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ABSTRACT. After a survey of some known lattice results, we determine the greatest idempotent
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1. INTRODUCTION.

The theory of fuzzy relation equations is a powerful tool for applicational purposes like Fuzzy

Control and Systems [13], Knowledge Engineering [5], Extremal Linear Programming [22].
We recall some well known definitions [5]. Throughout this paper, L= (L, A,V, <,0,1)is a
(not necessarily complete) linear lattice with universal bounds 0,1,X = {F1r%9" "~ 2n} be a finite
referential set, 4, B: X—L be vectors (fuzzy sets) and R: X x X—L be a (fuzzy) matrix such that
RoA=B, (1.1)
where “o” is the max-min composition. In terms of membership functions, Eq. (1.1) is read as
igl(A,. A R;j)=B;
for any J € I, = {1,2,-,n}, where, for brevity of notation, we put A(z;) = A;, B(= ;) =Bjs R(z;z;) = R;;
for anyi,jelI,.
A natural extension of the Eq. (1.1) is the following:
RoQ=T, (1.2)
ie., n
i¥1@Qij A R =Ty
for any ike€l,, where R,Q,T:XxX—L are matrices. As usual, if R is a matrix, we put
R'=R,R*"*1=R"%ER forn>1.

Following the symbology of Sanchez [5, 15], let a be the operation of residuation in L, i.e., aab
is the relative pseudocomplement of a in b defined by aab =sup{c € L:aAc<b} =1 if a<b, aab=1b if
a>b for any a, b€ L. If A and B (resp. Q and T) are assigned in Eq. (1.1) (resp. (1.2)), let
R = R(A, B) (resp. S=5(Q,T)) be the set of all the square matrices R which solve the given equation.
Sanchez [5] (cfr. also Luce [12] and Rudeanu [14] for Boolean equations, Zimmermann [22] and Di
Nola and Lettieri (4] if L is, more generally, a complete right-residuated lattice and if X is infinite)
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determines, if ® (resp. S) is nonempty, the greatest (with respect to the partial ordering pointwise
induced naturally in ® (resp. §) from the total ordering of L) element of ® (resp. S) defining the
matrix S = AaB (resp. S* = Q" laT, where Q1 is the transpose of Q): XxX—L as

$;;= (AaB);j = AB;
a1 o o
resp. SHE=@@ oT) =A I(Qj,' aTy) = Ql(ijaTik)’

for any i,j,keI,. The concept of max-min transitivity is the most widely used one for
investigating properties of finite square Boolean matrices [10]. For square matrices over L, we say
that R is max-min transitive if RZ2< R (i.e., Ry A thgR'-j for any i,h,j€I,) and this notion is
also widely dealt in several areas of research like clustering technology [5], information retrieval
[20], preference relations [7, 8]. Moreover, if L is linear, Eq. (1.1) can be seen as a description of a
finite-state system in which R represents a transition relationship between the assigned input 4 and
the given output B. Following Kolodziejczyk [11] (cfr. also [3]), applying k times the transition, let
B%) be the resulting output defined by B =gk, 4 (assume, of course, BV = B). The problem is
to determine a solution R € R, with an assigned type of transitivity, which guarantees the necessary
speed of convergence (R is convergent if RE*1 = RF for some integer k). Similar considerations can
be made on Eq. (1.2).

The authors of [3] and [11] have proved that in ® (resp. S) exist elements with different type of
transitivity, mainly in ® (resp. §) were entirely characterized the max-min transitive elements (in
particular, those having Schein rank equal to 1), determining the greatest and the minimal ones.
Here we prove the existence in ®, when nonempty, of compact (in particular, idempotent) elements
of ® (R is compact if R2 > R, R is idempotent if R% = R).

For each of them, a specific rule of convergence of their powers holds, so giving further
information on the speed of convergence of the entire system. Related but different considerations
are presented for the analogous elements of S.

2. A SURVEY OF SOME LATTICE RESULTS.

We refer to Birkhoff [1] for terminology of lattice theory. Now we recall some well known
facts.

If P,Q_R: XxX—L are assigned matrices, P < R means P;j<Ry; for any i,jel, in L, P<R
means P<R and P#R, (PAR), (PVR): XxX—L are matrices pointwise defined as
(PAR);;= P ARy,
supremum of any finite set of matrices. It is well known that the max-min composition (1.2) is

(PVR);;=Pi;VR;; for any i,j € I,,, similarly it is defined the infimum and the

associative and the following properties hold:

(PVQ)oR=(PoQ)V(PoR)and Ro (PVQ)=(Ro P)V(R 0 Q) (2.1)

since L is linear and hence distributive.

