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ABSTRACT. After a survey of some known lattice results, we determine the greatest idempotent

(resp. compact) solution, when it exists, of a finite square rational equation assigned over a linear

lattice. Similar considerations are presented for composite relational equations.
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1. INTRODUCTION.
The theory of fuzzy relation equations is a powerful tool for applicational purposes like Fuzzy

Control and Systems [13], Knowledge Engineering [5], Extremal Linear Programming [22].
We recall some well known definitions [5]. Throughout this paper, L (L, ^, v, _<,0,1) is a

(not necessarily complete) linear lattice with universal bounds 0,1,X ={Zl,Z2,...,z,} be a finite

referential set, A,B:X-.L be vectors (fuzzy sets) and R:X X--,L be a (fuzzy) matrix such that

RoA=B, (1.1)

where "o" is the max-rain composition. In terms of membership functions, Eq. (1.1) is read as

V A Bj(Ai Rij)
for any J I, {1,2,-.-,n}, where, for brevity of notation, we put A(zi) Ai, B(zj) Bj, R(zi, zj) Rij
for any i, i In.

A natural extension of the Eq. (1.1) is the following:

R o Q T, (1.2)

i.e.,
v l(Qii ^ Rit) Tit

for any i,kln, where R,Q,T:XX--,L are matrices. As usual, if R is a matrix, we put

RI R,Rn + RnoR forn_>l.
Following the symbology of Sanchez [5, 15], let a be the operation of residuation in L, i.e., nab

is the relative pseudocomplement of a in b defined by nab sup{c L:a A c _< b} if a <_ b, nab b if

a > b for any a, b L. If A and B (resp. Q and T) axe assigned in Eq. (1.1) (resp. (1.2)), let

t(A,B) (resp..q=.q(Q,T)) be the set of all the square matrices R which solve the given equation.

Sanchez [5] (cfr. also Luce [12] and Rudeanu [14] for Boolean equations, Zimmermann [22] and Di

Nola and Lettieri [4] if L is, more generally, a complete right-residuated lattice and if X is infinite)
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determines, if (resp. S) is nonempty, the greatest (with respect to the partial ordering pointwise

induced naturally in (resp. S) from the total ordering of L) element of (resp. S) defining the

matrix S AaB (resp. S* Q-laT, where Q-1 is the transpose of Q): x x XL as

resp.

Sij (AaB)ij AiaBj

(QlaTik)- l(QijaTik),Sk (Q-laT)Jk i= i=

for any i,j, k E In. The concept of max-min transitivity is the most widely used one for

investigating properties of finite square Boolean matrices [10]. For square matrices over L, we say

that R is max-rain transitive if R2_< R (i.e., Rib A Rhj <_ Rij for any i,h,j In) and this notion is

also widely dealt in several areas of research like clustering technology [5], information retrieval

[20], preference relations [7, 8]. Moreover, if L is linear, EQ. (1.1) can be seen as a description of a

finite-state system in which R represents a transition relationship between the assigned input A and

the given output B. Following Kolodziejczyk [11] (cfr. also [3]), applying k times the transition, let

B(k) be the resulting output defined by B(k) Rk o A (assume, of course, B(1) B). The problem is

to determine a solution/ , with an assigned type of transitivity, which guarantees the necessary

speed of convergence (/ is convergent if Rk+l Rk for some integer k). Similar considerations can

be made on Eq. (1.2).
The authors of [3] and [11] have proved that in (resp. S) exist elements with different type of

transitivity, mainly in (resp. S) were entirely characterized the max-min transitive elements (in
particular, those having Schein rank equal to 1), determining the greatest and the minimal ones.

Here we prove the existence in , when nonempty, of compact (in particular, idempotent) elements

of (R is compact if R> R, R is idempotent if R2 R).
For each of them, a specific rule of convergence of their powers holds, so giving further

information on the speed of convergence of the entire system. Related but different considerations

are presented for the analogous elements of S.

2. A SURVEY OF SOME LATTICE RESULTS.
We refer to Birkhoff [1] for terminology of lattice theory. Now we recall some well known

facts.

