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ABSTRACT. Consider the difference equations

Amxn + (-1)m+lpnf(Xn_k) O, n O, 1 (1)

and

1 re+l_AmYn + qng(Yn- O, n O, 1 (2)

We establish a comparison result according to which, when m is odd, every solution of

Eq.(1) oscillates provided that every solution of Eq.(2) oscillates and, when m is

even, every bounded solution of Eq.(1) oscillates provided that every bounded solution

of Eq.(2) oscillates. We also establish a linearized oscillation theorem accordin to

which, when m is odd, every solution of Eq.(1) oscillates if and only if every

solution of an associated linear equation

Amzn + (-1)m+lpzn_k O, n O, 1 (’)

oscillates and, when m is even, every bounded solution of Eq.(1) oscillates if and only

if every bounded solution of (*) oscillates.

KEY WORDS AND PHRASES. Linearized oscillations, Higher order difference equations,

Comparison results.

1980 AM3 SUBJECT CLASSIFICATION CODE. 39A12

1. INTRODUCTION

Let {0, 1, 2 denote the set of nonnegative integers, let A be the first

order forward difference operator, Axn Xn+1 xn and for m _>- 1, let Am be the mth
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order forward difference operator, Amxn A(m-lxn).
Consider the difference equations

and

where

AmXn + (-I)m+lpnf(xn_k) O, n O, 1, (1.1)

m
/ (_l)m+lA Yn qng(Yn- O, n O, 1 {1.2)

m k. I, m 1. f, gC. 2] and
(1.3)

{pn }, {qn are sequences of nonnegatlve real numbers.

Our aim in this paper is to establish a comparison result according to which,

when m is odd, if every solution of Eq.(1.2) oscillates, then so does every solutlon of

Eq.(1.1) and, when m is even, if every bounded solution of Eq.(1.2) oscillates then so

does every bounded solution of Eq.(1,1). We will also establish a llnearlzed

osclilation theorem according to which, when m is odd, every solution of Eq.(1.1)

oscillates if and only if every solution of an associated linear equation with constant

coefficient p (0,

+ (-1)m+l&mzn pZn_k O, n O, 1 (I.4)

oscillates, and when m is even, every bounded solution of Eq.{1.1) oscillates if and

only if every bounded solution of Eq.{1.4) osc11ates.

By a solution of Eq.(1.1) we mean a sequence (xn} which s defined for n -k

and which satisfies Eq.(1.1) for n O, 1 Clearly, if

a_k, ao, am_1
are given real numbers, then Eq.(1.1) has a unique soluton {xn} satsfying the initial

conditions

xn an for n -k 0 m-1.

Nhen k|, Eq.(1.1) is a difference equation of order (k+m). However, one may

also think of Eq.(1.1) as being an mth order delay difference equation with delay
(k+m). len k is a negative integer, Eq.(1.1} s a difference equation of order equal

to max{-k, m} but one may also think of Eq.(1.1) as being’ an mth order advanced

difference equation.

A solution {xn} of Eq.(1.1) is said to oscillate if for every n. 0 there exists

an n n. such that

XnXn+1 O.

Otherwise the solution is called nonoscillatory.

Recently there has been a lot of interest in the oscillations of delay difference

equations. See, for example, [1]-[$], [$]-[7] and [10]. For the oscillation of second

order difference equations see [4], [$] and [9] and the references cited therein.

2. SOME BASIC LF

In this section we will present some basic lemmas which are interestln in their

own rights and which will be used in the proofs of the main theorems in Sections 3, 4

and $. The first lemma is a special case of a general result which was established in
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[3], see also [I0].

LF3.A I. Assume that

q and kE -2, -1. O, 1, 2 }. (2.1)

Then every solution of the difference equation

Amun + qUn_k 0 (2.2)

oscillates if and only if the characteristic equation

(-1)m + qL-k 0 (2.3)

has no positive roots.

By investigating the eonditlons under wbieb Eq(2.3) has no positive roots one is

led to the following corollary of Lemma 1 which gives explicit necessary and sufficient

conditions for the oscillation of all solutions of Eq.(2.2).

