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ABSTRACT. In this paper we consider the nonlinear degenerate evolution equation with strong damping,
K(x,t)u,—Au —Au, + Fu)=0 in Q=Qx]0,T[

* u(x,0) = uy, (Ku')(x,0) = 0 in Q

u(x,t)=0 on T=Ix]0,T[
where K is a function with K(x,#) = 0, K(x,0) = 0 and F is a continuous real function satisfying
** sF(s)=0, for all s€ER,

Q is a bounded domain of R", with smooth boundary I'. We prove the existence of a global weak solution
for (*).
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1. INTRODUCTION.
In this work we study the existence of global weak solutions for the degenerate problem
K(x,t)u - Au - Au' +F(u) =0
u(0) = u,
(Ku)(0)=0
u=0 in 2
in the cylinder Q = Q x J0, 7] where Q is a bounded domain in R* with smooth boundary, T >0 is an
arbitrary real number, X is a lateral boundary of Q, F is a continuous real function such that sF(s) 2 0, for
all sER, K : Q — R is a function such that K(x,t)=0, (x,t)EQ, K(x,0)=0, A is the Laplace
operator and u' =3 .

(1.1)

Equation (1.1) is a nonlinear perturbation of the wave equation. Forn = 1 or n = 2, (1.1) governs the

motion of a linear Kelvin solid (a bar if » = 1 and a plate if n = 2) subject to no nonlinear elastic constraints,
where K(x, ) is a mass density.
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Problem (1.1) with K(x,¢) = 1 without the term —Au’ was studied by Strauss [1]. He proves the

existence of global weak solutions and the asymptotic behavior as ¢ approaches to infinity. The global

weak solutions for the equation
Ky(x,t)u" +Ky(x,t)u' ~ Au + F(u) =0 (1.2)
with K(x,t) 2 0, K (x,0) =z a > 0 and K(x,t) = B > 0 was studied by Maciel [2].

Problem (1.2) was also studied by Mello [3] for F € C'(R), F(0) = 0, I'F (E)ME =0, F' dominated
0

by |s [, p >0, K; independent of ¢ non-zero inital data.

In[4] and [S), Larkin studied problem (1.2) with F(u) =| u |? u and F(u) =| u' |’ u', p > 0, respectively.
In both cases the initial data are zero.

Problem (1.1) with K(x, ) = 1 was studied by Ang and Dinh [6] with F € C'(R), F(0)=0and F = -C
with C >0 "small." They proved the existence of global weak solutions and the asymptotic behavior when
t approaches to infinity.

We denote by (,),|*},(()),]*] the inner and norm of LXQ) and Hy(R), respectively, and
a(u,v) = 2. 1 jof:i‘ k‘-‘-'-dx represents Dirichlet’s form in H)(S).

2. ASSUMPTIONS AND MAIN RESULTS.
We consider the following hypothesis:

(H.1) F :R - Ris continuous with sF(s) 20, Vs ER;
(H2) K€EC'(0,T] : L*(Q)) with K(x,1) = 0, (x,t) €Q and K(x,0) =0
M3) |5|s8+C@XK, Vb >0where C(8) is a positive constant.
Then we have the following result:
THEOREM 1. Under hypothesis (H.1)-(H.3) if G(s) = { F(EME and uy € Hy(RQ), G () ELY(Q)

then there exists a function & : [0,T] — LX) such that:

u €L"0,T : HY(Q)) 2.1)

u' €L°0,T : H)(RQ)) (2.2)

VK&, Ou' €L(0,T : LAKQ)) 2.3)

K'(x,tu' €LY0,T : H)(Q)) (2.4)

%(Ku',v) -(Ku,v)+a(u,v)+a(u,v)+(F(u),v)=0 in D(0,T),Vv EH)(Q) 2.5)
u(0) =u, (2:6)

(Ku')(0)=0 2.7

We divide the proof in two pafts:
i) We consider F Lipschitzian and derivable except on a finite number of points with sF(s) =0,
VsER.
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ii) We consider F continuous with F(s) 2 0, Vs € R and approximate F by a sequence (I"“)ME w

F, Lipschitzian and derivable except on a finite number of points with sF,(s) =0, VsER,
Vn €N, with F, — F uniformly on bounded sets of R.
2.1 LIPSCHITZIAN CASE
We have the following result:
THEOREM 2. Let F : R — R be such that sF(s) = 0, Lipschitzian and derivable except on a finite
number of points. Let be u, € Hy(Q) N HXQ) with G (1) € LY(RQ), where G(s) = f; F(EME.

