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ABSTRACT. The lower semi-continuity of best approximation operators from
Banach lattices on to closed ideals is investigated. Also the existence of
best approximation to sub-function modules of function modules is proved. The
order intersection properties of cells are studied and used to prove the above

results.
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1. INTRODUCTION AND DEFINITIONS.
During the last 20 years a series of papers have been concerned with

continuity of the set valued metric projection from normed linear space on to
proximinal linear subspace. Throughout this paper we deal with approximation
of elements of the Banach lattice E by elements of a closed ideal G. For x € E

we shall denote by d(x,G) = infllx — gll the distance from x to G. Every g8, €G
9€G

for which lIx - g Il = d(x,G) is called a best approximation of x in G. We shall

denote by
Pi(x) = { g €G: lIx - gh = d(x,G) } (1.1)
the set of all best approximation of x by elements of G. The set valued
mapping P : E — 2G. which associates with each element x of E its (possibly
empty) set of nearest elements in G, is called the metric projection of E on
to G (or the metric projection of E associated with G).

In recent years, there has been considerable interest in continuous
mapping 8 : E —— G with the property that s(x) € PG(x) for every x € E.
Such a mapping, if exist, is called a continuous selection for the metric
projection PG . The available results on continuous selections for the metric
projection PG deal primarily with there existence, which follows directly from
the lower semi-continuity of PG according to a result of E. Michael [8].

For set valued mappings, various concepts of continuity are defined as

follows.
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DEFINITION 1.1.

(I) The metric projection ¥ 1s lower semi-continuous (lLs.c.) 1t the wet

\
{ X ¢ B Pctx) ny# ?‘} 1s open for each open set U in G.

(II) The metric proijection PG 1s upper semi-continuous (u.s.c.) if the
(

set Jl x € E: PG(x) NC#9% } is closed for each closed set C in G.

(III) Finallv, PG is continuous (in the Hausdorff metric topology) if

X =—— x implies
[ \

max | sup d(R,PG(x“)): g€ I’G(x) , sup d(h.l’G(x)): h € PG(x") — 0.
L .

Continuitv in Hausdorff metric topologv can be easilv shown to imply
(ls.ca)e If PGlx) is compact for each x in E then the Hausdorff metric
topology implies (u.s.c.)e Finally, if G is boundedly compact (G intersects

every closed sphere in a compact set) then P,

G is always (u.s.c.) and Hausdorff

metric topology is equivalent to (l.s.c.).

The metric projection is (Ls.c.) or (u.s.c.) only for restricted class
of subspaces. For example, I. Singer [12] has proved that the metric
projection associated with an approximatively compact subset G of a normed
linear space E is (u.s.c.). Hence, in particular PG is (u.s.c.) if G is a
linear subspace of finite dimension. But even if G is a linear subspace of
finite dimension PG may fail to be (lLs.c.) as A. J. Lazar, P. P. Morris and
D. E. Wulbert have shown in [7].

A subspace G is proximinal if PG(x) # @ for each x € E.

DEFINITION 1.2. A normed linear lattice is a normed linear space which is
also a vector lattice, in which the order and the norm arerelated as follows :
Ix| < |y| implies #x0 < NyM, If the space is complete, it is called Banach
lattice.

DEFINITION 1.3. A Banach lattice E has the order intersection property if

whenever elements x, y and two collections { B(x..r.) }-GA’ { B(Yb-sb) }b€B of

cells are given in E satisfying

(1) x, SxSySyb for each a,b

2) B(x..r‘) n B(Yb'sb) #0 for each a,b

(3) x € B(x..r_) and y € () B(yb.ab)

a b
then
[x,y] o [QB(K.,r.) ] e [QB(yb,sb) |EXE

A Banach lattice E has the f.o.i.p. (finite order intersection property)

if the above property holds when the index sets A and B are finite. Also : It

is known that f.o.i.p., the splitting property and f.o..p. in the case |A| =
|B] = 1 are equivalent .
We now list some examples of Banach lattices with the f.o.i.p.
(1) If E is an (AL)-space, then it has the f.o.i.p.
(2) Every injective Banach lattice (and any closed ideal of it) has the
f.o.i.p.
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(3) The space C(X) has the f.o.i.p. if and only if X is Stonian.

(4) Any (AM)-space has the f.o.i.p.
For the proofs and general treatment of injective Banach lattices and Banach
lattices that have the f.o.i.p., we refer the reader to D. Cartwright [3].