COROLLARY I. Assume that (2.1) holds. Then every solution of Eq.(2.2) oscillates if

and only if one of the following conditions is satisfied:

(i) m is even and q O;

(ii) m is odd, k 0 and q >_- I;

(iii) m is odd, k -m and q -_< -1;

(iv) m is odd, k 0 or k < -m, and q
k+m(k+m) > mm.

Concerning the oscillation of all bounded solutions of Eq.(2.2) one can see that

the following result holds.

LEA 2. Assume that (2.1) holds. Then every bounded solution of Eq.(2.2) oscillates

if and only if Eq.(2.3) has no roots in (0, I].

By investigating the conditions under which Eq.(2.3) has no roots in (0, 1] one

is led to the following corollary of Lemma 2.

COROLLARY 2. Assume that (2.1) holds. Then every bounded solution of Eq.(2.2)

oscillates if and only if one of the following condition is satisfied:

(i) m is even and q > O;

(ii) m is even, q (-, -1] and k O;

(iii) m is even, q (-, mmkk
and k 1;

(k+m)k+m

(iv) m is odd and q < O;

(v) m is odd, q E [1, ) and k 0;

mmkk(vi) m is odd, q ((k+m)k+i" ) and k I.

LEPIA 3. Assume that every solution of Eq.(2.2) oscillates and that one of the

following three conditions is satisfied:

(i) q( (0, -) and k( {I, 2 }; (2.4)

(ii) q( (I, ), k 0 and m is odd; (2.5)

(iii) q (0, -), k 0 and m is even. (2.6)

Then there exists an Zo (0, q/2) such that for every z E [0, z o] every solution of

the delay difference equation
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Ainu + (q-e)u 0 (2 7)
n n-k

also oscillates.

PROOF. In view of Lemma I it suffices to show that the characteristic equation of

Eq.(2.7) has no positive roots. The hypothesis that every solution of Eq.(2.2)

oscillates implies that the characteristic equation

F(k) (X-I)m + qX-k 0 (2.8)

of Eq.(2.2 has no positive roots. As F() it follows that

F(X) > 0 for all X+.
First assume that (2.4) holds. From (2.8) we obtain, F(O+) F((R)) . Hence

rain IF(k): 0 k (]

exists and is a positive number and so

(X-I)m + qX-k )- for X O.

Set 5 q/2 and choose 0 X, < k, such that

(X-1)m + 2 x-k > 0 for X (0, X,)U (X,, -).

Let

and set

max {X-k: l, _-< ( X,}

s. rain {5, ].

Now let 0 =( s _-< s o. Then for X (0, k,) U (,,

(Z._l)m + (q_).-k)= (k_l)m + k-k O.

On the other hand for , A

m(X-I)m + (q-,)X-k m- ’.n m- O.

The proof when (2.4) holds is complete.

Next assume tha (2.) holds. Se z o . Then for I and 0

(X-l)m + q q z. 2

while for k < 1 and 0 z

(-1)m + q -1 + q -. = O.

Finally when (2.6) holds, one can see that z. q/2 is a good oholce. The proof

complete.

By usi Lena 2 and by an argent similar to hat In the proof of Lena 3 we can

easily establish the followi resul. The proof will be omitted.

LE} 4. Asse that every bounded solution of Eq.(2.2) oscillates and %ha one of the

followi three conditions is satisfied:

(i) q (--. o) and k {.

(ii) q (, 0), k 0 and m is odd

(lii) q (, -I), k 0 and m is even.

Then there exists an (0, /2) such that for every z [0, ,] every bounded

solution of the delay difference equation
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Amu + (q+)u O
n n-k

also oscillates.