Let U be the nxn identity matrix, i.e., Uij=0 if i #j,U;=1for any i,j € I, and 9 (resp. 1) be
the nxn null (resp. unit) matrix. It is known that the structure ¥= (%, A, v, <,0,U,9,1) of all the
matrices R:X x X—L is, in virtue of (2.1) and Thm. 3 and Thm. 4 of Sanchez [15], a bounded
residuated l-monoid [1, p. 325], ie., (% A,V, <,U,9,1) is a bounded residuated lattice and
(%, <,0,U) is a po-monoid [1, p. 319] with unit U, being complete if L is complete. In accordance to
Sanchez [15], we can write that Q" la T=sup{Re€F: R0 Q<T}and (Ra T~ 1)l =sup {QeF: Ro
Q<T})
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REMARK 2.1. Since X is finite, the results of Sanchez [15] hold in the more weak hypothesis
that L is a Brouwerian lattice, but it is easy to see that, under this last hypothesis, ¥ continues to
be a bounded residuated 1-monoid.

Following Shmuely [18], let € ={R€ ¥: R < R?} be the set of all non-negative (or compact)
elements of ¥ and, as denoted usually, ® , be the set of all non-positive (or max-min transitive or
subidempotent (1, p. 328]) elements of ¢. For any R ,Ry€€, we have
(R, VR2)2 > R%VR% > RV Ry, so that Cis a join-subsemilattice (under v) of ¥. Dually, we have
that ® , is meet-subsemilattice (under A) of .

REMARK 2.2. If L is complete, then ¥ is complete and consequently € (resp. R,) is a
complete join- (resp. meet-) subsemilattice of ¥ by Lemma 1 of Shmuely [18].

However, as it is known, ®,becomes a lattice defining the sup operation “J” as
R\UR,=R,VR,, where R,RyeR®, and “_" stands for the max-min transitive closure of any
matrix R € ¥ defined as K= RVRZv...v R,

REMARK 23. If L is complete, then ¥, being a complete residuated lattice, satisfies
properties (J;) and (J5) of Shmuely [18] (cfr. also Prop. 2.1 of [5]). Thus, by Corollary of [18], the
smallest element R € ® , including R € ¥ is given by R=RV R2v-.-VR"Vv.... However, it is proved,
like in Kaufmann [9, p.95], that = RVRZv...vR" This result holds for Boolean matrices ([10,
Prop. 5.4.1], [16, Lemma 1.2]) too.

The study of the powers of a square Boolean matrix is useful in automata theory, information
theory, etc., (e.g., [10]). The sequence R,RZ R3,--- depends on two parameters p (the period of R)
and k (the index of convergence or R), p and k being the smallest positive integers such that
R¥*P = RE. For Boolean matrices, these indices were widely studied (e.g., see Shao and Li [17] and
references therein). These parameters can be defined also for a matrix R € ¥ which either converges
(i.e., p=1) to an idempotent matrix or oscillates with finite period [21]. If C €€, then C" =c™!
[21] and R™1 = R if R € ® 5 [6], thus we use these simple facts to prove the following:

THEOREM 2.4. The set {=€NR ) ={ReFR= B2} of all the idempotent elements of ¥ is a
lattice under the partial ordering induced by ¥ in ¢ and the operations:

IANJ=(IAJ)and (IVI)*1=TV7, (2.2)

where I,J € ¢.

PROOF. For any I,J € ¢, from above, we have that (IAJ)" and (IvJ)*~! are elements of ¢.
Prove that (I AJ)" = g.Lb{I,J} and, indeed, if E € ¢ is such that E<I and E<J, then E<IAJ and
thus E = E® < (I AJ). Dually, it is seen that (I AJ)*") = Lub{I,J}.

REMARK 2.5. If L is complete, then it is easily seen that £ =(¢ A, Vv, <,9,1) is a bounded
complete lattice under the same operations (2.2) (cfr. [18, Thm. 4]).

Theorem 2.4 is an extension of a well known result (cfr. [19], Thm. 5.4.3 of Kim [10, p. 241)]
concerning Boolean matrices.

REMARK 2.6. We note, in virtue of the first equality in (2.1), that ® (resp. S) is a join-
subsemilattice (underv) of ¥, but generally it is not a meet-subsemilattice (under A) of ¥ (cfr.
Example 2.3 of [5]). Further, ® (tesp. S) is a convex subset of ¥, i.e., if R,R) € R (resp. S ) then
[R, Ryl = {R € %:R; < R < Ry} C R (resp. S).