If P,Q,R X x XL are assigned matrices, P < R means Pij <- Rij for, any i,j e In in L, P < R

means P<_R and PR, (PAR), (PVR): XX are matrices pointwise defined as

(P A R)ij Pij A Rij (PV R)ij Pij V Rij for any i,j e In, similarly it is defined the infimum and the

supremum of any finite set of matrices. It is well known that the max-rain composition (1.2) is

associative and the following properties hold:

(PvQ) o R-(P o Q)v(P o R) and R o (PvQ)=(R o P) v (/ o Q) (2.1)

since L is linear and hence distributive.

Let U be the nxn identity matrix, i.e., Vij=O if i J, Vii= for any i, j6 1 and 0 (resp. 1) be

the nxn null (resp. unit) matrix. It is known that the structure ’= (q, ^, v, _< ,o,U,O, 1) of all the

matrices I:XxXL is, in virtue of (2.1) and Thin. 3 and Thm. 4 of Sanchez [15], a bounded

residuated 1-monoid [1, p. 325], i.e., (,^, v, _<,v,O,1) is a bounded residuated lattice and

(, < ,o,U) is a po-monoid [1, p. 319] with unit U, being complete if L is complete. In accordance to

Sanchez [15], we can write that Q-la T =sup{Req:R o Q<_T} and (R T-l)-1 =sup {Qe$ R o

Q<_T}.
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REMARK 2.1. Since x is finite, the results of Sanchez [15] hold in the more weak hypothesis

that L is a Brouwerian lattice, but it is easy to see that, under this last hypothesis, " continues to

be a bounded residuated 1-monoid.

Following Shmuely [18], let e {R E: R < R2} be the set of all non-negative (or compact)
elements of "$ and, as denoted usually, ^ be the set of all non-positive (or max-min transitive or

subidempotent [1, p. 328]) elements of ". For any R1,R2 e e, we have

(R y R2)2_> R R _> R1V R2, so that e is a join-subsemilattice (under v of "$. Dually, we have

that ^
is meet-subsemilattice (under ^ of .

REMARK 2.2. If /. is complete, then ’$ is complete and consequently e (resp. ^ is a

complete join- (resp. meet-) subsemilattice of "$ by Lemma of Shmuely [18].
However, as it is known, ^becomes a lattice defining the sup operation "kJ" as

RIR2 R v R2, where R1,R2 R A and "_" stands for the max-min transitive closure of any

matrix R defined as R v R2 v... v Rn.
REMARK 2.3. If is complete, then , being a complete residuated lattice, satisfies

properties (J1) and (J2) of Shmuely [18] (cfr. also Prop. 2.1 of [5]). Thus, by Corollary of [18], the

smallest element e ^ including R e ’ is given by R v R2 v..- v Rn v However, it is proved,

like in Kaufmann [9, p.95], that R v R2v. v Rn. This result holds for Boolean matrices ([10,
Prop. 5.4.11, [16, Lemma 1.2]) too.

The study of the powers of a square Boolean matrix is useful in automata theory, information

theory, etc., (e.g., [10]). The sequence R, R2,R3, depends on two parameters p (the period of R)
and k (the index of convergence or R), p and k being the smallest positive integers such that

Rk+p tlk. For Boolean matrices, these indices were widely studied (e.g., see Shao and Li [17] and

references therein). These parameters can be defined also for a matrix R E "$ which either converges

(i.e., p 1) to an idempotent matrix or oscillates with finite period [21]. If C e C, then Cn =Cn-1

[21] and Rn+l Rn if R e ^ [6], thus we use these simple facts to prove the following:

THEOREM 2.4. The set f n^ {R e :R R2} of all the idempotent elements of ’ is a

lattice under the partial ordering induced by in f and the operations:

I A. J (I A j)n and (I f j)n-1 I v J, (2.2)

where I, J e .
PROOF. For any I,J

_ , from above, we have that (I ^ j)n and (I v j)n-1 are elements of f.
Prove that (I ^j)n= ff.i.b{I,J} and, indeed, if E e f is such that E _< I and E < J, then E < I ^1 and

thus E En _< (I ^/)n. Dually, it is seen that (I ^j)n-1 l.u.b.{I,J}.

REMARK 2.5. If is complete, then it is easily seen that f (f, ^, v, <_ ,,L1) is a bounded

complete lattice under the same operations (2.2) (cfr. [18, Thra. 4]).
Theorem 2.4 is an extension of a well known result (cfr. [19], Thin. 5.4.3 of Kim [10, p. 241)]

concerning Boolean matrices.

