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ABSTRACT. This article is a continuation of [1], to which the reader is referred for the

definition and properties of the ./C-tensor product of two ./C-algebras. Our standard references

for nuclear and postliminal C*-algebras are [2, 3, 4, 5, 6, 7]. We extend the notion of nuclearity

to ./C-algebras and prove that postliminal ./C-algebras are nuclear. In contrast with the situation

which occurs for G*-algebras, the ./G-tensor product of two postliminal JC-algebras turns out, in

general, to be non-postliminal and can even be anitliminal.
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0. PRELIMINARIES.
Let A be a JC-algebra and A the canonical involutory ,-antiautomorphism of C*-algebra of

A. We may suppose that A C C*(A), so that A restricts to the identity on A. The real C*-

subalgebra of C*(A),R*(A) {z e C*(A):,A(Z) z* satisfies R*(A) f’I iR*(A) O and

C*(A) R*(A)@iR*(A). Let A be a JC-algebra contained in s.a, where is a C*-algebra, then A

is said to be reversible in if al-..an + an...a lies in A whenever al,...,an do. A is said to be

universally reversible if it is reversible in C*(A) [8]. A JC-algebra A is said to be postliminal (or
of Type I) if each JC-quotient of A contains a non-zero abelian projection. It is said to be liminal

if for every Type factor representation of A, t(A) contains a minimal projection. A JC-algebra
is said to be antiliminal if it has no non-zero postliminal closed Jordan ideal. The reader is

referred to [9, 10, 11, 12, 13] for a detailed account of the theory of JC-algebras.
Since our aim in this article is to extend some results on the tensor product of C*-algebras to

the tensor product of JC-algebras, we recall the following:
LEMMA 0.1. Let A and $ be C*-algebras, and let A (R) $ be their algebraic tensor product. A

C*-norm , on A (R) is a norm such that the completion A (R) $ of A (R) $ is a C*-algebra. Let
A,$,C, be C*-algebras, and suppose that tl:A-C, x2:A--. are .-homomorphisms. Then the

natural map 1 (R) 2: A (R) $-g (R) extends to a .-homomorphism ](R) 2: A @ $-* (R) 9, and if 1,2
are injective then ,rl@. ,r is injective. A C*-algebra A is said to be nuclear if the maximal and

-mitt
the minimal C*-norms on t (R) coincide. Equivalently if the canonical ,-homomorphism from
A (R) onto t (R) is an isomorphism. The relevant background for the theory on tensor products
of C*-algebras can be found in [3, 5, 6, 7, 14, 15].
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LEMMA 0.2. [2, Corollary 4], [4, Corollary 5]. Let M and be C*-algebras and I a norm
closed ideal of .. Then

(i) t is nuclear if and only if I and /I are nuclear.

(ii) t (R) is nuclear if and only if t and $ are nuclear.

(iii) I (R) $ is the norm-closure of ! (R) $ in t (R) $, where A =min, raaa:, the minimal and the
A A

maximal C*-norms on t (R) $.

(iv) I (R) is the kernel of the natural map (R) ---./I (R) .
DEFINITION 0.3. Let A and B be any pair of JC-algebras. We may suppose that A and B

are canonically embedded in their respective universal enveloping C*-algebras C*(A), C*(B). Let A

be any C*-norm on C*(A)(R)C*(B). Then the yC-tensor product of A and B with respect to A is

the completion JC(A B) of the real Jordan algebra J(A (R) B) generated by A (R) B in C*(A)C*(B).
The reader is referred to [16] for the properties of the yC-tensor product of two dC-algebras.
THEOREM 0.4. Let A and B be dC-algebras. Then

C*(]C(A B)) C*(A)C*(B), where A rain, ma..

LEMMA 0.5. Given JC-algebras A and B, and a C*-norm A on C*(A)(R)C*(B), JC(A@B) is

universally reversible unless one of A,B has a scalar representation, and the other has a

representation onto a spin factor Vn, n > 4.

1. NUCLEAR JC-ALGEBRAS.
In this section we introduce the notion of nuclear JC-algebras. We examine the relationship

between a nuclear JC-algebra and its universal enveloping C*-algebra, and establish the Jordan

analogues of some results on nuclear C*-algebras.
DEFINITION 1.1. Let A be a JC-algebra. Then A is said to be nuclear if, for any JC-algebra

B, all restrictions of C*-norms on C*(A)(R)C*(B) coincide on J(A(R) B). Equivalently, the natural

surjective map JC(AB)--.JC(A,,,,B) is an isomorphism for any JC-algebra B.

The following theorem is the basic result of this section.