3. ON IDEMPOTENT SOLUTIONS OF EQ. (1.1).

Concerning Eq. (1.1), it was proved in [3] that the set 9 =9(4,B)=RNR ,of all max-min
transitive solutions is nonempty iff ® # @, W € ¥ being the matrix, defined as W, j=Bj if B;> B;
and Wii=5;; if B; < B; for any i,j € I;, the greatest element of ¥, i.e., W > R for any Re 7.
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Let S =Rn¢ be the set of all idempotent solutions of Eq. (1.1). Of course, IC T and let Be ¥
be defined as B;;=B; for any i,j€I,. Then Be€3 and hence B=B"<W" < W, i.e., the matrix
I =W" belongs to ® by Remark 2.6. Since I =W"=w"*! ¢ ¢ [6], we deduce that I € J and further,
R=R"<W™"=1 for any Re€ 3. Thus, we have proved that

THEOREM 3.1. R #®iff 1€ 3. Further, I> R for any Re 3.

REMARK 3.2. It is easily seen that an alternative definition of W is W = S A(BaB), where
(BaB) € ¥ is defined pointwise as (B"B)ij = Bi"Bj for any i,j € I,,.

4. ON COMPACT SOLUTIONS OF EQ. (1.1).

Assume here that ® # @ too. Let €)=€n®R be the set of all compact solutions of Eq. (1.1) and
now we need to define the matrix C € ¥ as C=SASZA---AS™ in order to prove that ® # @ iff C € S
We give some preliminary propositions and lemmas.

PROPOSITION 4.1. Ifs; ;=1 and 52 <1 for some i,j € I,,, then we have that S =B;

PROOF. Since 512511’\51123 assume that 52 >Bj. Then B; <52 '-51."5/:, <ShJ for
some he€l, and this should imply that §,. ;=1 a.nd hence S = S If S;,=B,;, then
A;<B; <Sg-_.S'h_Bh<A a contradiction.  Thus Sh—l ie., Su_S'h/\Shj_l/\l =1, a
contradlctxon to the hypothesis that 52 < 1. Therefore S =B;.

PROPOSITION 4.2. If 52 <58;; for some i,j € In, then we have that Sh] < Sh; for any he I,

PROOF. Let Sk] > 8j for some k€I, Since Sk =Sy NSy for some te Iy, we should have
that Sk =5 A8 > S5 Then t#; (otherwise §,;> Sil > a contradxctnon) and
5452 SI:J > Slc; =B, , which should imply that §y=1. If S, = By, then By =5, > Sk; >Sk] =B;. If
Sgy=1, then B; <Ak<B, and thus B, > B; in any case. On the other hand, Sij >S > B;, hence
1=5;, ie., S?j =B; by  Prop. 4 1. But this contradicts the fact that
%28, NS ;=51 =5y>B;>B;

PROPOSITION 4.3. Let k> 1 be a positive integer. (a) If Sf; < 551 (resp. (b) If s> s&h,
then we have that S‘fn i <Smj (resp. S?m >8;,) for some me I,

PROOF. We prove the thesis (a) since the thesis (b) can be proved similarly. The thesis (a)

is certainly true for & =2 (it suffices to choose m =i). Hence assume k >2 and let m € I, such that

sklosh2as, >skoshoias? I shiPasl =sk? then sk Z>sklssh >sh? a
contradlctlon Hence Sk -2 /\52 = 52 and therefore S >sFls gk > S2

mj 2 5ij ij=
If S, =1 the set L, j=1te I S,t =5;;= 1} is certainly nonempty. Then the following results

hold:

PROPOSITION 4.4. Let §;;=5%=1and Sy <1for any t€ L;;

(a) I 5y <1 (resp. (b) If §p; < 1) for some h € I,;, then we have that S h <1 (tesp. Stj <1) for any
integer k > 1.

PROOF. Let hel, be such that S;; <1 and assume that th =1 for some integer k>1. We
could certainly suppose, without loss of generality, k(>2) to be the smallest integer such that
Slc =1> th_l. By Prop. 4.3 (b), then S?m =1>8;,, =By, for some mel, Lettel, such that
S?m =5;,A Sy, =1, thus we should have that 4, < B, < 4;< By, i.e., Sy =1. On the other hand, we
know that B, <4;<B j since Sij =1, thus (since §;,=1) 4;<B;< B; which should imply that
5;=1, Le., tel; and therefore the contradiction 1=5;, <1. Thus the thesis (a) is true and
similarly one proves the thesis (b).