REMARK 2.6. We note, in virtue of the first equality in (2.1), that (resp..) is a join-

subsemilattice (underv) of ’, but generally it is not a meet-subsemilattice (under ^ of "$ (cfr.
Example 2.3 of [5]). Further, (resp. S) is a convex subset of "$, i.e., if R1,R2 . (resp..) then

[R1,R2] {R e ":R _< R _< R2} C_ (resp. S).

3. ON IDEMPOTENT SOLUTIONS OF EQ. (1.1).
Concerning Eq. (1.1), it was proved in [3] that the set "J’=Y(A,B)=n^of all max-rain

transitive solutions is nonempty iff O, w e ’/being the matrix, defined as Wij Bj if Bi > Bj
and Wij Sij if B <_ Bj for any i,j In, the greatest element of ’J’, i.e., W _> R for any R E ’.
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Let 3 n t be the set of all idempotent solutions of Eq. (1.1). Of course, 3 g "J" and let B "
be defined as Bij Bj for any i,j In. Then B 3 and hence B Bn <_ Wn <_ W, i.e., the matrix

I Wn belongs to by Remark 2.6. Since I wn= Wn+l [6], we deduce that I 3 and further,

R Rn <_ wn= I for any R 3. Thus, we have proved that

THEOREM 3.1. iff I 3. Further, 1 > R for any R 3.

REMARK 3.2. It is easily seen that an alternative definition of W is w S ^ (BaB), where

(BaB) is defined pointwise as (BaB)ij Blabj for any i,j In.

4. ON COMPACT SOLUTIONS OF EQ. (1.1).
Assume here that #- O too. Let e0 =en be the set of all compact solutions of Eq. (1.1) and

now we need to define the matrix C t as C S ^ S
2 ^... ^ S

n in order to prove that O iff C e:0.
We give some preliminary propositions and lemmas.

PROPOSITION 4.1. If Sij= and Si2j < for some i,j In, then we have that Si2j Bj.
2 22 > ^ > Bj assume that Sij > Bj. Then Bj < Sij Sih A Shj < Shj forPROOF. Since Sij Sij Sjj

some hIn and this should imply that Shj= and hence Si=Sih. If Sih =Bh, then

A <_ Bj < $i Sih Bh < Ai, a contradiction. Thus Sih 1, i.e., Si2j $ih ^ Shj 1A 1, a

contradiction to the hypothesis that Si < 1. Therefore Si2j Bj.
PROPOSITION 4.2. If Si2j < Sij for some i,j In, then we have that S2hj < Shj for any h In.

PROOF. Let S2kj > Ski for some k In. Since S2kj=SktAStj for some In, we should have

that S2j=S}t^Sj>Skj. Then t#j (otherwise Skj>_Sj>Skj, a contradiction) and

Stj > Sj > Ski Bj, which should imply that Stj 1. If Skt= Bt, then B Skt > Sj > Ski Bj. If

Skt= 1, then Bj < Ak < B and thus B > Bj in any case. On the other hand, Sij > Si > Bj, hence

Sij, i.e., Si Bj by Prop. 4.1. But this contradicts the fact that

Si > Sit A Stj Sit A Sit > B > Bj.
k k-1 (resp. (b) If k k-1PROPOSITION 4.3. Let k > be a positive integer. (a) If Sij < Sij Sij > Sij ),

2 Sire for some In.then we have that S2mj < Sr"j (resp. Sirn > r"

PROOF. We prove the thesis (a) since the thesis (b) can be proved similarly. The thesis (a)
is certainly true for k 2 (it suffices to choose i). Hence assume k > 2 and let r" In such that

Sij Sr"j > Sij Sire A Srnj. If skin2 A Smj Sir"
contradiction, k-2 2 2 k-1 k 2Hence Sir" ^ Sr"j Srnj and therefore Sr"j > Sij > Sij > Sr"j.

If Si2j 1, the set Lij {t In:Sit Stj 1} is certainly nonempty. Then the following results

hold:

PROPOSITION 4.4. Let Sij Si2j and Stt < for any Lij.
k(a) If Sih < (resp. (b) If Shi < 1) for some h In, then we have that Sih < (resp. Sj < 1) for any

integer k >_ 1.

