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ABSTRACT. This paper is devoted to investigating a class of nonlinear singular integral equations
with a positive index on a simple closed smooth Jordan curve by the collocation method. Sufficient
conditions are given for the convergence of this method in Holder space.
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1. INTRODUCTION.

There is a large literature on nonlinear singular integral equations with Hilbert and Cauchy kernel
and on related nonlinear Riemann-Hilbert problems for analytic functions, cf. the monograph by
Pogorzelski [9] and the other by Guseinov A. I. and Mukhtarov Kh. Sh. [5].

As it is well known, linear singular integral equations of Cauchy type have important applications
in hydrodynamics and in the theory of elasticity. Also nonlinear singular integral equations of Cauchy
type and related nonlinear Riemann-Hilbert problems are encountered in various problems of
continuum mechanics. Many important boundary value problems for partial differential equations of
elliptic type can be transformed into the generalized Riemann-Hilbert-Poincare problem, cf. Vekua
[11] and Mikhlin et al. [6].

Now, Consider a simple closed smooth Jordan curve ¥ with equation t=t(s), 0< s </, where s-arc
coordinate accounts from fixed point and ¢ -length of the curve. Dentoe by D* and D- the interior and

exterior of y respectively and let the origin be 0eD*- Denote by v, the unit circle with center at the
origin and let y’ and y, be the interior and exterior of v, respectively. Consider the conformal

mappings C(w) from y_ onto D~ such that C(w0)=c0, lim C(W) w™'>0 and A(w) from y, onto D*
. W—r0

such that A(c0)=0.
Consider the following nonlinear singular integral equation (NSIE)

(P(y))(t) = W(t, y(1), Bk(t, ,y())) = f(1), tey (LY

where W(t, u, v), k(t, 7, u) and f{t) are continuous functions on the domains

Dz{(t’uvv) 5 tEY > u,v E(-m,w)},

D ={(tru)trey , ue(-ww,)}
and on y respectively; The singular integral .

BK(t,1,y(1)) = —

[ KLy@)y,
Y

-t

is a Cauchy principle value and y (t) is unknown function.
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REMARK. The integral Equation (1.1)is equivalent to the following Riemann-Hilbert problem
Find a holomorphic function w(z) = u(z) +iw(z), z=x+1iy, in y. which is continuous in y_ +y and
satisfies the boundary condition ‘P(t, u(t), v(t)) = ft) on y, (cf. Pogorzelski [9], Wolfersdort [ 12])
DEFINITION 1.1. We denote by ¢(0,§] to be the set of all continuous monotonic increasing

. I . . .
functions defined on (O'E] such that |jm ¢(8) =0 and ¢(3)5" is nondecreasing function

Consider the Holder space
Ho(r)={ y(t); tey: o(y.8)= max [y(t))-y(t2)|=0(0(3)) }
t-ty <d
6>0
with the norm
- o(y,d)
e =¥l +50p =557

where
”y"cm = max |y(t)] and ¢(3) belongs to <D(0,2£].
ey

We denote by H, ; (D) and H‘p,,p]’l(Dl) to be the spaces of all functions ¥(t, u, v ) and k(t, 1, u)

which satisfy the following conditions:
¥t 01, v1) = W (t3,u2,v2)| € oy @ty ~ ta]) +]uy = ug| +[v = vy} (12)

[k(ty, T1,0) =kt T,u)| < pf oty = ta) + (gt =12 +]uy — uy} (13)
respectively, where (t,,u,,v,) €D,(t,,7,,v,) €Dy, t,1, €y, c; are constants, (i=1,2), and ¢, mn
4
&(0,—].
( 2]
In the works of Gorlov [4] and Musaev [7], the collocation method is used to find an approximate
solution for some classes of NSIE in the Holder space H,(y) (0<a<1).

In the works of Saleh et al. [10], the NSIE (1.1) with positive index ((>0) is solved by the Newton
Kantorovich method in the subspace:

Qo =y ey [« y(x)de=0, m=13}
of the Holder space H(y).

In the present paper we shall study the application of collocation method to the solution of NSIE
(1.1) with a positive index in Holder space H,p(y).