THEOREM 1.2. Let A be a JC-algebra. Then A is nuclear if and only if its universal

enveloping C*-algebra C*(A) is nuclear.

PROOF. Suppose that C*(A) is nuclear, and let B be any JC-algelra. Then the surjective

map C*(A,C*(B)--,C*(A@i,,C*(B is an isomorphism, from which it follows that the surjective

Jordan homomorphism JC(A@,B)--.JC(Am@i,B is an isomorphism.
Conversely, assume that A is nuclear, and let $ be any C*-algebra. Let I be the commutator

ideal [,$] of $. Then /I is abelian, and hence nuclear, by [15, Theorem 1]. Since I has no

one-dimensional representations we have

C*(A) C*(,...)
_
C*(A) (,

= (C*(A)@ O.(C*(A)(R) o),

by [10, 7.4.15]. By assumption max rain on J(A (R) 18.a) and hence, max rain on C*(A)(R)C*(ls.a)
by [16, Lemma 4.4. (iii)] and so,

C*(A.I C*(A)(R) I. (1.1)



NUCLEAR JC-ALGEBRAS AND TENSOR PRODUCTS OF TYPES 719

By [7, 4.4.7., 4.4.9. and 4.4.22] there are homomorphisms i, i, i= 1,2, making the following

diagram commutative:

C*(A) (R) C*(A) (R)
a mtl

12

C*(A) . /I C*(A)
mm

/I

’() C*(Ai. C*(A) ,
and hence the restriction of I, to Ker(2) is an isomorphism. e sh] complete the pf by

showing that +I is injective.

Let 6 C*(A, such that I(*) 0. Then

(+2o)(,) (+o+,)(,) o,

which implies that ,6 Ker(*2), and so =0. Therefore, I is an isomorphism, d C*(A) is

nuclei, completing the prof.
The Jord auogue of parts (i) and (ii) of Lemma 0.2 is given in the following result.

COROLLARY 1.3. Let A be a JC-geba, d I a norm-closed Jordan ide of A. Then

(i) A is uucle if d only if I d A/I e nuclei.

(ii) JC(A B) is nucle ifd only if A d B e nuclei.

PROOF. (i) This follows by Threm 1.2., Lemma 0.2. and the fact that C*(1) can be

identified with a norm-closed ideal of C*(A).
(ii) Since C*(JC(A B)) C* e C*(B), (ii) follows by Lemma 0.2. d Threm 1.2.

It w shown 5y Tesi in [7, Threm 3] ha I Type I C*-gebr e nuclei. We will

extend this esu]t to JC-gebr. In order o overcome the obstacle presented by the Ty I
JW-geb we nd to exploit the dp C*-gebr threm which states that a C*-gebra is

nucle ifd only if its second du is injective Von Neumann gebra [3, Threm 6.4].
Let X be a compact hypersone space, d A a JC-geb,a. Let C(X,A) denote the set of I

continuous functions on x with values in A. We shl denote by (X) (rsp. (X)) the gebra of

I continuous complex vued (resp. re-vued) functions on X.

It is ey to s that C(X,A) is the /C-gebra (X)e A generated by (X)eA ia

(xi.C*(d). Sy Go’ ,, [7, ..,4, .7.3] [,, Co,on=y 3.]
C*(C(X,A)) C(X,C*(A)).

REMARK. Note that if A is sociafive JC-gebra then A is nuclei, cause C*(A) is

commutative C*-algebra and herefore nucle [5, II.3.13].
THEORE 1.4. Postlimin JC-gebr are nuclei.

PROOF. Let A be a postliminl C-gebra. By [9, Theorem 5.6] A** is a JW-gebra of

Type I. So, A**= M N, where M is a Type 12 Jw-gebra and N is a universly reversible

Type I Jw-gebra. Therefore

C*(A)** W*(A**)= W*(M)(9 W*(N).
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by [10, 7.1.11]. By a result of Stermer [12, Theorem 8.2], W*(N) is a Type I Von Neumann
algebra. Hence W*(N) is injective. We have to show that W*(M) is injective.