PROOF. Let h In be such that Sih < and assume that Skih for some integer k _> 1. We

could certainly suppose, without loss of generality, k( _> 2) to be the smallest integer such that
2

Si > Sihk-1. By Prop. 4.3 (b), then Sim > Sire Br" for some r" In. Let In such that
2Sir" Sit A Str. 1, thus we should have that A < Bm < A < Bt, i.e., Stt 1. On the other hand, we

know that Brn < A < Bj since Sij 1, thus (since Str" 1) A < Br" < Bj which should imply that

Stj 1, i.e., Lij and therefore the contradiction =Stt < 1. Thus the thesis (a) is true and

similarly one proves the thesis (b).
k kLEMMA 4.5. If Sij > Bj for any integer k > 1, then we have that Sij for any such k.

PROOF. The thesis is true for k and k 2 by Prop. 4.1. Assume k > 2 and, reasoning by
k-1 k k-1 and thusinduction, we must prove that if Sij 1, then Sij 1. Indeed, let Sikj< =Sij

Sr"j > S2mj for some r" In by Prop. 4.3(a). Moreover, Prop. 4.2 should imply that S2hj < Shj for

any h In. Further, we know that
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k Sht_ljBj<Sij SihlAShth2 A’’’A

for some hl,h2...,hk_ . In(ho i,hk j), hence 3’hk_lj since Bj < skij <_ Sht_lj and Sih
otherwise A <_ Bj < Sij < Sih Bhl < Ai, a contradiction.

If A <_ Bj < Si < Sht_2ht_ Bht_,thcn we should deduce that Siht_ and Sht_ht_
since Aht_l < Bj < Bht_"

Thus St-2ht_lh_ Sh_lh_ and hecc we should get the evident contradiction

> Si Sih_ A St-2h_h_l A Sht_j A A 1. Then Sht_2h_ 1, which should imply that

S2 A 1.hk_2j Shk_2ht_l Shk_lj

Let
x {a E {0,1,2,.-.,k} Sh,h,+x Sht_j and S2hoj }.

This set is nonempty because -2 E 3t. If nfin {a:a X}, then b > 0 otherwise

> Sfj Shoh A... ^ Shk_j 1,

2 and A < Bj < k If thena contradiction. Thus b >_ 1, Shbj Shbj Sij <_ Shb_hb. Shb_lhb Bhb
A V Ahb _< Bj < Bhb, i.e., Sk-2hbhb Shbhb Sih and hence

k k-2> Sij=SihbAShbhbAShbj= 1A1A1 1,

a contradiction. Thus Shb_lhb and S2hb-]J Shb_thb A Shbj 1A 1, i.e., b-1 K, a contradiction

kto the hypothesis that b is the minimum of . Therefore Sij 1, i.e., the thesis.

LEMMA 4.6. Let j, Sij Si2j 1, i, j f Lij and Stt < for any Lij. Then we have that

Sj < 1.

PROOF. Let

S. Sih1AShh2 A’"AShn_Ij

for some hl,h2,...,hn_ ln(h0 i,hn j). Then we should have that Sih and

sn-1hij Shlh2 A...ASh,,_j 1A---A 1,

i.e., Shj by Prop. 4.4(b), thus h Lij. Now Sh Sih1/ Shlh A and Sj2 1, hence

$ih=Shj= by Prop. 4.4 (a), (b) and then we should deduce that h2 E L too. Now
otherwise Bh < Ah <_ Bh2 Bh a contradiction. So continuing, we should get that h Lij for any

In_ and hs h for any s,t In_ since Bh < Bh2 < < Bhn_l. This should imply that card

Lij > n- 1, a contraAiction to the hypothesis that crd Lij < n- 2 (since i,j f Lij). Now we are able
to show that

THEOREM 4.7. The matrix C ^= 1Sk belongs to C.