For this purpose we have to introduce the following:
LEMMA 1.2.(see [10]) Let the functions ¥(t,u,v) and k(t,,u) belong to Hy 1,1(D) and H¢,<P1,1(D1)

respectively, then the operator P(y) has Frechet derivative at any point yeH(y) and its derivative has
the form :

(P'(y)h)(t) = Wi(t,y(t), Bk(t; ,y())h(t) + ¥y (t,y(t), Bk(t,,y())B(k, (t, ,y()) h(t)) (1.4)

moreover it satisfies Lipschitz condition :
[Prcyn) =Py, s Mlly: - yall,
in the sphere S(y,.r) =y -y, ||(p < r, where M is a constant.
The derivative P'(y) in (1.4) can be written in the form :
L.h = a(y, t)h(t) + b(zi") 5, 'T‘(_‘t)dr + °(1yc;‘) [ H(, %, y(a)h(e)dr = (1) (1.5)

where;
a(y,t) =¥ (t,y,(1),Bk(t, ,y,())),
b(y,t) ="¥) (t,y,(1),Bk(t,.,y,(.))) ky(t,t,y,(1)) ,
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c(y,t) =", (t,y,(1),Bk(t,,y,()))
and

H([,T,y(‘[)) = ku (t’T>YO(t))— ku(t,t,yo(t))
-t
for some initial value y, € H,(v), where, the function ‘¥, denotes to the partial derivative of the
function ‘¥(t, u, v ) with respect to u
From conditions (1.2), (1.3) and Muskhelishvili {8], see also [5], the follwing lemma is valid
LEMMA 1.3. Letk(t,t,u)e Hq,q, 1(Dy) and h(t) eHy(y) then the function
k(t,t,u(z k(t,t,u(t
o)=L | KLTuE) k(b))

h(t)dt

belongs to the space H,,(v)and the following inequality is true

lell, < eslinll,

where cj is a positive constant independent of h (t).
THEOREM1.4.(see [10]) Let the conditions of Lemma 1.2 be satisfied, y, e H

1
L} <
o

L,P(y,)
P

391

V>

. 1 .
<y, then, ifh, =v,Mp, <5 and r2 1y = py(1- /(1 -2h, )hg', the Equation (1.1)

has a unique solution y*in the sphere S(y_,r; ) to which the modified Newton's method converges

with the rate of convergence determined as follows:

L(l J1-2b, )

it

Iya-y

2. COLLOCATION METHOD.
Now, we seek an approximate solution of Equation (1.1) in Qg (y) in the form :

Yo (=3 mt* +5205 . n>y @1
where the coefficientsn, are defined from the system of nonlinear algebraic equations (SNAE) :
P(t), ¥nx (M, 1)), Bk(tj,., yn 0 (0,.))) = £(t;) (2.2)
where )
t = exp(ﬁj), j=0, 2(n—y).

Consider the (2(n-y)+1) - dimensional spaces E(‘;) and E((pz)with norms
I = s (20

and
||u|[( = max‘qu + sup (p’;i:;_‘:ll)
respectively, j = 0, 2(n -ﬂ, where

1
n= (n—n"-"n—x—l,nOa""nn—x) € Efp)

u=(Ug,...,Uyn_y)) € Efpz).
Introducing the operator
Po (M) = (P_pagn (M Pacyn (M) EY > EP
where

P () ="Y(t, y,, (n.t)),Bk{t . ,y,, (n..))), J=-n+y,n-y
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we can rewtright the SNAL: (2 2) in the operator form

P.(m)=f (2.3)

whete
f=1(t), j=0,2(n-%)

Consider, now the coordinates of the vector ¥ = (n,...,n0_ n{”,...,n{)) from E( D these are the

Fourier coefficients of the functiony, € Q,(y)that is

1 . .
N =] e (AW)IW T Ndw, =0y

and (2.4)

1 - e
n” = Ya (COw)w ™ dw, j=—n—x-1
Moreover the function y, e (y)satisfies the conditions of Theorem 14 Analogous to Lemma 1.2,

the following lemma is valid.
LEMMA 2.1, Let the conditions of Lemma 1.2 be satisfied, then the operator Py, is differentiable in
the sense of Frechet at the arbitrary point
X= (n_.., ,"]-1-1 T‘o) 5“.\-1) € E(l)
moreover,
P, (x)h = (P!, . (x)h,...,P" _, (x)h,P] (x)h,....P__ (x)h)
where h = (h_,,...,h__h,,...h, ) eE(w” and

Pl (x)h="¥] (t,y,, (xt),Bk(t,. .y, (%, ))Y., (b)) +
W) (@Y., (%:t),Bkt,,.,y, (x,.))B(k, (t,,.,¥,,(X,.))Y,,(h,7)), j=0,2(n-%)
The derivative P, (x) satisfies Lipschitz condition in the sphere S, (r) of the space EJ:
w (X)) - P] (XZ)L;(:) <M’ "xl - xZ”E‘.”

