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1. INTRODUCTION AND PRELIMINARIES

The study of (real or complex) ultrabarrelled topological vector spaces, the topological
vector spaces which replace barrelled locally convex spaces when local convexity is not presup-

posed, was initiated by W. Robertson in [1]. Since then, various authors have been considering

the subject. The most important results concerning ultrabarrelled topological vector spaces may

be found in the texts [2] and [3], the latter dealing with the case in which the fields of real or

complex numbers are replaced by a non-trivially valued division ring.

In this article we introduce mid study the concept of barrelled topological module, the

natural extension of the classical concept of ultrabarrelled topological vector space. The main

results obtained here are extensions of the Bazlach-Steinhaus theorem mid of the Open Mapping

md Closed Graph theorems to the context of topological m()dules. A version of Bourbaki’s

criterion for the equicontinuity of sepaxately equicontinuous families of bilinear mappings m(l a

version of Grothendieck’s "Thdorme B" are also established. It shotfld also be mentioned that

the methods used by W. Robertson in her flmdamental article just cited have strongly influenced

the preparation of our article.

We shall adopt the terminology of [4]. Throughout, A denotes an arbitrary topological

ring, unless otherwise specified. If A has m identity element, A* denotes the multiplicative group

of its invertible elements. For every A-modules E m(l F, .T’(E; F) den()tes the A-module of
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all mappings fi’,m E int, F and L,,(E; F) d,n,t,,s th,, a,lditiw, sul,grml)f (E; F) of dl A-

linear mappings frm E int, F. F,r ew’ry t(p(flgical A-m(hth.s E and F, (E; F) d,.ntvs the

subgroup of E,(E; F) ,f all cmtimtms A-linear maplfings fi’,ni E int, F. For .very

A-modules E, F and G, ,.p(E, F; G) d.n,t,.s th,- additive roup ,f all svparatvly contimmus A-

bilinear mappings fi’,m ExF int,, G. If f p(E,F; G), .r E, F. f, (**’Sl,. fv) d,a,,,tes the

continuous A-linear mal,l,ing v F f,(v)= f(a’,v) G (r,*sl ,. ,, E ./.(,,)= f(u, ) G).

If. C E,v(E,F;G), .r E, F, .l. := {f,;f .l’} m,d .l := {f,;f .l’}.

2. THE CLASS OF BARRELLED TOPOLOGICAL A-MODULES

Definition 2.1. A tOllgi’d A-mdule (E, ) is sa,il t, }e }arrelled if every A-mdule topology

on E which admits a fimdunentd system f neighln’hds f the origin consisting of -closed

sets is weaker than r.

Remark 2.1. Assume that A is endowed with the discrete topology and let (E, r) be a sepated

topological A-module. Then E is barrelled if m,d only if is discrete.

Proposition 2.1. Let A be a sepu’ated topologicd ring m,d let E be a sepated bm’relled

topological A-module. Then the completi,n E ,f E is a barrelled tpological A-module, where A

designates the completion f A.

Proof. Analogous to that of Propositon 14 of [1].

The following information will be needed in the sequel.

Proposition .. Let (E,)il be a family of topologicM A-modules, E m A-module md, for

each I, let f, Ea(Ei; E). Then there exists a unique A-module topolo on E which is

finM for gl,e fmnily (E,, f,),e. In pm’ficul, inductive limits exist in the categow of topologicM

A-modules.

Proo AnMogous to ghat of Theorem 2 of [5].

We now present certn stability properties of tle clmss of barrelled topologicM A-modules,

some of which have been obtned in [1] (Proposition t3) m,d [6] (Corolly l, p.297) when A R

OF .
Proposition .3. Let ((Ei, i)), be a fmnily of brelled topologicM A-modtfles. Let

A-module d, for each I, let fi (Ei; E). Let be the finM A-module topolo for the

fmnily ((Ei, ’),f’)il (Proposition 2.2). Then (E, )is belled.

Proo Leg * be A-module topolo on E which adnfits a fundmnentM system V of neighbor-

hoods of 0 consisting of -closed ts. Fix m I m,d let Bi be the filter bse on Ei fomned by

the sets f(V) (V V). By Theorem 12.$ of [4] there is a unique A-module topolo

for wlfich Bi is a fimdmnentM system of neighborhoods of 0. Since earl, f(V) is ,-closed

since (i,i) is belled, it follows flint C C . Hence f,’(E,,vi) (E, *) is continuous. By

the bitrness of we obtn * C v, m,d so (E, ) is brelled.

Corollary .1. (a) An inductive limit of m, inductive system of brelled topologicM A-modtfles

is a brelled topologicM A-module.

(b) A quofien by a submodule of a breHed t,,polgical A-module is a breHed gopologicM

A-module.
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(c) For a direct sum ,f a fmnily of tolhgical A-lnodules to be lm’relled it is necessary and

sufficient that each of its m,mbers be barrelled.