LEMMA 4.5. If Sfj >B; for any integer k > 1, then we have that Sé’j =1 for any such k.

PROOF. The thesis is true for ¥k =1 and k =2 by Prop. 4.1. Assume k > 2 and, reasoning by
induction, we must prove that if S"] 1_1, then S"- =1. Indeed, let Sk <1l= Sk 1 and thus
Spmj >S2 for some m eI, by Prop. 4.3(a). Moreover, Prop. 4.2 should 1mply that Sh <Sh; for
any he I Further, we know that
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k _ ,
Bj(S"j—Sihl/\shlhz/\"'/\shk J

for some hj,hy-hy_; €I,(h,=1i,hy=j), hence She_yi=1 since B <Sf,_$h . and Sihl=l
otherwise A; < B <S"-<S.,l =Bh < A;, a contradiction.
' If 4;,<B; <SU <S"k shes =B, , then wc should deduce that S"'k-fl and s"k-l"k-l =1
since A, <B,<B,

k-1 J k-1

k—2 _
Thus shk-lhk—l = Sheorhe

k _¢. k-2 = - _ . :
1>8;;= S'hk-l A shk—lhk-l Ashk_xl =1A1A1=1. Then S"k-z"k-l =1, which should imply that

k-1

=1 and heuce we should get the evident contradiction

2 3 .=
Shicai = Shy_ghy_y Nhy_ i =t
Let
X={a€{0,1.2k}: S, ,

= = 2 .= .
a a+l - Shk—lj 1 and shaJ l}
This set is nonempty because k-2 € 3%. If b = min {a:a € ¥}, then b > 0 otherwise

1> S5 =Spp AASy =1
a contradiction. Thus 5>1, 1= Sh,,j = S%bj and 4;< B;< Sfj < S,‘b_lhb. If Shb-lhb = B"b' then
A',»vAhb < Bj < B"b’ ie., Si,,_hzb = S"b"b = S'-’ =1 and hence
1>sfj=s,hb/\sh o ASy = IALIAL=1,
a contradiction. Thus shb—lhb =1 and Shb-—lj = S"l.-ll'bAS"bj =1A1=1,i.e., b-1€ %, a contradiction
to the hypothesis that 4 is the minimum of 3%. Therefore Sfj =1, i.e., the thesis.
LEMMA 4.6. Let i#3j, S.j=5?j= 1,i,j¢ L;; and S;; <1 for any teL;; Then we have that

1
S}} <l
PROOF. Let

—qn _ g
1=S7;=5;, AS) A ASy s

for some hy,hg,--+h,,_1 € In(hg =i,hy = j). Then we should have that §; ihy = 1 and

Sh,j _ShthA'“ Sh“_lj=l/\"'/\l= 1,
ie., Shlj =1 by Prop. 4.4(b), thus h, € L. Now 5?;,, = Sih, Ashlh, =1A1=1 and SZ;'J? =1, hence
ih,z‘gh,j:l by Prop. 4.4 (a), (b) and then we should deduce that h, € L,;; too. Now h, #h,

otherwise By < Ah < Bh = Bh , a contradiction. So continuing, we should get that A, € L;; for any
tel, ; and h ?“'t for any s,teI n—1 Since Bhl < By, < <B"n-1' This should imply that card
Lij>n-1,a contradiction to the hypothesis that card L; jS<n-2 (since 4,j ¢ L; j)' Now we are able
to show that

THEOREM 4.7. The matrix C = A’,’: S"' belongs to €.

PROOF. We must prove that C >C;; for any i,je€I,. In order to avoid trivial situations,
assume that i # j. Since

Cj= Y (CynCyj) 2 CijnC;; 2 B,

the thesis is clearly true if C;; j=Bj. Let C;; ;> By le., S >B; for any k€ I,. By Lemma 4.5, we
have that Sk~._ 1 for any ke I (m paxtlcular, =55 --S"~_ 1) and hence C; =1 Ifie L then
we deduce that C;; =1 because S" =1 for any I:GI,, and hence C ;=CiiACij=1A1=1 Similarly
one gets Ci ;=1 ifje L Now assume that i,j ¢ L; .. j By Lemma 4 6, thete exmts meL; such that
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Sim =Smj=Smm=1, hence sk -1-1 for any integer k>2. Thus Sf-‘m = S.-mAan—,,l, =1A1=1 and
anj =Sf,,',,1,ASmj= 1A1=1for any k€ I,,. Then we have that C?j =C;yACpyj=1A1=1, hence we
get C;;= C?j =1in any case.

