2(x,t)dz +L'[¢fj]'(w)w,,wrjdxd7+ /Q‘ w fi(w)dzdr = 5‘/ng_kd1x
valid for all ¢ € [0,T]. Using (3.1) and the positiveness of fi, we get
/nwz(x,t)d:c < /‘;ug'kdz
for all ¢ € [0, T]. Integrating over [0, T], we have
*drdt < T | uj,dz < M’T|Q
‘/QTwa: < /ﬂuo,kx_ ||

which, in turn, produces

/ vidzdt < MPT|Q|.
Qr

Since the right side of this inequality is bounded independently of k, the reflexivity of Lo(Qr) yields
the existence of a subsequence of {vx} which converges weakly in L,(Q7). This completes the proof
of Theorem 1.
4 PROOFS OF EXTINCTION RESULTS.

PROOF OF THEOREM 2. Let u be a nonnegative, bounded, generalized solution to (1.1).
Let to be the extinction time for u with 0 < ty < co and let 2o € Q such that ug(zo) > 0. Choose
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r>0and é >0sothat B={reN||r—uagl <r} CQand u(r)>éforall r € B. Let h be the

function defined by
. _|I — IOII it I . .
h(z) = exp T if o — x| <7

0 if o —xo| 21 .
We note that h satisfies 0 < h(xr) < 1 on B, [oh(r)dr < oo, and |VA|2 < Kh on Q for some
constant A" depending only on the value of . We define the sequence of nonnegative functions {ax}
by ar(s) = Ai(s) + fi(s) where Ay = tr(®;) and the sequences {®}, {fi}, and {uox} are defined
as in the proof of Theorem 1. Now let {ux} be a corresponding sequence of classical solutions to
(2.1) which converges weakly in L,(Qs+1) to u. We multiply (2.1) (with vy replaced by ui) by h,
divide by ay(ux) + € (¢ > 0) and intvgrate over 1. After integrating by parts, we get

oL et - S (o)

1,=1

Se(uk)h

" Jaap(ur) + €

ap(ux)h Tor
= ey o V) Vi

1
) — w19 v
/Q ap(ug) + ¢ U Pi(ue) Vhde

Se(ui)h
" Jaa(uk) + € da- 1

We let H be defined by

h(@)17?

0 for |z —xo| > 7 .

A o o agf <

We note that H is continuous and bounded on Q. (In fact, 0 < H(z) < K'/? where the constant
K comes from the properties of h above.) Using the fact that h'/2H = |Vh| on Q and elementary
estimates, the second integral on the right side of (4.1) may be estimated as

Vul @) (ux)Vh 1
- —=——dz > — [ ————|®}(ux)Vui||Vh|d
/r; ar(ug) + ¢ T o= /ﬂ ar(ug) + sl e(ue) V| [Vh| dz

hl/?
- /n — [0 () Vgl H dz

ar(ug) +
B / 2@ (ue) V| H\? &
~ o ar(up) + ¢ 2

|®% (uk)Vuk|2h 1 .
- - = d
/ (ak u,, + 6)2 de 4 -/Q Hda

_ [ 1B VurlPh L
a (ak(ux) +€)? dz /H

We now substitute this expression into (4.1) and use the fact that fi(ux) < ax(ux) + € to obtain
d w  ds aj(uk)h Tt
— —_— > — 7V
dt /n h/; ak(s) +e e 2 /ﬂ (ar(us) +€)? up @i (i) Vi de

| @ (k) Vue|*h )
(cfk(uk)+e)2 dz “/ H dm-/ hdz . (4.2)
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We use the positive definiteness of ¢}, inequality (3.1), and the inequality a}.(s) > Ai(s) in (4.2) to

get (The argument u has been suppressed for ease of reading.)

d us  hds h

d 0> /——V (®)12]all — ®)(@}) /2% —jH’d —/hd
pT /ﬂ/{; ak(‘\)*_e(r > PRSE u ( lak AL wg dr x x

——/ [Izdl'—/ hdr = — Ky,
4 Ja Q

Integrating this inequality over the interval [0, ¢] produces

[\

uk(z,t) ([\ uo k(2) ds
da ———dr — Kyt
/ / + fA / / + fk () +e o
for all 0 <t < co. Thus, integrating this over the interval [to,to + 1], produces
to+1 ug(z,t) ug k() h(.t)d.s ,
_ h@ds ———————dr — Ko(to + 1). 4.3
/to // +fk // s)+ fi(s)+ e 7= Kollo+ 1), (43)
Since for fixed k and fixed € > 0, the function F defined by
ds