By virtue of Stacey’s results [17] we may write

M= ZMk.
k_K

where K is a set of cardinal numbers and where, for each k K, Mk is a JW-algebra of Type 12, k.
Moreover, as is also proved in [17], there is for each k K a compact hyperstonean space X/c and

a surjective normal homomorphism

rk: C(Xk, Vk)** .--Mk,

which extends to a normal homomorphism

k: W*(C(Xk’ Vk)**)--.W*(Mk)"

However, using [10, 7.1.11] we see that

w*(c(xi, v)**) c*(c(x, v))** c(xe c*(v))**.
Since (see [10, 6.2.1] or [18, pp. 75, 263]) C*(Vk) can be realized as an inductive limit of finite

dimensional C*-algebras, C*(Vk) is nuclear, by [5, 11.3.12]. Consequently

C(Xk, C*(Vk))=Cc(Xk)c,,,C*(Vk) is nuclear, by [2, Corollary 4] and Grothendieck’s theorem
mentioned above. This means that C(Xk, C*(Vk))** is injective. Hence, being isomorphic to a

w*-closed ideal of this algebra, W*(Mk) must itself be injective by [3, Proposition 3.1]. Therefore,

W*(M)= Z W*(Mk)
kq.K

is injective, so that C*(A) is nuclear. Therefore A is a nuclear dC-algebra, by Theorem 1.2., and

the proof is complete.
2. TENSOR PRODUCTS OF TYPES OF JC-ALGEBRAS.

In this section we investigate the result of tensoring types of postliminal JC-algebras. We
also consider tensor products of antiliminal JC-algebras. For C*-algebras we have the following
theorem:

THEOREM 2.1. (Guichardet, [4, Theorems 7, 8]. Let A and be C*-algebras and let , be a

C*-norm on A (R) . Then

(i) a and axe posthminal if and only if A (R) * is postliminal.

(ii) A and * are liminal if and only if A (R) * is liminal.

(iii)a or * is antiliminal if and only if a (R) * is antiliminal.

Moreover, if A (R) * is antiliminal for any C*-norm ,, then A and * are antiliminal.

To begin with we recall the following result on universal enveloping algebras.
LEMMA 2.2 [9, Proposition 4.5], [19, Theorem 2.6 and Corollary 2.7]. Let A be a JC-algebra.

Then

(i) C*(A) is postliminal (resp. liminal) if and only if A is postliminal (resp. liminal) with no

infinite dimensional spin factor representations.

(ii) If C*(A) is antiliminal, and A has no infinite dimensional spin factor representations, then A

is antiliminal.

It turns out that neither of the equivalences (i), (ii), (iii) of Theorem 2.1 are true in the
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context of dC-algebra. In fact, all can be dismissed by the same counter-example.
PROPOSITION 2.3. Let V be an infinite dimensional spin factor and let A be any JC-algebra

without one dimensional representations. Then dC(v (R) A) is antiliminal.

PROOF. Put B JC(V (R) A). Then we have C*(B)= C*(V)(R) C*(A). The Clifford C*-algebra
C*(V) is antiliminal (it is simple, unital and infinite dimensional). Consequently, C*IB) is

antiliminal by Theorem :2.1. But B is universally reversible. Hence B is antiliminal by Lemma
2.2. (ii).

This result shows that the next two theorems cannot be improved.

THEOREM 2.4. Let A and B be JC-algebras.

(i) If A and B are postliminal and neither has infinite dimensional spin factor representations,

then JC(A (R) B) is postliminal.

(ii) If JC(A (R) B) is postliminal then A and B are postliminal.
PROOF. (i) Suppose that A and B satisfy the stated conditions. Then, C*(A) and C*(B) are

postliminal. Therefore,

C*(JC(A(R) B))=C*(A)@. C*(B}

is postliminal. Also, it follows that because neither A nor B has infinite dimensional spin factor

r,epresentations, JC(A (R) B) does not have any either. So, JC(A (R) B) must be postliminal.

(ii) Suppose now that .IC(A (R) B) is postliminal. We will prove that A (and so, by implication, B)

is postliminal.
Let =1: A-.(H1) be an irreducible representation. We may suppose that =I(A) has neither

one-dimensional nor spin factor representations. By [9, Proposition 5.5], it will be enough to

show that ,rI(A) C C(H1) # 0, where C(H1) is the set of all compact operators on H1"
Let =2: B-’*(H2) be irreducible, and let

I:C*(A)--,(H1), 2:C*(B)---.(H2),
be the canonical extensions. Then 1, 92 are also irreducible, so that,

:C*(A)m@inC*(B)’-’(H1)m@in(H2) C (H (R) H2)
is irreducible, by [5, 11.3.2] and [20, 2.11.3]. Consequently, since C*(JC(A @. B))= C*(A)@. C*(B),

:JC(A (R) B)--(H (R) H2)

is irreducible, by [9, Proposition 5.5].
Note that the conditions imposed upon tl(A) imply that cannot be a spin factor

representation. Hence, since JC(A B) is postliminal, we have

by [9, Proposition 5.5]. Thus

(JC(A (R) B))NC(H (R) H2) # 0,

?(C*(A)mCmC*(B)) D C(H (R) H2) C(H1)m@mC(H2).
By [4, Lemma 7], this implies that C(H1)CI(C*(A)), in particular. Hence, since tl(A) is

reversible in (Ul) this implies that rl(A)fC(Ul)# O, by [13, Lemma 3.7]. This completes the

proof.
THEOREM 2.5. Let A,B be dC-Mgebras.