PROOF. We must prove that C2j _> Cij for y i,j e In. In order to avoid trivial situations,
assume that j. Since

CiJ =tV=l(Cit^ Ctj > Cij ^ Cjj >_ Bj,

kthe thesis is clearly true if Cij Bj. Let Cij > Bj, i.e., Sij > Bj for any t E In. By Lernma 4.5, we
khave that $ij for any k In (in particular, Sij Si Sj 1) and hence Cii. 1. If Lii,. then

kwe deduce that Cii because Sii for any k I, and hence Ci2; Cil. A Ci; A 1. Similarly
one gets Ci if j Lij. Now assume that i, j Lij. By Lemma 4.6, there exists m Lij such that
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k--1 Thus Sire Sire ^ Smm A andSire Srnj S,n, 1, hence Smm for any integer k > 2 k k-1

Smm ^ Smj ^ for any k In. Then we have that 6’ Cim A Crnj ^ 1, hence we

get (Tij (7i2j in any case.

The main result of this section is the following:
THEOREM 4.8. # (9 iff (7 :0" Further, (7 >_ R for any R 0"
PROOF. Of course, we are interested in the non-trivial implication. Leg t # O, thus S t

[15] and I g, by Thm. 3.1, with I _< S. We have that I Ik< Sk for any k In, so I _< (7 _< S and

then 6’ e0 by Remark 2.6 and Thm. 4.7. Leg R 0, thus R _< S and hence R/ < Sk for any k In,
i.e., R= R^R2 A...ARn <_ C.

The following example must clarify all the results already established.

EXAMPLE 4.9. Let n=3, AI=B2=0.8, A2=0.9, A3=0.4, Bl=0.g, B3=0.6. Then t#O
since SoA B, where

Thus

0.5 0.8 0.6 $2= 0.6 0.8 0.6 $3= 0.6 0.8 0.6

0.5 0.8 0.6 W2=W3=I= 0.5 0.8 0.6 C= 0.5 0.8 0.6

0.5 0.5

Note that S, w,I,C are all distinct between them. Finally, we prove that
THEOREM 4.10. If Bj > B for any I,- {j} and O, then we have that Rjj > Bj for any

PROOF. Let O and Rjj < Bj for some R C0. Let k In be such that Ak ^ Rkj Bj.
Thus # i

(otherwise, Rjj > Bj) and then

l(a ^ a)l v(a ^ ai).Bj < Rkj < R2kj [t=

Since .4k ^ Rkt <_ B < Bj <_ Ak for any In {j}, we should deduce that Rkt <_ B < Bj, i.e.,

Rkt A Rtj < B for any In {j} and Rkj A Rjj <_ Rjj < Bj. This should imply that

Bj <_ Rkj <_ Rij < Bj, a contradiction.

5. ON IDEMPOTENT SOLUTIONS OF EQ. (1.2).
Concerning Eq. (1.2) and following Di Nola [2] (see also [5]), we define the (row-) vectors Oi, Ti

{zi}xX- by setting Qi(zi, zj)=Qij and Ti(zi, Zk)=Tik for any i,j, In. Thus the study of Eq.
(1.2) is equivalent to consider the following system of equations of type (1.1):

R o Qi Ti, i= 1,2,.--,n. (5.1)

As in [3], let ti=i(Qi, Ti) (resp. l’i=(Qi, Ti)=tift^) be the set of all (resp. max- min)
transitive solutions of the i-th Eq. (5.1) and, of course, we have that

S= " ff*=__f3 li ffi’
where ’*=ff*(O,T)=Sn^ is the set of all max-min transitive solutions of Eq. (1.2). If
then we can consider [3] the greatest max-min transitive W ffi of the i-th Eq. (5.1) and we define
the matrix W* ^= 1Wi" In [3], it was proved that *J’* # O iff W* e if* and W* > R for any R "J’*.
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If I Ji(Qi, Ti)= tif (resp. *= *(Q,T)= So) is the set of all idempotent solutions of the i-th

Eq. (5.1) (resp. (1.2)), we have obviously that

3" =i= li c_ *.

If i # , let I w, by Thm. 3.1, be the greatest element of i for y In, then we deduce

the following rult:

THEOREM 5.1. * # iff t* *, where 1" a = lli)n. Further, I* (w*)n R for y

RE*.
PROOF. Let 3", then i# d hence i for y iln. By Thin. 3.1, we c

consider I i for y In d since I for y In, we have that I* longs to by [6]. Let

R3"i, thus Rifor y iIn, i.e., RS =llid then R=RnS(=lli)n=l*Sl=li.

