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ABSTRACT. The lower semi-continuity of best approximation operators from

Banach lattices on to closed ideals is investigated. Also the existence of

best approximation to sub-function modules of function modules is proved. The

order intersection properties of cells are studied and used to prove the above

results.
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1. INTRODUCTION AND DEFINITIONS.

During the last 20 years a series of papers have been concerned with

continuity of the set valued metric projection from normed linear space on to

proximinal linear subspace. Throughout this paper we deal with approximation

of elements of the Banach lattice E by elements of a closed ideal G. For x E

we shall denote by d(x,G) inflix- gl] the distance from x to G. Every go e G

for which [Ix- go[ d(x,G) is called a best approximation of’x in G. We shall

denote by

PG(X)--- f g G Ilx-gll--- d(x,G)} {I.I)

the set of all best approximation of x by elements of G. The set valued

mapping P E -- 2G0 which associates with each element x of E its {possibly

empty} set of nearest elements in G, is called the metric projection of E on

to G {or the metric projection of E associated with G}.

In recent years, there has been considerable interest in continuous

mapping s E G with the property that s{x} PG{x} for every x E.

Such a mapping, if exist, is called a continuous selection for the metric

projection PG The available results on continuous selections for the metric

projection PG deal primarily with there existence, which follows directly from

the lower semi-continuity of PG according to a result of E. Michael [8].
For set valued mappings, various concepts of continuity are defined as

follows.
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DEFINITION 1.1.

x E x o U # 0 s open for each open set U in G.

{II) The metric proiection PG s upper semi-continous [u.s.c.) if he

st
/

x E PG{X} o C is closed for each closed set C in G.

(III} Finally, G is continos lin the Hausdorff metric topology} if

x x imphes

max sup d(g,PG{X}): , g PG(X} sup d(h,eG(X}): h PG(Xn) 0.

Continitv in Hausdorff metric topoloCy can be easily shown to imply

l.s.c.). If PG[x is compact for each x in E then the Hausdorff metric

topology iml,lies {.s.c. }. Finally, if G is boundedly compa-t {G interse(’l s

every closed sphere in a compact set} then PG is always {u.s.c.} and Hausdorff

metric topology is equivalent to {l.s.c.}.

The metric projection is {l.s.c.} or {.s.c.} only for restricted class

of subspaces. For example, I. Singer [12] has proved that the metric

projection associated with an approximatively compact subset G of a normed

linear space E is {u.s.c.). Hence, in particular PG is {u.s.c.} if G is a

linear subspace of finite dimension. But even if G is a linear subspace of

finite dimension G may fail be {l.s.c.) as A. J. Lazar, P. P. Morris and

D. E. Wulbert have shown in

A subspace G is proximinal if PG{x)
DEFINITION 1.2. A normed linear lattice is a normed linear space which is

also a vecr lattice, in which the order and the norm arerelad as follows

[x y implies [x a y[. If the space is complete, it is cled Banh

ttice.

DEFINITION 1.3. A Banh lattice

whenever elements x, y and two collections (.(xa,ra)t,eh, (.(y,,s,)tB of

cells are given in E satisfying

(1) xa X y Yb for each s,b

{} B(x.,r.) (b,Sb) for eh

B(.,.) d B(,)
b

then

A Banach lattice E has the f.o.i.p. (finite order intersection property)

if the above property holds when the index sets A and B are finite. Also It

is known that f.o.i.p., the splitting property and f.o.i.p, in the case JAJ
BI 1 are equivalent

we now list some examples of Banach lattices with the f.o.i.p.

(I) If E is an (AL)-space, then it has the f.o.i.p.

(2) Every injective Banach lattice {and any closed ideal of it) has the

f.o.i.p.
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(3) The space C(x) has the f.o.i.p, if and only if X is Stonian.

{4) Any {AM)-space has the f.o.i.p.

For the proofs and general treatment of injective Banach lattices and Banach

lattices that have the f.o.i.p., we refer the reader to D. Cartwright [3]
The following fundamental properties of meet, join and the absolute value

will be used freely in the sequel

{1) x + y x v y + x ^ y

(2) Ix + Yl Ix[ +

(3) [Ix ly[[ < [x-
141 lx-x^zl =[xz-zl.
(5) Ixl ^ IY[ 0 if and only if

i6} x ^ {y + z} {x ^ y} + {x ^ z} for all x,y,z > 0

7 Ix- y[ =xv y-x^ y.

We will prove the following results:

Let E be a Banach lattice with the finite order intersection property,

a closed ideal of E. For each x in E define

x} g PG(X} < x, and - PGlX1 (1.2)
O

Then the set valued real)ping PG is lower semi-continuous.