(i) If A and B are liminal dC-algebras without infinite dimensional spin factor representations,

then JC(A (R) B) is liminal.
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(ii) If JC(A (R) B) is liminal, then A and B are liminal.

PROOF. The proof of the first part is the same as Theorem 2.4 (i) transparently modified.

In order to prove (ii), suppose that JC(A(R) B) is liminal. Retaining the notation used in the

proof of Theorem 2.4. (ii) we then see that

(JC(A (R) B)) C C(H (R) H2),

so that,

I(C*(A))m@,,n2(C*( B)) C_ C(H1) (R) C( H2),

and hence,

I(C*(A)) C C(H1), by [4, Lemma 7].

Consequently, 1(A) c C(H1), and the arguments used in Theorem 2.4 imply that A is therefore

liminal.

The Jordan analogue of part (iii) of Theorem 2.1 is given in the following two results.

PROPOSITION 2.6. Let A and B be JC-algebras having no infinite dimensional spin factor

representations, and , a C*-norm on C*(A)(R)C*(B). If JC(A@ B) is antiliminal, then either A or B

is antiliminal.

PROOF. Let l,J be the largest liminal ideals of A,B, respectively. Then C*( I), C*(J) are

liminal (and hence nuclear) ideals of C*(A), C*(B), respectively. Thus the closure C*(1)(R)C*(J)
of e*(l)(R)C*(j) in C*(A)C*(J) is liminal, since it is isomorphic to C*(I),,,C*(J), by Theorem 2.1

(ii). It follows that JC(A B)ne*(I)(R)C*(J)=0, which implies that I (R)J =0, and so, either I or

J is zero, proving the proposition.

THEOREM 2.7. Let A be a universally reversible JC-algebra with no one-dimensional

representations. If A is antiliminal, then JC(A (R) B) is antiliminal for any JC-algebra B.

PROOF. Let I be the largest postliminal ideal of C*(A) such that C*(A)/I is antiliminal.

Then A c I 0. Indeed, since the C*-algebra [A I] generated by A n I in I, being a C*-subalgebra
of I is again postliminal [22, Proposition 6.2.9], and therefore A I is a postliminal Jordan ideal of

A. By [9, Lemma 3.1 (iii)], ACI =0. Now, note that ,A(I)= I, and hence C*(AI)= I, by [8,
Lemma 4.3]. Therefore, 1-0, and so, C*(A) is antiliminal, which implies C*(JC(A(R) B)) is

antiliminal. The proof is completed by Lemma 2.3 (ii), since JC(A(R) B) has no infinite

dimensional spin factor representations.

Recall that [20, 4.7.20] a C*-algebra at is said to be dual if and only if at c C(H), for some

Hilbert space H. Then if at and are dual C*-algebras, since ate C(H1),C C(H2), H1,H2 are

Hilbert spaces, then

atmm(R) C C(H1)m@mC(H2) C(H (R) H2).

So, at (R) is dual.

The following result shows that the converse is also true.

LEMMA 2.8. Let at and be C*-algebras. If at (R) is dual, then at and are dual.

PROOF. Suppose that Co(X),Co(Y are maximal commutative C*-subalgebras of at,,

respectively, where x,Y are locally compact Hausdorff spaces. Then Co(XXY =Co(X)(R) Co(Y
[14, Lemma 1.22.4] is a commutative subalgebra of at(R) , and hence dual. Thus xY is

discrete, which implies that X and Y are discrete, and at and are dual, by [20, 4.7.20].
Bearing in mind the counter-example given in Proposition 2.3., and the fact that spin factors

are dual JC-algebras, we give the Jordan analogue of these results.

THEOREM 2.9. Let A,B be JC-algebras.
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(i) If A and B are dual without infinite dimensional spin factor representations, then JC(A . It) is

dual.

(ii) If JC(A (R) B) is dual, then A and B are dual.

PROOF. Suppose (i) hold, then c*(a),c*ln) are dual, by [1, 3.3, 4.2, 4.4] and hence

C*(JC(A(R) B))=C*(A)(R)C*(B) is dual. By Lemma 0.5, JC(A(R) B) does not have infinite

dimensional spin factor representations. Hence JC(A (R) B)is dual, by [1, 3.3, 4.2, 4.4].
(ii) This is identical to the argument given in the proof of Lemna 2.8.
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