The main result of this section is the following:

THEOREM 4.8. £ 0 iffce €y- Further, C> R for any Re -

PROOF. Of course, we are interested in the non-trivial implication. Let ® # @, thus Se®
[15] and I'e S, by Thm. 3.1, with 7 <S. We have that I = I* < s* for any keI, so I<C<S and
then C € ¢; by Remark 2.6 and Thm. 4.7. Let R¢ €y, thus R < S and hence RF < sk for any ke I,
i, R=RAR’A---AR"<C.

The following example must clarify all the results already established.

EXAMPLE 4.9. Let n=3, A =By=08, 4y=09, A3=04, B, =05, B;=06. Then R+ 0

since SoA = B, where

05 1 0.6 0.6 0.8 0.6 0.6 0.8 0.6
s=1050806 |, s2-| 06 08 06 |, s3-] 0.6 0.8 0.6
11 1 111 1 1 1
Thus
05 1 0.6 0.5 0.8 0.6 0.5 0.8 0.6
w={050806|, W2-Ww3-I1=|050806]|, C=| 050806
05 1 1 05 1 1 11 1

Note that §,W,1,C are all distinct between them. Finally, we prove that

THEOREM 4.10. If B;> B, for any te I, -{j} and ® # @, then we have that R;;>B; for any
Recy

PROOF. Let R# 0 and R;;<B; for some ReC). Let kel, be such that ApAR,;=B;
Thus k # j
(otherwise, R ;2B j) and then

2 n
B;< R <Ry;=[ V ‘(RktARtj)]V(RijRjj).

t=l
t#J
Since AkARHSB,<Bj5Ak for any teI,-{j}, we should deduce that Ry <By<Bj ie.,
Ry ARy <B; for any tel,-{j} and RijRjjSRjj<Bj' This should imply that

B;< Rkj <R{;<Bja contradiction.
5. ON IDEMPOTENT SOLUTIONS OF EQ. (1.2).

Concerning Eq. (1.2) and following Di Nola [2] (see also [5]), we define the (row-) vectors Q;,T;
: {z;}x X—L by setting Qi(z;2;)=Q;; and Ty(z;,2;) = T;, for any i,j,k € I,. Thus the study of Eq.
(1.2) is equivalent to consider the following system of equations of type (1.1):

RoQ;=T; i=12,n. (5.1)

As in (3], let R, =R(Q,T;) (resp. F;=9(Q;,T;)=R;NR ) be the set of all (resp. max- min)
transitive solutions of the i-th Eq. (5.1) and, of course, we have that

s=N %, T -f T,
i=1 ¢ i=1 %

where * =97(Q,T)=SNR, is the set of all max-min transitive solutions of Eq. (1.2). If ®,# 0,
then we can consider [3] the greatest max-min transitive W; € 9; of the i-th Eq. (5.1) and we define
the matrix W*= A?_ W, In [3], it was proved that 9* # @ iff W* € 9* and W* > R for any R e T*.
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I 3, =9,Q;,T;) =®;n¢ (resp. I* =I%Q,T)=Sn¢) is the set of all idempotent solutions of the i-th
Eq. (5.1) (resp. (1.2)), we have obviously that
¥= 5 eI

HR,#£0, let I,= W;', by Thm. 3.1, be the greatest element of J; for any i € I,, then we deduce
the following result:

THEOREM 5.1. g*#0 iff I*€g*, where I*=(A]_I,)". Further, I*=(W*)">R for any
Reg*.

PROOF. Let g*#@, then §;# @ and hence ®;#£9 for any iel,. By Thm. 3.1, we can
consider I; € ; for any i € I,, and since I, € ¢ for any i € I;, we have that I* belongs to ¢ by [6]. Let
ReJ*CR, thus Re; for any i€y, ie, R<AT_,I; and then R=R"<(A]_ | I)*=I"<I}=1,
This means that I* € ®; for any i € I, by Remark 2.6, i.e., I* € § and hence I* lies in I*. We note
explicitly that (W*)® <W? for any i € I, so that [6]

(WH = (w*)n + 1_ (W < ‘(Z'\ IW?)n = '(Z\ lli)" =I*

On the other hand, since I* € 9*, we have that I* = (I*)" < (W*)" and therefore (W*)" = I*.