0 Ak(s)+ fi(s)+¢
Jis concave, Jensen’s inequality (see [11] p. 202) may be applied to the left side of (4.3) to get
Uk(to) ds ug k (z) ds
Q ————— > [ h ————————dz — Ko(to + 1).
| ’/o Ar(3) + fels) + < —/n (’)/o M) £ fie) 1ot~ Holto+ 1)
where

1 fto+l
Uk(to) = I?Tl/to /ﬂh(z)uk(z‘,t)dz dt.

We now let k approach co. The weak convergence of {u;} to u, the L, (§2) convergence of
{uox} to ug as well as the uniform convergence of Ay and f to A and f, respectively, produces
4 (to) ds uo(7) ds
0 / ——————————dz — Ko(to + 1).
i +fs)+€_ /o A(s)+f(s)+ez olte+1)

where

Ulty) = l—(ll_[ /:’“ | bz, 1) da .

Furthermore, since to is the extinction time for u, we have u(z,t) = 0 for almost all (z,t) €

Q x [to, 00). Therefore, the last inequality yields

uo(z) ds

By our choice of the set B and the function A, this inequality produces

/ )/ da:</ /""(I)d—sdzqﬁ,(to“)
A(s +f 0 A(s)+ f(s)+e — —
and hence
/6 Iﬁro(to + 1) < o0
o A(s)+ f(s)+e = [ph(z)dz
Now let € | 0 and the proof of Theorem 2 is complete.
PROOF OF THEOREM 3. Suppose 0 < uo < M. If (1.3) holds, then the proof of the
existence of a finite extinction time is quite similar to that of the isotropic case (see Theorem 1 of
[5]) and is therefore omitted.
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Thus, suppose (1.1) holds {or some m. For ease of notation, we let ¢ = ppm. Choose r > 0
sothat Q C {r € R" | |&,| <7, | <i<n}andlet zp be a C*(R) function such that zo(rm) = M
for [xm] < r and zo(—7 — 1) = zo(r + 1) = 0. Let = be a mild solution (as in [9] and [12]) to the

initial-boundary value problem

g—tz = di:;n V(=) for el <r+1, >0
H(-r—1.t)=0 for t>0
2(r+1.H)=0 for >0
2(m,0) = zo(Tm) for |z,] <r+1

From [1], we know that z has a finite extinction time, To. We shall show that « = 0 a.e. for
t > To. Thus let T € (Tp,0c). Since u is a generalized solution of (1.1), there exist sequences
{¥¥ )22, and {fi} of well-behaved lunctions converging uniformly on compact subsets of [0, 00) to
Yy, 1 < 4,5 < n, and to f, respectively, such that the sequence {v;} of classical solutions to (2.1)
converges weakly in Ly(QT) to the solution u. Let z; be the unique classical solution of (¥ = @k, )

a 0? f

= ﬂ¢k(zk) or |z, <r+1, t>0
z2(—r—=1,6)=0 for t>0
z2(r+1,1) =0 for t>0
26(2m,0) = 20(2m) for |zm| <7 41,

From Sacks [12] (see Proposition 2.1 of [12]), we know that z; — z in C([0,T}; L}(—r — 1,7 + 1)).
Also, since z; satisfies

Lizk =0 < fulve) = Liws in Qr
Vi S 2k on 9 x [0, T]
v(z,0) < zo(x) on
where Ly is the operator defined by
LI w
Lkw = ‘-‘§=:l Bz,azjtp"(w) - ?;?»

the results from Protter and Weinberger [13] (see pp. 187-188) yield vx < 2z on Q7 for all k. Hence

/:/‘;vk(x,t)dx < /T:/()zk(xm,t)dz

/T:‘/Du(z,t)sz/Tj/nz(zm,t)dx .

Thus, since z vanishes for ¢ > T, we must have u = 0 a.e. on Q x [To, T]. Since T was chosen

We now let £ — oo to get

arbitrarily from (Tp,00), we must have u = 0 a.e. on X [To,00). This completes the proof of

Theorem 3.
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