(r")and M’ is a constant depends on r’, n¥) and the function \V.

where x,,Xx, €S,

We shall show that the system of linear algebraic equations (SLAE):
P (n“)h=g (2.5)
has the unique solution h € E{” for an abitrary g=(g,,....8yu,,) €ES .
For this aim, we consider the SALE:

b(¥o,t)) ¢ Yoy (h,1)
a(yo’t )Ynx(h t ) J’ X —dt +
i v T—IJ

MJ H(t YW (B =), j=02G) 6

corresponding to (by collocation method ) the singular integral equation
2.7

(y s ) y C ,t
(Yo Oy + 222 | X040 V0D [y ()y(e)de=g(t)
According to the collocation method, we seek an approximate solution of Equation (1.5) in € (y)

in the form :
h,, (1) = T35 Byt tey
where the coefficients 3, are defined from the SLAE :
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(a(y,t,)+b(y,t))ZiB, th +(a(y,t,) —b(y.t ) T2 B t) +

°(y” LH(t ty(o)SBrrdi=£(t),  j=0,2(n-p  ZY

THEOREM 2.2. Let a(y,t), b(y,t), and f{t) (by all argumeants) belong to H,_(v). a*(y.)=b'(y,t) 20, on
y the index = ind(a(y, t)+b(y, t))> 0 and the operator P'(y) has a lincar inverse in H_(y).

then for all n2max(n,, x),

n,=min{n €IN : e, =d, ¢( ! Yin(n—y) <1},
n-y

the system (2.8) has the unique solution {B; }ux and the approximate solution

nx
LB U tey .

of Equation (1.5) converges to its exact solution h*, moreover

1
< d,0(——)In(n-7).
) n—y

LY
Here and below d, d,, ... are‘ constants do not depend on n.
PROOF . From Gakhov [3] and [5, 8] we shall write equation (1.5) in €2 (y) in th form.
Lh=Eh+Gh=q (2.9)
where
(Eh)(t) =y~ ()h* () =y t*h " (1),

(@m0 = I e y(phod

v -
Q(t)_a(y,t)+b(y,t) > q(t) =Q()f (1), (2 10)
v’ (H)(aly,t) +b(y,t)) = v ()t ™ (a(y,t) - b(y,t)),
w(z)=exp(I'(z)) and I'(z)= ljy In [ 20D =b(y, D), de
i a(y,t)+b(y,1) 1-2z

Moreover, E is linear and G is completely continuous from (2, (y)into H,(y). Denote by
=h;, —h_ .} tobe the (2(n-x)+1)-dimensional subspace of the space (3, (y) where

= Z:;gﬁktk > h;a == -—nBL

Let P . be the projection operator into the set of interpolation polynomials of degree n-y with
0,y proj P polyt

x“»’l ( nx

respect to the collocation points t , j=0,2(n— %), then the system (2.8) can be written in X, asa

linear operator

L; b, =E, hn1’+Gn1hnz oy (2.11)
where
En lhnx = Pn,thn'x ’ Gn xhnx - Pn.xGhn,x and q:,x = Pn‘xq-
Now , we determine the difference: Lh,, —L,, h,, €X, inH(y) from (2.9)-(2.11) we have
Lh,, ~L, h,, =(yh' —y't*h” )=P (y"h’ —y t*h" )

+(Gh,, —G,,h,,)

n,x 0y
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=(W- _W;.x)h:‘x _(W+_W;,1)t1h +W|lxh|)1
~w;1t hn =P (v’ h:l—\y t*h )+
+(Gh,, -G, ,h,,) (2.12)

ny ‘ny
where

Vo, =V —wo (w7 (1) = Dotk Wi (D) =250, th)

n

is the polynomial of best uniform approximation to the function y = y* — y~ with degree not exceed-
ing n-x and y_ h; X -yt 4t*h,, is a polynomial of degree not exceeding n — . From (2.12) we

have :