The following fundamental properties of meet, join and the absolute value
will be used freely in the sequel

(1) X+ y=xVy+xAy.

2) |x +y| s |x| + |yl .

@ 1xl = 1vl| < [x- 5] -
M |x-xAray)=|lxvy-y|.
(5) |x|] A |y| = 0 if and only if |x| v |y| = |x| + |¥] .

(6) x A(y + z) S(xAy)+ (xAz)for all x,y,z2 20 .

(7) lx-y'=xVy-xAy.

We will prove the following results:

Let E be a Banach lattice with the finite order intersection property, G

a closed ideal of E. For each x in E define

Po(x) = { g € Po(x) : g <x', and g€ PG(x‘) } (1.2)

Then the set valued mapping P((,:, is lower semi-continuous.
Let £ be a function module and € a sub-C(T)-module of E . If for each t

in T, E, is a Banach lattice with the f.o.i.p. and the fiber Gt is an ideal in
\

ml' ). Then G is proximinal.

E, (where G, = {1(1) :y1€e@

MOTIVATION. It has beel:x shown in [11] that closed ideals in injective
Banach lattices are always proximinal and the metric projections associated
with ideals are always (l.s.c.). These results and the fact that injective
Banach lattices have the splitting property lead us to think about the above
results do hold not only in injective Banach lattices but also in Banach
lattices that have the f.o.i.p. The existence of best approximation to ideals

in such spaces has been proved (see F. A. Sejeeni [11]).

2. METRIC PROJECTIONS.

In order to prove the results stated in the introduction, we need the

following partial results which perhaps are interesting in themselves.
PROPOSITION 2.1. Let E be a Banach lattice, G a proximinal ideal in E.
Then for each positive element x of E, the following hold;
(1) d(x,G) = d(x v g, G) for each positive g in G .

(2) x A g € PG(x) and g € PG(x v g) for each positive g € PG(x).

(3) (f vg)AXxE PG(x) Vf,g 20 such that f € G and g € PG(x).
PROOF. (1) Let g, respectively (ho) be an arbitrary but fixed element of
Ps(x) (PG(xvg) ). Write x =xV g + x A g — g. Then
d(x,G) = Ix - g Il = lxvg + (xrg - g - go)ll 2 d(xvg.G) (2.1)
(since — (xAg — g - go) € G). Similarly,
d(ng.G) = ll(xvg) - hoﬂ = Ix - [(x/\g) - g+ ho]ll
2 lIx - g I = d(xG) (2.2)
(since [(x A g) — g + ho] in G) and the result follows from (2.1) and (2.2)
together.
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2 |x-(xArgl =x-(xAgl<xvg-xAg=|x~-g| and then
Ix — ix A g)l < x — gl which in turn implies that x A g € I’G(x)

(since x A g € G). Similarly,

x = (x A g)l
Wx — gl = d(xvg.G).

(3) Ix—(tvg)rax| <]x-gAx| (since g A x < (fV g)Ax € x) implies

Jtx v g) — gl = |x — (x A )| implies l(x v g) — «l

Hx = (f v g) Axll <lix-gaxh=d(x,G), hence Ix — (f v g) A xll = d(x.G).

PROPOSITION 2.2. Let E be a Banach lattice, G a closed ideal in E and «
an element of E. If B is an element of G and ¢ is a positive real number such
that la = Bl < r + € ( where r = d(«G) ), then there is an element Yy in G
such that ¥* s o', ¥7 S o and fa - Yl < ¢ + €.

PROOF. Define ¥ =o' A |B], ¥ =a" A |B] and ¥ =7" - ¥ . Then,
e = y] =" = ¥") + (¢ = ¥7) (since («* = y") A (@ = ¥7) =0)
la] = (a® A | Bl + o A [B])
Sla| = (a® +a) A 18] = |«| = |«| A |B]

s lal v 1Bl - la| A 18] = |la] - |£]| < |« - B].

1]

Thus, we get Mo — Y0 < Hla - Bl < r + ¢,

PROPOSITION 2.3. Let E be a Banach lattice with the f.o.i.p., G a closed
ideal of E and « an element of E. If B is an element of G such that B' s a' ,
B  sa and Mo - BN S r + €, then there is an element Y in G such that ¥* <
o, Y s, la-yhl St and Ny - BN < €.