Let F_, be a function module and ,, a s,b-C(T)-module of I,v. If for each

in T, E is a Banach lattice with the f.o.i.p, and the fiber G is an ideal in

IqOTIVATION. It has been shown in [11] that closed ideals in injective

Banach lattices are always proximinal and the metric projections associated

with ideals are always l.s0Col. These results and the fact that injective

Banch lattices have the splitting property lead us to think about the above

results do hold not only in injective Banach lattices but also in Banach

lattices that have the f.o.i.p. The existence of best approximation to ideals

2. NE’rRIC PROJEe’rIONSo

In order to prove the results stated in the introduction, we need the

following partial results which perhaps are interesting in themselves.

PROPOSI’rION 2.1. Let E be a Bnach lattice, (3 a proxiinal ideal in Eo

Then for each positive element x of E, the following hold;

Ill d(x,G) d(x g, G) for each lxsitive g in 13

121 x ^ g PGlX) and g PGlX v g) for each positive g PGlX).
{3) {f v g) ^ x PG(x) V f, g > 0 such that f e G and g PG{x}.
PROOF. {1) Let go respectively (h) be an arbitrary but fixed element of

PG(x) PG{x v g) ). Write x x v g + x ^ g g. Then

d(x,G) Ilx- goll Ilxvg + (x^g g go)ll d(xvg. G) (2.1)
(since- {x^g g go} G). Similarly,

d(xvg,G) l[(xvg}- h

llx goll d(x,G) (2.2)
(since [ix ^ g) g + h ] in G) and the result follows from {2.1) and {2.2)

together.
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{2) Ix {x ^ IZ) x- {x ^ g -< x v x ^ I Ix- I and then

[[x- (x A g)[[ ][x- g[[ which in turn implies that x A f PG(X)
(since x A g G). Similarly

J(x v g)- gJ [x- (x )J implies Jl(x v g)- 11 Jlx- (x g)ll

IIx gll d(xVg,G).
( - t" g ! I- g ! (inc g [’ ) impie

IIx (f v ) xll Ilx g x d(x,G), hence x- [f v z) a xll d(x,G).
PROPOSITION 2.2. Let E be a Banach lattice, G a closed ideal in E and

an element of E. If is an element of G and e is a sitive real number such

that II- II r where r d(,G) ), then there is an element I in G

such that + s % and II- r + .
PROF. Define * =- " IPl, = * II .d = .Te.,

I- I " ’ + - ’ (ince " ’. (- - O)

I"I- ( "’" II +"-* II)

+ -" II I"I- II * II
I,.,_ I- I.

Thus, we get llq q- B s r + .
PROPOSITION 2.3. Let E be a Banh lattice with the f.o.i.p., G a closed

ideal of E and q an element of E. If is an element of G such that p+ s a- s q- and llq s r + , then there is an element in G such that

II- II s r and - ( e

PelF. Let 0 be a sitive best a approximation of lal such tha 0

(for the exisnce of 0 see F. A. Sejeeni [II]). Now,

[z B(II,). B(l"l,r) * (.i.e III III " + )

(3) lPl e B(II,) and I v O e

Then there exist a o in JIll,IS[ v 0 ] B(II,) B(ll,r). Define

+o A and o A ( a 0) and no that,

+ -) o A a* + O A - 1 + v AI:

hve haL o t+ + t-. e II show LhL t t t- is Lhe desired elemenL

G. To see Lhis, no LhL,

I’ ’"I I -,I

* a* lJ, O- ’ l#J and JffJ o implies that #* * and #"