Proof. (a), (b) and the sutficiency ,,f (c) are immediate c,,nsequences of Pr,,p,,siti,m 2.3. The

necessity of (c) follows fl’,,m (1,).

The following pr,,p,,siti,,n c,,ntains The,,rem 2.37 ,,f [3] (hence Pr,,p,,siti,,n 12 ,,f [11) as a

particular ca.se.

Proposition 2.4. Let A le a tolmlogical ring with identity emd assume that there exists a

countable subset of A* such that 0 C. If (, r) is a unitary tophgical A-module and M is a

submodule of E which is non-meager in (E, r), then M is barrelled under the induced tol)oh)gy.

In particular, every Baire unitm’y tphgical A-module is barrelled.

Proof. Let r be the A-module tlmhgy on M induced by r, and let r* be an A-module topology

on M which adnfits a flmdamental system of neighlmrhoods of 0 consisting of f-closed sets.

Given an arbitrary V Y thereis a U Y with U-U C V. Since 0 C, thereis asequence

(a,,),,e in A* such that

M C a,,U.
Therehre some a.,U hs a non-empty interior, because each anU is r-closed and M is non-

meager in (E, r). Hence U hs a non-empty interi,,r, since the mapping x (E, r) a,,, x

(E,r) is a homeomorphism. If x int(U*), there is a neighborhood U’ of 0 in (E,r) with

x+U C U. Consequently, U C U U C Vr, andso V is aneighborhoodof0in(E,r).

Thus V is a neighborhood of 0 in (I, r), because V Vr’ M Vr. Therefore r* C r, and

so (M, r’) is belled.

Remark 2.2. (a) If A hms ma identity element, then the relatim 0 G A* implies that the topology

of A is non-discrete (and is equivalent to this fact when A is a t,pologcal division ring).

(b) Every topological division ring which possesses a null sequence of non-zero elements satis-

fies the hypotheses of Proposition 2.4. Every topological ring with identity which contns

invertible topologicMly nilpotent element satisfies the hylmtheses of Proposition 2.4.

3. THE BANACH-STEINHAUS THEOREM AND SOME CONSEQUENCES

The Banach-Steinhaus theorem holds in our setting (previous results in this direction may

be found in [1], Theorem 5; [7], Theorem 3; [3], Theorem 2.58; [4], Theorem 25.6):

Theorem 3.1. Let E be a barrelled topological A-module, F an arbitrary topological A-module

and X C (E;F). If,(x) {f(x);f X} is bounded in r for each x e E, then, is

equicontimous.

Proof. Let r be the given topology of E and let l/be a fundamental system of closed neighbor-

hoods of 0 in F. For each V Y, let

u. N f-’(v)"
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Obviously,/3 (Uv) ’ev is a filt,-r 1,Le (,n E. By The(,rem 12.3 (f [4] th,.r- is a unique A-moduh

topology ’* on E fr which/3 is fundamntM system f neighborhods f 0 (th condition (TMN
2) of Theorem 12.3 h,,l,ls 1,e,’ause the sets ,U(x) are 1,,,un,led in F). Since (E, r) is barrelled mcl

since each Uv is r-closed, it fillws that r* C r. Thus ertch Uv is a neigh|orhood of 0 in (E, r),
and so 2" is equicontinuous.

Corollary 3.1. Under the a.ssumptions of The(rem 3.1, a.ssum- additionally that F is separated.

Let (f’),e be a net in :(E; F) such that (f,(z)),e is bounded in F for each z 6 E and such that

(f’),e is pointwise convergent t,, a mappings f: E F. Then f e :(E; F) and (fi),e converges

to f uniformly on every l)recompact su]set of E. In particular, if (f"),,eN is a sequence in

:(E; F) pointwise converg,-nt to a mapping f: E F, then f e :(E; F) mad (f"),,eN converges

to f uniformly on every precompact subset f E.

Proof. By Theorem 3.1, (f),et is an eqficontimmus net. Thus it sull:ices to apply Proposition

6 mad Theorem 1 of [8], chap.X, 2, and the fact that :,(E; F) is simply closed in .T’(E; F), to

conclude the proof.

Remark 3.1. Let E and F |e topological A-modules and let/3 be a fmnily of bounded subsets of

E. Then the topolo of B-c,nvergence on (E; F) (denoted by r) is m lditive oup topology

which is sepated if B is a cvering of E md F is sel)ated. Moreover, if A is conmmtative,

then (E; F)is an A-module md r is m A-module topology on (E; F) ([9], Proposition (a)).
When B is the family of M1 finite (resp. bounded) subsets of E, we write r, (resp. re r).

