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ABSTRACT. Explicit finite algebraic formulas are given for some well-known

sequences, including complements of polynomial sequences.
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1. INTRODUCTION.

Z
/For each integer n > I, we may define the function f on the set ofn

positive integers, by fn(i) the th positive integer which is not a perfect

nth power. For example, the first several terms of the sequence <f2(i)> are

2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17. In [1], the formula

f2(i) i + [/i + [/f] (1.1)

is established, where Ix] denotes the greatest integer less than or equal to x.

Similar formulas can be found in [2] and [3]. The authors of [4] extend this

result by deriving an explicit formula for fn" Indeed, the theorem in [4] gives

I/n] + [i/p(n,i)],f (i) i+ [i
n (1.2)

where p(n,i) [i I/n] + )n [iZ/n].
Furthermore, the authors define a function to be elementary if it has an

explicit finite formula involving only the elementary algebraic operations of

addition, subtraction, multiplication, division, roots, powers, and greatest
integer. A sequence s <si> is elementarily generated (e.g) if there exists

an elementary function f for which f(i) s i, 1,2,3 If the sequence

s is an injective (strictly increasing) sequence of positive integers, the

complement of s, s, is the subsequence of <1,2,3 > obtained by deleting all

terms of s. For example, if s <i2> <1,4,9 >, then <f2(i)>. A
cardinality argument shows that there are uncountably many sequences which are

not e.g.

It is the purpose of the present paper to answer some questions raised in
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[4], to broaden the scope of results from [1], [2], [3], and [4], and to address some

notions related to e.g. sequences. Several open problems will be posed for readers.

We initiate this study by showing that some often-used functions are elementary.

Henceforth, we call elementary functions ’e.g.’.

Exa}|e I. The absolute value function is e.g., since the absolute value of x

is v/-X2o
Examp|e 2. As a consequence of the division algorithm for integers, the residue

function modulo k, rk Z+ {0,1 k-l} given by rk(n) n mod k, is e.g. The

expression n mod k denotes the remainder left when n is divided by k. This func-

tion is elementary because surely

rk(n n [n/k.

For example, r5(22) 22 mod 5 2 22 20 22- [22/5](5).

Exale 3. The very useful Kronecker delta functions

n=k;k, (k a fixed positive integer)n
0 n# k

are e.g. We leave it to the reader to verify that

k- n mod k
6k,n k + [(n-l)/k]

n> I.

These e.g. functions will be used throughout the remainder of this paper.

It should be noted that e.g. functions are closed under addition, multiplica-

tion, and composition. Moreover, if f(n) and g(n) represent two e.g. sequences,

the "shuffled" sequence

h(n) If((n+l)/2) n odd;

g(n/2) n even

is also e.g., for
h(n) c(n)f((n+l)/2) + d(n)g(n/2),

where c(n) [(n+l)/2] In/2], and d(n) [(n+2)/2] [(n+l)/2].

2. FINITE SEQUENCES OF POSITIVE INTEGERS.

We now show

Proposition I. Every finite increasing (injective) sequence of positive

integers, and its complement, are e.g.

(i) If x1< x2 < xn, finding an e.g. function f generating the x

is similar to constructing an interpolating polynomial (see [5], for example)
through the n points (1,x 1) (n,Xn). If for each 1,2 n, we define

gi(x) (x-l)(x-2)...(x-i+l)(x-i-l)...(x-n), so that gi(k) 0 when # k, then
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the e.g. function

f(x) Xl xgl(x) + + n gn(X)
g! gn (n)

satisfies f(i) x i. Alternatively, one can use Kronecker delta functions.