PROOF. Let € be a positive best a approximation of |«| such that 6 < |a|
(for the existence of O see F. A. Sejeeni [11]). Now,

(1) |8 < |B] < |B] v 6 < |a]

2 B(Bl.e) o B(lalr) #8  (since |lal - 181] < = + ¢)

3) 18] € B(18l.e) and |B] v 6 € B(|a],r).
Then there exist a o in [[B],|8] v 6 ] n B(I8l.€) n B(l«|,r). Define
1""'=0ra" and ¥ =oAra (7' A7 =0) and note that,
o=orfal=0Ar(@ +a)sora’ +o0ra =7+ 7 =7 vy . Also:
"vy=(ora’)v(cra)s(oala|l]) v (oA |a|]) =0 vo=0 Hence, we
have that 0 = y* + ¥7. We will show that ¥ = 7' — ¥ is the desired element of
G. To see this, note that,
e~ 7 = (o* = 3°) ¢ (« =) = |al = |yl = |lal - 71| impties | - o] =
l|cl| - |7|I £ r. For the second inequality, note that
B* < a’A |Bl, B~ < a’A |B| and |B| < 0 implies that B* < y* and B~ < 7.
l-8l=("-8)+ (7 -8)=I7l-18 = ||1| - Iﬂll impties |1 - 8] =

ot - 181) = Jo - 181] < <

PROPOSITION 2.4, Let E be a Banach lattice with the f.o.i.p. and G a
closed ideal in E. Then for each x in E, the set Pg(x) is a nonempty closed
subset of G.



LOWER SEMI-CONTINUITY 459

PROOF. Let g respectively (g,) in PG(x‘) (PG(x-)) be such that 0 < g <

+

x" (0 < g, < x). Let h in P (|x|) be such that g, + g, < h S |x|. Put g

XA h and g=g' -g (g; € PG(X;) and |g| € PG(IxI)). Now, let f be an arbit—

rary element of G . Then we have l'x - f|| 2 ulxl - |f||| 2 "le - |g|“ = le - gﬂ

(since Ix - gl = ||x] - |g||) hence g € l’g(x). To see it is closed we may
assume with out loss of generality that Pg(x) is infinite. Let {g"}ﬁ:_1 be a

sequence in Pg(x) converging to g€, then g: —_— g;. and g: A x* (= 8: ) —

g;A x; . Thus, we have g’ < x' and g Sx. ux - gu < Hx - gnu + lgn - Sa h—
d(x,G) implies that g € Pg(x).

REMARK. In the following example we will show that it is not always true
that if g € P_(x), then g' € P (x")

EXAMPLE. Consider the Banach lattice E = C[[o,n]]. and the ideal G =

{g €E: g|[n/2, n] = o}. Let x € E be defined by x(t) = max {- (sin(t)),0} =

(sin(t))” . Then the element g € G, defined by g(t) = — max {(sin(t)),0} =
- (sin(t))’ belongs to PG(x) and yet g = — g does not belong to PG(x—) = {0}
(since x =0¢€ G) .

PROPOSITION 2.5. The set valued mapping P : E — ZG is (l.s.c.) if and
only if for each sequence {x“} in E converging to x and foreach g € P(x),
there is a sequence {gn} in G with gn€ P(xn) and g, converges to g .

PROOF. Assume that P is (ls.c.), {xn} a sequence in E converging to x
and g € P(x). The set u, = B(g,z’k) n G is open in G (k € N). Then by (lLs.c.)

of P the set Uk = y €E: Py n U # [} is a neighborhood of x. Hence,

there exists an integer N, € N such that X, € Uk. and then, P(xn) nu, # @ for
each n 2 Nk. Now, We can select a sequence {gn} such that gne P(xn) and
g~ gl <27 (n2N).

Now, assume that P is not (l.s.c.) , then for some open set U in G the
set U = { y€EE: PyynUuU#9 } is not open. Let x € Y be such that, each

neighborhood V of x intersects U® in a nonempty set ( U° is the complement of
% ). Let, g € P(x) n U, and for each n € N, pick x  in B(x,2™") n U°. The
sequence {xn) converges to x, but it is impossible for any sequence (g“} with
g€ P(xn) to converge to g (since U is a neighborhood of g and gn¢ U, n€N

THEOREM 2.6. Let E be a Banach lattice with the f.o.i.p. and G a closed

ideal in E. Then the set valued mapping l’g t E— ZG defined by l’g(x) =

{g € P (x) : gs x, g€ PG(x*)} is always (Ls.c.).

PROOF. First, we will show that the result holds for positive elements.