We can have that §*# @ (hence S# @), then 9*#0 but S#0 and 9* #0 do not imply
necessarily that §* # @ as it is shown in the following:

EXAMPLE 5.2. Let n=3, Q and T be defined as

1 0.6 04 0.6 0.7 0.6
Q=| 080503 |, T=| 0.6 0.7 0.6
0.4 0.9 0.7 0.5 0.6 0.6
Then
0.6 0.7 0.6 1 1 1
QlaTl =Q2aT2= 1 1 1|, Q30T3 =| 0.5 0.6 0.6
1 1 1 0.5 0.6 0.6
Thus W3 =QgaTy and
0.6 0.7 0.6 0.6 0.7 0.6
W =W,=/06 1 06|, henceS*=wW*=| 050506 |,
1 11 0.5 0.6 0.6
0.6 0.6 0.6
W*2=w*B=1*=| 05 06 06 |. It is easily seen that $*oQ=T.
0.5 0.6 0.6

Then S # O and 9* £ @, but (I*0Q);9 = (I*0Q)yy = 0.6 < T}y = Tyy = 0.7 and hence I* = 0.

Note that, as easy examples prove, we can have that S# @ and 9* =@, hence S*=0. For
sake of completeness and in accordance to Remark 3.2, we point out the following result:

THEOREM 5.3. If 9* =0, then W* = (T~ 1aT) A S*, where (T ~laT) € ¥ is defined pointwise
as

- n s
(T~ laT)j = A (T;jeTy) for any jik €I,
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PROOF. Since 9* # 0, then W*€9*CS and hence W* < S* [3]. Since (W*o W*)<W*, we
have that W*o T =W*o (W*o Q)= (W*o W*) 0 Q<W?*o Q=T. Thus (cfr. Section 2) W* <(T~ Ly,
ie.,
w*<(T~laT)AS* If

* -1
Wi <(T~laT) ;A ST, (5.2)
for some j,k€I,, then we should have that W;Ic=wh(”j”k)=ojh°‘Thk for some hel, and (5.2)
should imply
that

—-—W* =
QnjeThe = Wik <SG = QpjaT ppo

a contradiction that concludes the proof.

6. ON COMPACT SOLUTIONS OF EQ. (1.2). Let €,;=€,(Q;T;)=Cn®; (resp.

e =¢*Q,T)=€nS) be

:ﬁetset of all compact solutions of the i-th Eq. (5.1) (resp. (1.2) ) for any i € I,,. Of course, we have
a

n
c* =. 2 lcoi‘

If ¢* # O,then S# O, hence ®;# O for any ieI,. By Thm. 4.8, we can consider the greatest
element C;eC; for any iel, Now, if ReC*CR;, we have that R<C; for any i€, ie,
R<C*<C,; for any iel,, where C*=AJ_,C; Thus C*€®; for any i€ I, by Remark 2.6, i.e.,
C* € S but generally, C* does not belong to €* as Example 5.2 shows. Indeed, we have that
C) =QaT; = Cy = QaTy, C3=QgaTy and therefore C* = §* = W* > (W*)2 = (C*)?, i.e.,, C*¢€ and
fortiori, C* ¢ €*.

OPEN QUESTION. If ¢* # @, how to characterize, if exists, the greatest element of €*?

REMARK 6.1. Example 5.2 proves also that we can have S#@ and ¥#@ but ¢*=0
otherwise, if €*# @, should be €, # @ and there we should deduce that, for any Re€*C ¢y,
RoQy =Ty, i.e., by Thm. 4.9, 0.6 = §35 > Rgy > T9y =0.7, a contradiction. Therefore €* =0 since
Cp2 =9
7. CONCLUDING COMMENTS. Returning to the finite-state system of Sec. 1 represented from
Eq. (1.1), applying k times the transition R, we have that B®) — pkop = RE+104 = B+ if k=
and Re¥ [6]or if k=1and ReSor if k=n—1and Re €, [21], B¥) = skon = sk +204 = pE+D) i
k=3n-4 or k=3n-3 [11], i.e., concluding as in (3] and [11], the more general the transitivity is
requested on R, the slower the speed of convergence of the system is. In [3], the authors
characterized also the minimal element of 9 (resp. 9*) by means of the max-min transitive closures
of the minimal element of ® (resp. S).

OP‘E?N QUESTION: How to characterize, if exist, the minimal elements of g (resp. 3*) and ¢,
(resp. €*)?
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