(ii) The complement of the sequence <Xl,X2 Xn> is also e.g. The set

{m" m < xn, m # x 1, x 2 xn} in increasing order represents a finite sequence;

hence there is an e.g. function generating it, by (i). Suppose this set has

cardinality t. We need an e.g. function h for which

h(i) | f(i)

x
n
+ (i-m)

i < t;

i > .
If we define

h(i) 61,1f(1) + + 6t,lf(t) + (I-81, i
-6

then h satisfies (2.1).

t,i) (Xn+i-m),

(2.1)

3. COMPLEMENTS OF POLYNOMIAL SEQUENCES.
As mentioned in the introduction, the authors of [4] derive formula (1.2), and

thus establish that the complement of the sequence <xn> is e.g. for every positive

integer n. They ask whether indeed the complement of every increasing e.g. sequence
is again e.g. This question remains open, but our following improvement on their

main result induces a guess that the answer may be ’yes’:

Conjecture I. Let f(x) be a polynomial of positive degree in the indeterminate

x, and each of whose coefficients is a non-negative integer. Then of course the
sequence <f(i)> is strictly increasing and e.g. The complement of this sequence
is also e.g.

In order to establish the second conclusion in Conjecture 1, we first obtain

some preliminary results. In fairness to the reader, we state the above result as
a conjecture rather than a theorem.

(i) Complements of axn; n, a > O.

Let f(n,a){i) the th positive integer which is not of the form axn, for

some fixed positive integers n and a, (n,a) (I,I). For a and n at least 2,

f{n,a) is precisely the function fn given by {1.2). We define for integers > 0

/n
andz

(n,a) (1) (i/a) z;

p(n,a)(/L) a(z + 1) n z --- p.

Then we may prove

Theorem 1. f(n,a)(i) + Z(n,a)(i) + [i/P(n,a)(i)].
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The proof of Theorem is long and is similar to the proof of the Theorem found
in [4]. The approach of the current author consisted of establishing that exactly

k integers from the set (1,2,3,..., akn+k) are omitted from the sequence <f(n,a)(i)>;
that is, f(n,a)(akn) akn + k. (See the Lemma in [4].) Next, if the sequence skips

an integer, then that integer is of the form axn; that is, the (akn-k)th term

akn, the (akn-k+l)th term > akn, and the (akn)th term akn + k. Finally, the

sequence is shown to be increasing.

Computer-oriented readers will find that confirming the accuracy of Theorem 1,
and subsequent results, for integers less than, say, 1 million, is both instructive

and rewarding.

As an i11ustration of Theorem I, consider the polynomial 5x4. Then f(4,5)
generates the complement of the sequence <5, 80, 405 >. The lOOth term of the

complement is 102. Indeed, z(4,5)(I00 [(100/5) I/4] 2; p(4,5)(100) 5(2+I) 4

2 403; and f(4,5)(I00) 100 + 2 + [100/403] 100 + 2 + 0 102.

The Theorem in [4] comes as a corollary to Theorem I.

(ii) Complements of axn + b; a, n, b > O.

Let g(n,a,b)(i) be the th term of the complement of the polynomial sequence

<axn + b>. Since x > O, g(n,a,b)(i) for b. Then, with the result of

Theorem 1, for > b, g(n,a,b)(i)__ is the sum of b and an element of the complement

defined by <axn>. Explicitly, we have

Theorem Z. g(n,a,b)(i) 61,i(I + 2,i(2) + + b,i(b) +

(I l,i b,i)(f(n,a)(i-b) + b).

For example, the 106th term of the complement of <5x4 + 6> is 108 102 + 6

f(4,5)(I00) + 6 f(4,5)(I06 6) + 6.

Likewise, the terms of the complement of <axn + bxm>, n > m, are "systematic"

sums of a term of <bxm> and a term of the complement of <axn>. Inductive arguments
then show that complements of sequences generated by polynomials of positive degree
with non-negative integer coefficients are e.g. These proofs are omitted. They are
involved and their details must be left to the interested reader.