Ts mes that I* i for y In y Retook 2.6, i.e., I* $ d hence I* li in *. We note
n lot y In, so that [6]explicitly that (w*)n S W

} nn X li)n=i,.(W*)" (W*)n + [(w.)nln 1Wi =On the other hd, since * *, we have that I* (I*)n (W*)n d therefore (W*)n I*.
We c have that *# (hence # ), then * but S# d * do not imply

nesi]y that * it is shown in the following:
EXAMPLE 5.2. , 3, Q d T defined

0.6 0.4 0.6 0.7 0.6

Q= 0.8 0.5 0.3 T= 0.6 0.7 0.6

0.4 0.9 0.7 0.5 0.6 0.6

Then

QlaT1 Q2aT2 I
Thus W3 Q3aT3 and

w1 w2 =/
L

Q3T3 11110.5 0.6 0.6

0.5 0.6 0.6

0.6 0.6 hence$*=W*= 0.5 0.{i 0.6

0.5 0.6 0.6

0.6 0.61(W*)2 (W*)3 I* 0.5 0.6 0.6 It is easily seen that S*oQ T.

O.5 O.6 O.6

Then S O and ’Y* O, but (l*oQ)12 (I*oQ)22 0.6 < T12 T22 0.7 and hence I* O.
Note that, as easy examples prove, we can have that S # O and ’*= 13, hence I*= 13. For

sake of completeness and in accordance to Remark 3.2, we point out the following result:
THEOREM 5.3. If "J’* 13, then w* (T- 1aT)^ S*, where (T- laT) is defined pointwise

(T- laT)jk =i (TijTik) for any j,k . In.



308 F. LIGUORI, G. MARTINI AND S. SESSA

PROOF. Since ’* # O, then w* ’* c_ $ and hence w* < S* [3]. Since (W*o w*) < w*, we

have that W*o T W*o (W*o Q)= (W*o w*) o < W*o = T. Thus (cfr. Section 2) w* <_ (T-loT),
i.e.,

W* < Cr 1aT) ^ $*. If

W* (5.2)jk < (T laT)jk A Sjk
for some j,k e In, then we should have that Wk Wh(xj, xk)= QjhaThk for some h

_
In and (5.2)

should imply

that

QhjaThk Wk < Sk QhjaThk,
a contradiction that concludes the proof.

6. ON COMPACT SOLUTIONS OF EQ. (1.2). Let e,oi=e,oi(Qi, Ti)=e,ct (resp.
C* C*(Q,T) =cns) be

the set of all compact solutions of the i-th Eq. (5.1) (resp. (1.2)) for any e In. Of course, we have
that

C* =i= ci"
If e* # O, then S # O, hence i # O for any In. By Thin. 4.8, we can consider the greatest

element G Col for any In. Now, if R 6 e* c_ i, we have that R _< G for any . ln, i.e.,

R <_ C* <_ C for any ln, where G* ^= 1Gi Thus G* ( i for ariy In by Remark 2.6, i.e.,

G* ,q but generally, G* does not belong to e* as Example 5.2 shows. Indeed, we have that

C IT1 C2 2o,T, C QaaT3 and therefore G* S’* W* > (W*)2 (G*)2, i.e., G* C and

fortiori, C* e*.

OPEN QUESTION. If e* # O, how to characterize, if exists, the greatest element of e*?

REMARK 6.1. Example 5.2 proves also that we can have , # O and " # O but e*=O
otherwise, if e*# , should be eo # O and there we should deduce that, for any R

/o2 T, i.e., by Thm. 4.9, 0.6 2 > R22 >- T22 0.7, a contradiction. Therefore e* O since

%2 O.
7. CONCLUDING COMMENTS. Returning to the finite-state system of Sec. 1 represented from

Eq. (1.1), applying k times the transition R, we have that B(k) RkoA Rk + loA B( + 1) if

and Reff [6] or if k= and Re or if/==n-1 and Ree0 [21], B(I)=$koA.=$1=+2oA=B(1*+2) if

/==3n-4 or k=3n-3 [11], i.e., concluding as in [3] and [11], the more general the transitivity is

requested on R, the slower the speed of convergence of the system is. In [3], the authors

characterized also the minimal element of " (resp. *) by means of the max-min transitive closures

of the minimal element of (resp. $).

OPEN QUESTION: How to characterize, if exist, the minimal elements of (resp. *) and
(resp. C*)?
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