Lh,, -L h, =1-P (v -v, )by, —(y" =y, It*h  1+(Gh, -G, h,,).  (2.13)

From [3.8]:

al,

and as was mentioned by Dzyedyk [1] and Gabdulkhaev [2] we obtain

er-wgm;—ow—w;nmghdegﬁz)h|¢

n,x

P,

n,x )

Then taking into accounts that <d;In (n—y), we obtain:

(R T (TR MU CAITAG TS |¢4 (2.14)

|¢sm4m<n-myng}z)mm

t s, , (t) be the polynomial of best uniform approximation to the function
c(y,t
s(0)=Q(0 L2 5y () (D6,

then we have

”s— Saall, = 0y

1
se(——)jh
n-x

and for arbitrary h, , € X, . we obtain

X Gn,xhn,x

= 5= S0+ Pa (s =9, @.15)

< (dg

Then from (2.13)-(2.15) we have
|Lh,, -L

(2.16)

nx n1
Assume that there exists a linear bounded inverse operator Lo : Hq,(y)—)Qw(y). Since

L°h=Q_'Lh, then the operator- L has a linear inverse, also from [2] and by virtue of (2.16)(for

sufficient large n, n > max (n,, %)), the operator L has a linear inverse, moreover

[l sl -e.)” @17)

|

where

Now, for the right parts of (2.8) and (2.11) we have
1 1
la-a,], <(dsIn(n- x))w(n—_x)lifllq, < dyp(—

Then by Theoreml.2 [2], and the inequalities (2.16)-(2.18) for the solution h*of Equation (1.5) and

In(n—1y). 2.18
x) (n—x (2.18)
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. . * .
the approximate solution h | , We obtain

lh* —n;,

1
y ‘w Sdm(p(n——-;) In (n-y)

and the theorem is proved

From theorem 2 2 there exists the number

n, =mmn {nelN en=d“(p( )ln(n—x)<\).

such that for arbitrary n>maxn, ) the SLAE (2.6) has the unique solution h’ ( h, .., _ﬂl\l h, _1)
and the following inequality is valid:

(h)-y O, <di cp(nlxnn(n—x)

where y” €2, (v) is the unique solution of (2.7). Now, consider the operator

La(yo)h=(Loa(¥o)h, . Ly yya(yo)h)

where

b(yo.t))  Ya,(h,1)
L),n(yo)h:a(yo’(_,)y"_x(h’t))"'—;i—l‘L hL"dT +

C N . e EEe—
el B, tyo)yay (e)de, =020 0)-

Then we obtain
Ly (ya)h = P <250 ,) =803 g (1 o, g (B, )+ BV 1))~ By (1)t )

X [BYng (0,0 + [ t,) = oY (8,8, Y BHE, .y, (1) (T +

+[BH(t, 7.y, (0) = H(t, 7.5 (B D)y (0. ey (0.1t ).

Taking into accounts that:

[y, O) =ya, (n©,)

<d, (p(n

1
|Cm _x)ln(n—x)

we have

L. (y)—Pi(n™) <dyo(;—)in(n-1). (2.19)

E'2EY
Since for arbitraryn > (n,,x), there exists the bounded lmear inverse operatorL; :E> — E{’,
then from (2.19) by Banach theorem it follows that there exists n, > max(n_,x) such that for
arbitrary n>n, , the linear operator P/, has bounded inverse, that is the SLAE (2.5) has the unique
solution h™ € E{” for arbitrary right sideg = g(t,) eE®, j= 0,2(n—7y).
Thus the following theorem is proved.
THEOREM 2.3. Let the coordinates of the vector 1 (n(_‘;) - n("; M n:’)l)be the Fourier
coefficients of the functiony, €€ (y) and the conditions of Theorem 1.4 are satisfied and for n > n,,

| [P; ()P, (0],

then, if hj =viM'n} <1/2 andr’ 21y =(1-/1-2h})p’,/h’, the SNAE (2.3) has the unique
solution 1’ = (n_n ,n_x_l, T ,nn_x) in the sphere (N, °) to which the following iteration

[Pn)]"| = v and <ny
¢

process converges
m+ m ' o -1 m —
n( n _n( )_[Pn(n( ))] Pn('r]( )), m-O,l....

moreover the following mequality is true

[n™ w7, <(1-2hy) ™" (1= y1=2h; )" 3.
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