For, let {xn} be a positive sequence in E converging to x (x 2 0), and
g € Pg(x). For each n € N, let hn € Pg(xn) . If € is a positive real number
then, we have

(1)gAangAan(thn)Aanxn

@) B(g A x€) n Blx,r,) # 9
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[since ”xn—gAxnISIxn-xl+ le—gl+lg—g/\x"l
<€/3+r+€/3<€/3+(rn+€/3)+€/3=rn+€
Von2 N, where r_ = d(x“,G) and r = d(x,G)]

(3) g A x € B(g A xn,t) and (g Vh ) Ax € B(xn.rn).
Then for each n 2 N, there is a g, in
[g A X, (g2 Vh)a x"] n B(g A xn,E) n B(xn,rn). Now, for n € N take € = €, =

3 max { llxn - xf, lrn -r|, Mg -g~A xnl }. Thus we can select a sequence {g“}

o
such that g € P.(x ) and Ign- (g A xn)l <€ . The sequence {gn} is the

desired sequence ( since “gn— gl < Ilgn— (g A xn)l + Mg A xn) - gh — 0 ).
Now, let {xn} be an arbitrary sequence in E converging to x and g an
arbitrary element of Po(x) Then by the above there are positive sequences
{f}, {h} and {k} in G such that f € P(x )» he€ P(x h k€ P(Ix I8
f —_ g N h ——> g and k —_— |g| We may assume mthout. loss of generality
that f+h < k, (otherw:se set k =k Vv (f + h)). Now set gn = an k, =f,

- - ¥ ¥ -
g, =xAk 2h [ g€ Polx) ] and g = 3; - g, (it is obvious that g g).

To complete the proof, we will show that g, € PG(xn)' To see this, let y be an

arbitrary element of G, then Ixn— y' 2 len| - lylu 2 lenl - knl [t.he first

inequality holds since |xn— vl 2 |xn| - |y|| while the second one holds
) - -

because k € PG(lx'n|)). But, |x"| 2 |gn| = g:‘ tg = x: Ak +x Ak 2

Iz, 1% k= ke then |, = o] = Jix,1 = 191] 2 Jix,1 - 1o, 1] =[x, - &,] wnsen

implies that |x — g | = d(x_,G) i.e. , g € P_(x ).
n n n n G 'n

3. FUNCTION MODULES.
DEFINITION 3.1. Let A be a Banach algebra with a norm l . | A’ and let E
be a Banach space. We say that E is a Banach A-module if
(i) E is a left module over A in the usual algebraic sense;
(ii) there is a positive constant k such that Iaxl <k 'alA le for all
a €A, x €E.
Let T be a nonvoid compact Hausdorff space (E ) a family of Banach

spaces. The product [} E can be thought of as a space of functions on T where
teT
the values of the functions at different points lie (possibly) in different

spaces. We will restrict our attention to the subspace

II E, {a € 1 E;: l l = :\é; Ia(t)l‘< 0}

LeT L€T
(where l . l . is the norm on the Banach space E ).
DEFINITION 3.2. A function module is a triple [’I‘, (E‘) €T EQ], where T
is a nonvoid compact Hausdorff space (called the base space), (E ‘) ceT & t’amily
of Banach spaces (the component spaces) and I'JQ a closed subspace of I'l E

teT
such that the following are satisfied:
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() E isa C(T)-module (where C(T) is the Banach algebra of all contin-
uous scalar valued functions on T) (f.a)it) = f(t)ha(t) f € C(T). o € Em.

(2) For every a € E,D , the map t +—— ||ﬂ(t)||t is upper semi-continuous.

) E = { aft) : a € E for every t € T.

(4){t:t€T,E #{0}}=T.

A sub-function module is a subspace which is a C(T)-module. A function module
of Banach lattices is a function module such that the components Et are Banach
lattices and Em is closed under the the lattice operations A and VvV which are

defined pointwise ((a v B)() = a(t) v B(1)).
o

DEFINITION 3.3. Let E_ be a function module in [l E , G a sub-function
teT

module of F‘” and @ an element of Em. Then,

(i) the element ¥ of Gm is global best approximation of a if

- sl = sup fowr - wo], =i { o=l 5 6, }

(ii) the element ¥ is a local best approximation of a if
“a(t) - )f(t.)"t = inf { ua(t) - gIIt 1 g €G, } ie., ¥ .€ PG;(a“)) (t €T).