Then there exists a unique function 4 : Q — R satisfying:

u EL®0,T; H(KQ)) 2.8)

u' €L"(0,T; Hy(RQ)) 2.9)

u" €LX0,T; HY(Q)) (2.10)

K(x,tu" - Au —Au'+ F(u) =0 in L}0,T; H(Q)) (2.11)
u(0)=u, 4 (0)=0. (2.12)

PROOF. Let (w,), <y be a basis of Hy(Q) N H(R) and V,, = [w,, ..., w,] the subspace generated by

the m first vectors of W,), ex-
2.1.1 APPROXIMATION PERTURBED PROBLEM

Fix € > 0 and for each m € N consider a function of the form

1al®) = 3 ginlt W,
such that u,,(¢) is a solution of the problem:
(K +&)u,,,w) +a(u,,w)+a(u,,w)+(F(u,),w)=0, VweV, (2.13)
u,(0) = u,, —u, strongly in Ho(Q) NH(RQ) (2.14)
u,(0)=0 (2.15)

By Caratheodory’s theorem, u,,.(t) exists on [0, T,[ , T.. < T. The a priori estimates will allow us to

extend u,,,(t) to whole interval [0, T].
2.1.2 A PRIORI ESTIMATES

I) Consider w = u,(t) in (2.13). We obtain

L] PN Ly 110K o
zdt[mu..nqu,l Anagez | a(u..nx] e’ =3] 5]
Integrating from O to ¢ < T,,, and using (H.3) we get:

K,u2) +€|ug )+ | u)?+2 I G(u,,)dx +2[||u;_|2ds
Q [}

<[ up]?+2 I Glug )x + J' [8]ui)? + CO)K,u2))ds
Q [)]
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By (2.14) and because G (u,) € L () we have:
jc(uo,)dx - jc(u.,)dx (2.16)
aQ Q
By (2.14)-(2.16) and Gronwall’s inequality, it follows that:
'
(K,u2)+¢| u;_|2+||u“|2+2 I G(u,)dx +(2-C9) jlu;nzds sM
Q 0

where M is a positive constant independent of €,m,¢,C is a positive constant such that |v|? < C|| v|? and

6<min[2,%} . Thus

¢
(K%u;_) is bounded in L*(0,T;L(<Q)) @17

(u.) is bounded in L“(0,T;Hy(Q)) (2.18)

(u,,) is bounded in L%0,T;Hy(RQ)) (2.19)

(Veu,)) is bounded in L°(0,T;L%()) (2.20)

I) Since F is Lipschitzian and derivable except on a finite number of points of R, we can differentiate
with respect to ¢ to obtain

K .
U
[at o

,w] +(Ku_,w) +€(u,,,w) +a(u,,w)+a(u,,w)+(F (), w)=0 (2.21)

Taking w = u,,(¢) in (2.21), we get

d " " . " " , "
el s 2]+ %,u,,f] +2AF (1) =0 222)
But
2(F (Wt ops ) < 2| F () ups| | en1 = 28| s | || (2.23)

where B is a positive constant.
Integrating (2.22) from 0 to 7 and using (2.14)-(2.15), (2.23) and (H.3), it follows that

t
(K,u,'f+e|u;|2+|u.'_|2+(2—6)Ilu;lzdv
(]

< ¢€|u, (0)| 2+c, I[I U LK, u:f)]ds (2.24)
[/

where C, is a positive constant.
Now, we are going to estimate the term & | ,,,(0) |*. Consider ¢ = 0 in (2.13), and w = u,,(0). Then
we get
¢4, (0)] = |Aug| +|Flue)<C (2.25)

where C is a positive constant independent of €, m and ¢.
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By (2.24), (2.25) and Gronwall’s inequality, there exists a positive constant M,, independent of €, m

and ¢, such that:

‘
K+t | P o]+ @-0) [us s =,
]

So,
(K%u,',,,) is bounded in L=(0,T; L)) (2.26)
(Veu,,) is bounded in L=(0,T;L%Q)) (2:27)
(4,) is bounded in L=(0,T; Hy(S)) (2.28)
(1., is bounded in L*0,T; H)(R)) (2.29)

2.1.3 Limits of the Approximated Solutions
From the estimates (2.17)-(2.20) and (2.26)-(2.29), there exists a subsequence of (u,,,), which we still

denote by (u,,), such that:

u, —u weakly —star in L%(0,T;H}(RQ)) (2.30)

u,, —>u weakly —star in L(0,T; Hy(RQ)) (2.31)

u, —u weakly in L0, T; H)(Q)) (2.32)
Veu,, —0 weakly —star in L™(0,T;L%(RQ)) (2.33)
Ku,, —Ku" weakly —star in L"(0,T;L%()) (2.34)