PROSITION 4. Let N a Bah ttice th the f.o.Lp, and G a

closed ideal in Then for eh x in E, the set {x} is a nonempty cloud

subset of G.
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PROOF. Let gl respectively {g2) in PG{X/) {PG(X )) be such that 0 < gl

x 10 gz < x 1. Let h in PG{Jxl) be such that g + g2 < h Jx I. Put g

:1: g pG{ x:l:)x ^ h and g g g- { and [g[ PG{lxl) ). Now, let f be an arbit-

(since Ix gl Ixl Igl ) hence g PGlX). To see it is closed we may

assume with out loss of generality that Plxl is infinite, Let {g} be

g xsequence in Ix) converging to g, then g and gn A gn

d{x,) implies that g e lxl,
REMARK. In the following example we will show that it is not always true

that if g PG{X), then gv PG{XV)
EXAMPLE. Consider the Banach lattice E =Cl[oJ{]l, and the ideal G

tg f- E gl[/2, ] 0t. Let x E be defined by x(t, max {- (t),0

{sin{t))-. Then the element g G, defined by g(t)=- max

(sin(t))* belongs to PG{X) and yet g- g does not belong

(since x- 0 G)
PROPOSITION 2.5. The set valued mapping P E 2

G
is (l.s.c.) if and

only if for each sequence {x in E converging to x and foreach g P(x),

there is a sequence {gn in G with gnf P(xn) and gn converges g

PROOF. Assume that P is (l.s.c.), {xn} a sequence in E converging to x

a,d g P{x). The set U B{g,2-k) G is open in G {k ). Then by (l.s.c.)

of P the set Uk (y E P{y) Uk$ } is a neighborhd of x. Hence,

there exists an integer N such that xnf k’ and then, P(xn} o U
k

# for

each n N k. Now, We can select a sequence {gn such that gn P(xn) and

[[gn- g]] 2"k (n Nk).
Now, assume that P is not {l.s.c.) then for some open set U in G the

set { y, E P(y) U $ is not open. Let x be such that, each

neighborhd V of x intersects c in a nonempty set Rc is the complement of

}. Let, g e P{x) U, and for each n , pick x in B{x,2-n) c. The

sequence {xn} converges x, but it is imssible for any sequence {gn} with

gn P{xn) converge g {since U is a neighborhd of g and

THEOREM 2.6. Let E be a Banach lattice with the f.o.i.p, and G a closed
0

2
G

ideal in E. Then the set valued mapping PG E defined by P {x)

{g e PG(X): g x, ge PG(X’)} is always (l.s.c.).

PROF. First, we will show that the result holds for positive elements.

For, let Xn be a sitive sequence in E converging x {x 0), and

g P{x). For each n , let hn PG{Xn) If is a sitive real number

then, we have

{I} g ^ x < g ^ x (g v h ^ x x
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since IIx g ^ x Ix xll + IIx- gll + IIg g ^ x

< e/ + r + el < I + (r + el) +

V n > N where rn d(xn’G) and r

Then for each n N there ia a g in

[g Xn, (g v h a x ] B(g a x ,) B(xn,rn). Now, for n ke

3max ’x-x’,n ,r-r,n ’g-g x’, ). Thus we can select a sequence

such that gn PGlXn} and gn- (g A Xn) e The sequence {g,} is the

desired sequence since figs- g g figs- Ig x II + IIg
Now, let {x } be an arbitrary sequence in E converging x and g an

arbitrary element of lxl. Then by the above there are sitive sequences

tfn}, (hnt and /kn/ in G such that fn FG(Xn) hn kn
f g h g and k g We may assume without loss of generality

that f + h k (otherwise set k k v (f + h 1). Now set gn x k f. xna kn a h. gnV PG(xln and gn= gn g: (it is obvious that gn g).

’Io complete the prf, we will show that gn G{In }" To see this let y be an

inequality holds since xn- yl mxn yml while the second one holds

because k P (Ix.l. But, I I g.I g. + g

IxnIA kn= kn, then I..- ,I ,.,I l,x.,-
implies that I=.- dtxn’G) i.e., gn PG{xn}.

3. FUNCTION MODULES.

DEFINITION 3.1. Let A be a Banach algebra with a norm J A’ and let E

be a Banach space. We say that E is a Banach A-module if

{i) E is a left module over A in the usual algebraic sense;

aEA, xEE.