Corollary 3.2. Let A be a commutative topologicM ring with identity such that 0 A*. Let E
be a bmelled topologicM A-modtfle, md let F be a separated locally compt tmity topologicM

A-module. If , C (E; F), the fifllong statements e equient:

(i) X is n-bounded in (E; f);
(ii) .Y is r,-bounded in (E; r);
(iii) X is r,-relatively compact in (E; F);
(iv) X is equicontinuous.

In order to prove Corollary 3.2 we shall need a lemma which is aJ extesion of the Alaoglu-

Bourbaki theorem:

Lemma 3.1. Let A be a topological ring with identity such that 0 -;. Let E be a topological

A-module and let F be a separated locally compact tufitary topological A-module. If X C .(E; F)
is equicontinuous, then , is r-relatively compact in/:(E; F).

Proof. Since ,(E; F) is simply closed in .T(E; F) aad since , is equicontinuous, it stdfices to

verify that X is simply relatively compact in .T’(E; F). But, for each x . E, X(x) is bounded

in F ([4], Theorem 25.5), hence relatively compact in F ([4], Theorem 15.4 (3)). By Tychonoff’s

theorem, X is simply relatively compact in .T’(E; F).

Proof of Corollary 3.2. (i) = (ii): Obvious; (ii) = (iii): Theorem 3.1 and Lemma 3.1; (ii)

= (iv): Theorem 15.4 (1) of [4] and Theorem 3.1; (iv) (i): Theorem 25.5 of [4].

Non-locally convex versions of a classical theore,n of Bourbaki ([10], TVS III. 29) have

been obtained in [7] (Theorem 5) and [11] (Corollary 9). Ottr next go’,d is to prove that it remains

valid in our context.
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Theorem 3.2. Lrt E and F be m,trizabh tlohgical A-modules, E being assumed lrrelled, a,nd

let G be m arbitr’y topflgical A-module. If,l’ C ,(E, F; G) is such that ,l is equicontinuous

for each x E, then , is equicmtinuous.

In order to prove the a]w, theorem we shall need two lemma..

Lemma 3.2. Let E, F and G be tplogical A-modules, and let .V le a separately equicmtinums

family of A-bilinear mappings frm E F int G. If ,V is vquicmtimus at the origin, then .l’

is equicontinuous.

Proof. It suffices to recall the identity

f(x, y)- f(Xo, Yo) f(x Xo, y Yo) + f(x -.to, Yo) + f(.ro, y Yo),

which holds for every A-l,ilinear mapping f: E x F G and every p,,ints (x, y), (Xo, yo) in E x F.

Remark 3.2. When A is a non-trivially valued field, the equicontinuity of a family of A-bilinem"

mappings at the origin is sufficient to ensure its equicontinuity ([10], Proposition 6, TVS 1.9).

Lemma 3.3. Let E, F and G be topological A-modules, E being ,,sumed barrelled. Let

X C (E, F; G) be such that , is equicontinous for each x E. Then "v is equicontinuous

for each y F.

Proofi Fix a y F. If x e E, ,l(x) ,(y) is bounded in G since , is equicontinuous. By
Theorem 3.1 , is equicontinuous.

Proof of Theorem 3.2. In view of Lemmms 3.2 mid 3.3, it is enough to establish the equiconti-

nuity of X at (0,0). If ,Y is not equicontinuous at (0,0), there e a neighborhood W of 0 in G,
a ndl sequence (x,,)neN in E, a null sequence (yn)neN in F mad a sequence (L,)neN in X sud

that f(x,,,y,,) W for all n e N (remember that E md F e metrizable). By Theorem 25.5

of [4] mad Theorem 3.1, the fmnily

{h,;f A.’,n N}

is equicontinous. Therefore, there is an integer no such that f(x,,, y,,) W for all f , mad all

n > no, a contradiction. Thus ,:t" is equicontimous.

From Theorems 3.1 mad 3.2 we derive:

Corollary 3.3. Let E mad F be barrelled metrizable topological A-modules, aaxd let G be

arbitrary topological A-module. If X C ,,(E,F; G) is such that ,(x,y) is bounded in G for

all (x, y) E x F, then 2( is equicontinuous.
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4. OPEN MAPPING AND CLOSED GRAPH THEOREMS

The following then’em is an extensin f Thorems 2.49 and 2.73 of [3], hence of the Open

Mapl)ing and Closed Graph theorems of W. Roberts(n ([1], Propositi(n 5).

Theorem 4.1. Let E be a separated b’relled t,p,logical A-m(dule, and h’t F I)e a complete

metrizable topologicM A-m)dule.

(a) If f: F E is a continu,us surjective A-linear mapping, then f is open.

(b) If f: E F is an A-linear mapping with a classed graph, then f is continuous.

Proofi Analogous to that of W. Robertson.

We now obtain the Open Mapping and the Classed Graph theorems of Bmaach ([12],
Chap.III, 3) in our setting (see Ms,, [4], The,,rem 12.17).