By (2.18), (2.19) and compactness arguments we conclude that there exists a subsequence of (u,,),
which we still denote by (u,,,), such that:
u,, —>u strongly in LX0,6;L¥(Q))=L%Q). (2.35)
Thus,
u,, —u almost everywhere in Q .
whence, by (H.1) we have
F(u,,)— F(u) almost everywhere in Q (2.36)
Since K € C'([0, T; L™(R)), using (2.32) we obtain
(Ku.) is bounded in L*Q) .37
Then,
Ku_ —>Ku' weakly in L%Q) (2.38)
Taking w = u,,(¢) in (2.13), integrating from 0 to  and using (2.18), (2.19) and (2.37), we get

J’ Fu (), (t)dxdt s C (2.39)
Q

where C is a positive constant.
By (2.36), (2.39) and Strauss’s theorem (see Strauss [1]) it follows that

F(u,)—F(u) weakly in L'Q) (2.40)
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Multiplying (2.13) by 8 € LX(0, T), integrating from 0 to ¢ and taking the limit asm — « and € — 0,
we obtain, by (2.30)-(2.34), (2.38) and (2.40):

[ I: Ku"edx,m] +(J'T-Aued¢,w] +( f —Au'ed:,w) +

0 0

T
IF(u)Odt,w =0, YVwev,.
)

Since the V,, is dense in Hy(w), the above equation is true for all w € Hy(Q) and the proof of (2.11) is

complete.
The initial conditions (2.12) are obtained from (2.30)-(2.32).
The uniqueness is trivial because F is Lipschitzian.

3. PROOF OF THEOREM 1

We first approximate i, by a sequence of bounded functions ("01’):' enin Hy(R). In fact, let’s consider
s if |s|sj
Bis)={ j if s>j
—-j if s<-j
it follows by Kinderlher-Stampacchia [8] that (1) = uy; € Hy(Q), V; €N, uy; — u, strongly in Hy(Q) and

gl = o] -
Let (F,), < x be a sequence of functions defined by:

(-ﬂ)[G(s—%)—G(s)] if —'r]sss-’ll
Fn(S)'<(n)[G(”?li)"G(‘)] i %‘-“ﬂ

linear by parts on —11] <s s% with F,(0)=0

(appropriated constants for |s|]zm

where

G(s)= [ F(EME .

It follows, by Strauss [1], Cooper-Medeiros [7] that F, is Lipschitzian, for eachn € N, sF,(s) =0 and
F, — F uniformly on the bounded sets of R. If we consider G,(s) = {'F,.(‘g)dg we get, G,(0) =0 and
5G,(s)=0,VsER, VnEN.
Let ¢,; € D(R) such that
¢,; — uy; strongly in H)(Q) as p—o (3.1)

It follows by Theorem 2 that there exists a unique function u,, satisfying the conditions:
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u,;, EL0,T; Hy(Q))
Uyjn € L7(0, T; Hy(R))
u,, €LY0,T; Hy(RQ))
Kuyyo - Auy;o —Auy, +F(u,, )=0 in L¥0,T;H(Q))

Uyjn(0) = &y » u;”.,‘(O) -0
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(3.2)
(3.3)
(3.4)
(3.5)
(3.6)

We now prove that u,;, converges to u and u is the solution of Theorem 1. Taking the inner product

of (3.5) by u,;, and integrating from 0 to ¢ < T, we have:

t
' ' 2
Kot + Dtgnl +2 [ G +2 [ a5
Q 0

T
<]9,1%+2 J’ G,(6,,)dx + J' [8 | usyy P +C@O)K,u2)] ds .
Q [
Since u,; is bounded in Q, fixing j, we obtain:
F,(uy(x)) = F(uy(x)) uniformly in Q as n—o,
[ Gu@ute~ [ e it pssoo.
Q Q

and

(G (1yj(x)) = G(uy(x)) uniformly in Q as n—»>oo.