As an example, however, let p(x) 2x2 + 3x. The sequence <3x> is equal to

<3, 6, 9, 12, 15, 18, 21,...>, and the complement of the sequence <2x2> is r

<1, 3, 4, 5, 6, 7, 9, 10, 11 15, 16, 17, 19, 20, 29, 30, 31, 33,...>. The

first four terms of the complement t of <2x2 + 3x> are 1, 2, 3, and 4. Subsequent

terms are generated by the following chart.
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th term of t term of <3x> + term of r

5 6 3 + 3

6 7 3 + 4

7 8 3 + 5

8 9 3 + 6

9 10 3 + 7

10 11 6 + 5

11 12 6 + 6

12 13 6 + 7

13 15 6 + 9

21 23 6 + 17

22 24 9 + 15

23 25 9 + 16

24 26 9 + 17

25 28 9 + 19

37 40 9 + 31

38 41 12 + 29

etc.

We leave as a problem the following question posed in [4].

Open Problem 1. Is the complement of an e.g. sequence again e.g.?

Perhaps a non-e.g, sequence may be described as a "discrete transcendental"

function. As mentioned in the introduction, there are uncodntably many of these.

The existence of a non-e.g, sequence may be shown, nonconstructibly, with the

Axiom of Choice. Let {Ai} be a countable collection of mutually disjoint sets

Z+of positive integers Use the Axiom to define a function h on such that h(i) e

Ai, 1,2, These "choice" functions cannot be exhibited.

Open Problem 2. Exhibit a non-e.g, sequence of positive integers.

It is a conjecture that the sequence of prime numbers and the sequence of

composite numbers are nonle.g. The partition function (see [6], Chap. 10) may

also be non-e.g.
Finally, is there a connection between non-e.g, functions and sequences

related to the decimal expansions of transcendental real numbers in the unit

interval [0,1]? Define an equivalence relation on the set of all sequences via

<an> <bn> if the base-ten decimal numeral formed by juxtaposing (or concatenating)
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the terms of <an> is equal to that formed from <bn>" in other words if O.ala 2
O.blb2 For example, the sequence <1,2,3,4 > is equivalent to the sequence

<12,34,56 >. Which equivalence classes define irrational numbers? Which ones

define transcendental numbers?

4. RATIONAL, IRRATIONAL, AND TRANSCENDENTAL REPRESENTATIONS.

Every rational number has an e.g. representation. For example, consider the

rational decimal r 0.717171 Then

r .7! + .0071 + .000071 +

71 + 71 + 71 +

102 104 106

o: =o (4.1)

The geometric series (4.1) is convergent, and is the limit of its partial sums

S
71

n ( .i 71 10
-2(n+t)

n 102
Z

I07i=O I02-I
If we now define for n > I,

a 102ns 7l (102n_ l),n n-I 102_I

then a 71, a2 7171, a 3 717171, etc. Thus r is the decimal formed by juxta-

position of the terms of <an>.
In general, let x O.a B be a rational decimal between 0 and I, where a is

the non-repeating part of x, and b is the repeating part of x, comprised of t digits.

(For example, if x 0.56][9-, then a 56, b 892, t 3.) Then x may be formed by

juxtaposing or concatenating the terms of the e.g. sequence

a + (1- 61 n
). b(lOt(n-l) 1).f(n) l,n lot_l

Thus we have

Proposition 2. Every, rational decimal has an e.g. representation; in particu-

lar, it is exponentially generated.

It is not the case, however, that every exponentially generated sequence gives

rise to a rational number, or even an algebraic number. For instance, the number

generated by <10_jl"> is transcendental! (See [7, p. 92].)

Many irrational decimals, however, are e.g. For example, f(n) n gives rise
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to the irrational 0.1234 The irrational number 0.121122111222... can be formed

by "shuffling" the terms of the sequence <I, 11, 111,...> with those of <2, 22,

222 >. Both of these sequences, and hence their shuffled sequence, are e.g.

Finally, every real decimal has a non-e.g, representation by the Axiom of

Choice, but uncountably many have no e.g. representation. This prompts the

following open question.

Open Problem 3. Is a real decimal which has no e.g. representation necessarily

transcendental?
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