LEMMA 3.4. Let Em be a function module of Banach lattices and GO a
sub-function module of E@ such that the fiber Gq. is an ideal in Et. Then for

each « in E_ and for each positive real numbers € there is an element ¥ in G

such that "0‘ - 7"00 sr+e (a)' s (3))" and («(t))” s (¥(t))” for each
t € T ( where r = d(o,G) ).

PROOF. Let B in G be such that ﬂd - BH‘»S r + € For t € T define 7,(t) =
®
(«(t))” A |Bt)] and v,(t) = («(t))” A |Bit)]. Then ¥, €1 G, =6, i=1,2
LET
Let ¥ = L A then for each t € T we have

Jatt) = ()] = I((a(n)' - (x))7) = (¥,(0) - 72m)|

l(‘““”’ - 7,1) = ((ac))” - 12(t))|

"

(@)’ =y, (1) + ((@c))” = 7,t))

= |a(t)] = |7(t)]
s Jat)] v |Be)] = (taced)™ A |Bt)] + (@)™ A |B(t)])
< lat)] v [B)]| = |a(t)| A |B(t)]

Jatty| - IBmll < Ja(t) = B(e)].

Hence “(x(t) - "t')llt < Ilu(t) - ﬂ(t)“t Sr + €,

THEOREM 3.5. Let E_ be a function module of Banach lattices and G a sub-
function module of Em. If for each t € T the space Et has the f.o.i.p. and the
fiber Gt is an ideal of Et, then G@ is proximinal.

PROOF. Let @ be an element of qu , € a positive real number and r =
d(«,G). Then by lemma 3.4 there is a 7 in G such that Ha -yl sr + € and
(l(t)); s (‘X(t)); for each t € T. Now, by proposition 2.3 there is a g, in Gt
such that
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||rr(t) - gl"‘ Sr and ||.;t - m)ut <e. (3.1)

put £ = 1/2(%(t) + g,), then

“a(t) - f1"¢ <r+€/2 and llfl - m)IL < €/2. (3.2)

Let 7, € G_ be such that 71“') =f and U a neighborhood of t such that for
each s € U‘ we have

||a(s) - 1t(s)ﬂ.< r + €/2 and ly(s) - 71‘5’H.< €/2. (3.3)

The collection { U'.I teT } forms an open covering of T. Let t‘, PR ,t.“

n
in T be such that T =V Ut and {fi}" the partition of unity subordinate to

i=1
lll i

{u }n . Set 7y = t 1 then for t € T
tl i=1 i1

| Efm.am— me.r w |

i=1

ﬂ 21"“) o (att) - 7%(“) ﬂ

Jectr - 7,0

1)

n
‘Z1|f‘(t)l Naw - 1ti(t))|

< r+€/2.

Similarly nr - 10' <€/2.

Ha - 1°||® Sr+¢€/2 and llr - 1°H® Se/2. (3.4)
Taking € = 2™ " (n € N) we can construct a sequence {7n} satisfying
-n -n
fe-vdsevz™ ana oo )2 (3:5)

The second inequality of (3.5) implies that {1“} is Cauchy, and then it has a

limit ¥ in Gw. The first inequality of (3.5) implies that ¥ € PG G(x) .
[+

PROPOSITION 3.6. Let T be a compact Hausdorff space, E a Banach lattice
with the f.0.i.p. and G a closed ideal of E. Then C(T,G) contains local and
global best approximation for each f in C(T,E).

PROOF. The existence of global best approximation follows from theorem 3.5
and the fact that the space C(T,G) is an ideal in the Banach lattice C(1.,E).

S by Pty = PR(£(1)
(where [ (f(t)) is the set of all best approximation of f(t) in G satisfying

For local best approximation , we define P : T — 2

(1.2) ) Then set valued mapping P is (lLs.c.) since P = (P o f) f is
continuous and Pgis (l.s.c.). Let 8 be a continuous selection of P then g =
8 o f is desired element of G .

Finally, we conclude this paper with the observation that in some cases
global best approximation always exists and yet the set valued mapping P
defined above admits no continuous selection at all as we will see in the
following.
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EXAMPLE. Let E = C([0,1],R) (the space of all continuous real valued

functions on [0,1] with Il = sup|f(t)]), G the space of all f in E| which
teT
vanish on [0,1/2). If we take f € E, to be the constant function f(t) =1

(t € T) . Then we have the following :
{0} for t € [0,1/2] {o} irte [o0,1/2]
G, = .
¢ R for te (1/2,1] {1} it te (1/2,1]

Thus P is a single valued discontinuous function on [0,1] which admits no

and P(t) = {

continuous selection at all.
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