Let T be a nonvoid compact Hausdorff space (Et)tET a family of Banach

spaces. The product [[ E
t
can be thought of as a space of functions on T where

tat
the values of the functions at different points lie (possibly} in different

spaces. We will restrict our attention to the subspace

sup x(t) <H E [I Et: = (R)

tT tCT tT

(where . t is the norm on the Banach space Et).
DEFINITION 3.2. A function module is a triple IT, (Et)tT E, where T

is a nonvoid compact Hausdorff space (called the base space), (Et)tT a family

of Banach spaces (the component spaces) and a closed subspace of ]] E
t

taT
such that the following are satisfied:
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I1) b’, is a C{T)-mdule (where C(T) is the Banach algebra of all contin-

,,ous sc:l:t," valued functions on T) (f.)lt} fltl.lt} f e C(T), e E.
semi-cont intlous.

13) E

A sub-fuction module is a subspace which is a C{T)-module. A function module

of Baach lattices is a fnction module such that the components E are Banach

lattices a,d is closed under the the lattice operations and v which are

defined pointwise (1 v )(t) {t) v (t)).

DEFINITION 3.3. Let be a function module in E a sub-function
tT

modttle of [, and q an element of . Then,

(i) the element of is global best approximation of q if

tT
{ill the element is a lal best approximation of a if

LEMMA 3.4. Let be a function module of Banach lattices and a

sub-function module of such that the fiber G is an ideal in E t. Then for

each in and for each positive real numbers e there is an element in

r + e, ("(t))* ((t))* and (qlt))- (lt))-for eachsuch that a-

t T where r d(-,G) ).

((t))* I(t)l and 2(t)= (=(t))- IO(tll. Then e i= .
tT

Let 2’ then, for each t e T we have

((=(t)l* a(t)) + (((t))- 2(t))
I=(tl- I(t)l

l=tl v IO(t)l- ((=(t)l* IO(t)! + (=(t)l- IO(t)l)

l=(t)! v IO(t!- l=(t)l IO(tl

[l=(t)l- lO(t)ll I(t)-

II- II-Hence (t) (t) (t) O(t)

THEOREM 3.5. Let be a function module of Banach lattices and a sub-

function module of . If for each t T the space E has the f.o.i.p, and the

fiber G is an ideal of Et, then is proximinal.

PROF. Let be an element of e a positive real number and r

d(,G). Then by lemma 3.4 there is a in such that IIq- 11 r + e and

((t)) x ((t)) for each t e T. Now, by proposition 2.3 there is a gt in G

such that
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Put ft 1/2(l(t) + gt), then

=(t)- ftllt <r+ c/2 and lift-l{t}ll < e/2.

Let t : be such that t {t) ft and U a neighborhood of t such that for

each s U we have

the partition of unity subordinate toin T be such that T Ut and {fi }t1
i1

/Uti}l. Set l
l-,
’f‘ It‘ then for t z T

i1 i=

i1

i-I

< r+ e/2.

Similarly ,-,o e/2.

Taking e 2 (n e 11 we can construct a sequence {In} satisfying- I r + 2 and n In/1
The second inequality of {3.5} implies that (In is Cauchy, and then it has a

limit I in . The first inequality of {3.5) implies that e P; G{a)

PROPOSITION 3.6. Let T be a compact Hausdorff space, E a Banach lattice

with the f.o.i.p, and G a closed ideal of E. Then C(T,G) contains local and

global best approximation for each f in C(T,E).
PROOF. The existence of global best approximation follows from theorem 3.5

and the fact that the space C(T,G) is an ideal in the Banach lattice C(T,E).
For local best approximation we define P T 2

G by P{t) P(f(t))
(f{t)) is the set of all best approximation of f(t) in G satisfying(where PG

0 f), f is{1.2) ). Then set valued mapping P is {l.s.c.) since P (PG
0

continuous and PGis {l.s.c.). Let s be a continuous selection of P, then g

s f is desired element of G

Finally, we conclude this paper with the observation that in some cases

global best approximation always exists and yet the set valued mapping P

defined above admits no continuous selection at all as we will see in the

following.
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EXAMPLE. Let E= C{[0,1],) {the space of all continuous real valued

functions on [0,I] with [[f[] suplf{t}l}, the space of all f in E which
tET

vanish on [0,1/2]. If we take f E E to be the constant function f{t} 1

{t T) Then we have the following

G / {0} fr t [0’1/2]
and P{t,

{0} if t e [0,1/2]

e for t (1/2,1] {1} if t (1/2,1]
Thus P is a single valued discontinuous function on [0,1] which admits no

continuous selection at all.
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