Corollary 4.1. Let A be a topologicM ring with identity, and ssume that there exists a countable

subset C of A* such that 0 C. Let E and F be metrizable unitary topologieM A-mohfles, E

being ssumed complete, and let f (E; F).
’(a) If f is continuous mad f(E) is non-meager in F, then f is open, f(E) F mad F is complete.

(b) If F is complete mad f hs a closed gzaph, then f is continuous.

Proof. (a): Since f(E) is a barrelled topol,,gJeM A-module under the induced topolo (Propo-
sition 2.4), Theorem 4.1 (a) impns that if U is a neighborhood of 0 in E, then f(U) is a

neighborhood of 0 in f(E). Thus f(U) is a neighborhood of 0 in F, because f(E) is dense in F

by Exercise 15.3 (a) of [4] (f(E) is mx open submodule). By a well known gument ([10], TVS
1.19), f is ma open mapping. As a consequence, f is surjective ([4], Exercise 15.3 (a)). FinMly,

the completeness of F is ele.

(b): Immediate from Proposition 2.4 mad Theorem 4.1 (b) ((b) Mso follows from (a), via a

strghtfod argmnent).

We now state a version of Grothendieek’s "Thorme B" ([13], p.17), who pt (a)
eontns Exercise 12.7 of [4] s a ptietfl cse.

Theorem 4.2. Let A be a topological ring with identity, mad sume that there exists a countable

subset C of A* such that 0 C. Let E and F be sepm’ated unity topologieM A-modules, mad

suppose that:

There exists a quenee (E,),es of complete metrizable unity topologieM A-modules d, for

eh n fi N, there exists ma L, (E,,; E) such that E U,,es L,(E,)
There exists a fly (Fi),e of complete metrizable mfity topologieM A-modules d, for each

fi I, there exists a gi a(Fi; F) such that the topolo of F is the finM A-module topolo

for the fmnily (F,gi)iI.

(a) If f: E F is a surjeetive continuous A-line mapping, then f is open.

(b) .If f: F E is ma A-line mapping with a sequentiMly closed graph, then f is continuous.

The proof of Threm 4.2 depends on a lennna which eoesponds to Grothenfieek’s

"To A" ([], p.S).
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Lemma 4.1. Let A le as in Thcrcm 4.2, anal h,t F lc a separated unitary tphical A-m(dule.

Let G be a complete mctrizalh’ mitary tlhgica.1 A-mMule, h G (G; F), (E,,),,N a sequence

a complete metfizalle unitary t,l)l,gicM A-modules and, for each n N, let h,, (E,,;F).
Suppose that h(G) C U,,N h,,(E,,) Then there exists an integer m such that b(G) C h,,,(E,,,).
Moreover, if h,,, is injective, then there exists a g (G; E,n) such that h h,,, o g.

Proofi The proof relies on Corollm’y 4.1, and is exactly the same as that of Grthendieck.

Proof of Theorem 4.2. We may assume that (E,),,N
union is E.

is a sequence of subnmdules of E whose

(a): We may a.,sume that f is bijective. Otherwise, let M be the kernel of f (a closed submodule

of E), and consider ElM endowed with the quotient tpology. Then ElM is a separated unitary

topological A-nodule and the canonicM A-linear napping

x + M E/M f(x) F

is bijective and continuous. Moreover, if r: E E/.I is the canonical surjective A-linear map-

ping, then w o f,, e (E,,; ElM) for all n e N and ElM (.J,,eS(r o f,,)(E,,) Therefore, it is

enough to prove that f-1 is continuous. In order to do so, let h,, be the restriction of f to E,

(n N) and fix m I. Then

(_j h,,(E,,)= F v ,(F,).

By Lemna 4.1, there are an m fi N aaxd a g /:(F,; E,,,) such that g, It,,, o g (It,,, is injective).

Consequently, f- o g, is continuous. By the arbitrariness of i, f- is continuous.

(b): Since the graph of each f o g, is sequentiMly closed, mad since f is continuous if and only if

f o g, is continuous hr all I, we may assume that F is complete mad metrizable.

Let H be the graph of f endowed with the separated A-module topology induced by that of

F x E. For each n N, let H,, H Cl (F x E,,). Obviously, each H,, is a submodule of H and

H [.-J,,e H,, It is easily seen that H,, is closed in F x E,, when F x E,, is endowed with the

product topology, so that H,, is a complete metrizable unitary topological A-module under the

induced topology r,,. Moreover, the inclusion of (H,,, r,,) into H is continuous. Hence we can

apply (a) to the restriction to H of the projection of F x E onto F to get the continuity of the

mapping x F (x, f(z)) H. Therefore f is continuous, by composition.

Remark 4.1. A topological A-module F as in Theorem 4.2 is necessarily barrelled (Propositions
2.3 and 2.4).
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