3.7

(3.8)

(3.9)

(3.10)

Whence, there exists a subsequence (Gm’),- enof (G,,)“e » Which we still denote by (Gi)i e such that

le,.(uo,-)-G(uo,-)ldwo if joo.
°]

(3.11)

Moreover, G (ug;) — G (4y) a.e. in Qand G (uy;) < G (). Since G (i) € L'(Q), by the Lebesgue’s dominated

convergence theorem we get

f | G(uy;)-Gup) |dx =0 as j—oo,

Q
Thus, by (3.11) and (3.12), it follows that

[ Giutx = [ Gtz as j+eo
Q Q
By (3.7), (3.9), (3.13) and Gronwall’s inequality, we have

t
(K,u2) + ] +2 J' G(u,ydx +(2-C5)J'||u;,.,||’dxsc,
Q [

where C is a positive constant independent of y, j and t.

(3.12)

(3.13)

(3.14)

Then, there exists a subsequence of (4y;), e w» Which we denote by (4,;),ey- and functions u; and u

such that
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K'""u,; — K",  weakly -star in L(0,T;L%Q))
u, —>u weakly —star in  L7(0,T; Hy(RQ)) (3.15)

A weakly in L*0,T; Hy(Q))

W

as p — oo, and
K'"u'; > K"’ weakly - star in L%(0,£; L))
u; —>u weakly — star L0, T; H}(Q)) (3.16)
u';—>u' weakly in L*0,T; Hy(2)

as j — o,

Moreover, by (H.2) and K'?u’,; € L™(0, T; LA(Q)) if follows that:

Ku',; EL™0,T; LY(Q)) (3.17)
and
Ku',; — Ku'; weakly —star in L(0, T: L)) (3.18)
aspu — oo, and
Ku'; — Ku' weakly - star in L°(0,T;L%(Q)) (3.19)

8Sj —> 00,
By (H.2), (H.3), (3.3) and (3.4) we get
(Ku'y €LXQ). (3.20)

So, by (3.18) and (3.19) we have that Ku',; is weakly continuous of [0,T] in L%). Moreover,
(Ku',;)(T) is bounded in LX(Q).
Multiplying (3.5) by u,;(¢) and integrating from 0 to T, we obtain

aK ’ T aK ’ ’
(-;t—u uii"‘uii) dt+f (-&—u uii’"m‘i)ld‘
(]

+ I T|a(u'”ji,uuﬁ)|dt +| (Ku' ;) (T), u, i (T))| +](Ku',;)(0),4,;(0))] - (3.21)

0

J| g = [puaa [

Using (H.2), (H.3) and a priori estimates, it follows that
iFi(u"ﬁ)udedt =C, (3.22)

C positive constant independent of p, j and ¢.

Just as in Theorem 1, we prove that:

Fju,;)—>F(u;) ae.in Q as p—>o (3.23)
whence by (3.22), (3.23) and Strauss’s theorem (see Strauss [1]), we have
Fu,;) = F{n,) weakly in L(Q) as p—» . (3.29)
Also, by (H.3) and (3.14) it follows that
(K'w',;) is bounded in L¥(Q). (3.25)

So
K'v'; —K'u'; weakly in L(Q) as j = (3:26)
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and
K'u'; = K'u' weakly in LYQ) as j — . (3.27)
Multiplying (3.5) by w = v8 with v € Hy(Q2) and 8 € (0, T), integrating from 0 to T, taking the limit
as p — o, and using (3.15), (3.16), (3.18), (3.24) and (3.26) we get
d ’ ’ ’ : !
d_t(Ku V)= (K'u,v)+a(u,v)+a(u',v)+(Fy),v)=0 Vv EH)RQ) in D'(0,T). (3.28)

u;(0) = uy; and (Ku';)(0)=0. (3.29)
Moreover, by (3.24), it follows that:
Fj(u,) — F(u) weakly in L(Q). (3.30)
Taking the limit in (3.28) as j — « and using (3.16), (3.19), (3.27) and (3.30) we prove (2.1)-(2.5) in
theorem 1.
It’s not difficult to check that u(0) = 1, and (Ku')(0) = 0.
REMARK. Replacing (H.2) by (H.2)’ K € C*([0,T]: L*(Q)) with K(x,0)= a >0,
K(x,t)=0, (x,t)EQ.
we get with the same arguments
THEOREM 3. Under hypotheses (H.1), (H.2)’, (H.3) if G(s)= {‘F (EME and u, € H)(RQ),
u, € LYRQ), G(1,) € L'(Q), then there exists a function & : [0, T] = L¥Q) such that
u EL°(0,T; Hy(RQ))
u' €LY(0,T; Hy(RQ))
vKu' €L70,T; L))
K'u' €LX0,T; Hy(Q))
Ku'" —Au - Au’ + F(u)=0 in the weak sense in Q
u(0) = u,
u'(0) =u,
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