LEt-A 5. Assume that h CRo RIo uh(u) 0 for u O and h(u) is nondecreasir in a

neighborhood of the origin. Let {rn} be a sequence of nonne&ative real numbers and

let k {O} be such that

n+k

r. O for n O, 1 (2.9)
1

i=n+l

Suppose that the difference inequality

i,--n i,=i, ira=ira_ ,
has a positive solution {yn defined for n =) N k and such that

lira Yn O. (2.11)
n

Then there exists a positive solution {xn] defined for n -> N k of the corresponding

difference equation

i,=n i,=i, im=im_,
which satisfies

limxn =0.
ng

PROOF. Choose a positive number 5 and an integer N’ _-) N such that

h(u) is nondecreasin in [0, 5],

Yn YN’ for N-k _-< n N’ and 0 Yn 5 for n >= N’-m.
Define the set of nonneative sequences

X {x {Xn}: 0 =< xn =< Yn for n >_-
and for every x E X define the sequence {En by

xn for n >= N’

En
XN’ + Yn YN’ for N-k _-< n N’.

Clearly

and

O _<- n --< Yn for n )= N-k

(2.12)

(2.13)

(2.14)

En > 0 for N-k =< n N’. (2.15)

Define the mapping T on X as follows: For every x {xn} X let the nth term of the

sequence Tx be

i,=n i,=i, ira=ira_,
It is clear that T is monotone in the sense that if x (1) x (2) X and x (1) x (2)

(that is, xn(1) Xn(2) for n >_- N’) then Tx (1) -_< Tx (2). Note that Ty < y and so xX
implies Tx -<_ Ty =< y. Thus T: X 9 X. We now define the following sequence on X:

x (0) {yn for n >= N’ and x (s) Tx (s-l) for s I 2
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It follows by induction that the sequence |x (s)) of elements of X is such that

0 x
(s+l)

x
(s)

Yn for n N’n n

Hence

x llm x
(s)

n=N
s-),

exists and x {Xn)n=N, belongs to X. Also x Tx and so is a solution of

Eq.(2.12). Furthermore (2.13) holds. It remains to how that

En 0 for n >= N-k.

Otherwise, in view of (2.15), there exists an s => N’ such that

s 0 and n 0 for N-k _-< n =( s-1.

Then from (2.12},

0.
i,--s i,--i, ira=ira_ ,

But by (2.9) and (2.16).

s+k-1

o.
i,=s i,=i, ira=ira_ ,

This is a contradiction and the proof is complete.

LEML 6. Consider the difference equation

where

Amxn + pnf(Xn_k) O.

k E|, {pn is a nonnegative sequence of real numbers,

f EC[[R, ], uf(u) > 0 for u # 0

and there exist a, E (0, ) such that

Suppose also that

Pl
i=0

and let {xn} be a nonoscillatory solution of Eq.(2.17). Then eventually,

x (Amx) O, (-1)i+lx (Am-lx) 0 for i 1, 2 mn n n n

and

(2.16)

{2.17)

(2.18)

(2.19)

(2.19’)

(2.20)

(2.2,1)

lim (Aix) 0 for i Oo 1 m-1. (2.22)
n- n

PROOF. We assume that [xn} is an eventually positive solution of Eq.(2.17). The case

where {xn} is eventually negative is similar and will be omitted. From Eq.{2.1?)o

Amxn =-pnf(Xn_k) 0 (2.23)

and so either

lira Am-lx (2.24)
n...)m n

or
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]m Am-1 . (2 25)

n-
We claim that (2.25) holds. Otherwise (2.24) holds which implies that

lim Aix for i O, m-l.
nn

This contradicts the hypothesis that [xn] is positive and so (2.2) holds. From (2.2)

and (2.25) it is easy to see that for each i O, I m-l, the sequence [Aixn] is

eventually monotonic. Now by si both sides of (2.2) from n, to =, for n,
sufficiently large, we obtain

e [x (Xi_k). (2.26)
n, i=n,

As [xn] is eventually monotonic,

xn , [0,
n

We claim that is finite. Otherwise, p and there exists an n, n, such hat xn !

P for n n2. Then (2.19’) implies that

f(xn) = 0 for n n,. (.27)

In view of (2.20) and (2.27), (2.26) is possible and so p +. Then by the

continunity of f(u),

I f(xn) f()
n

which, in view of (2.19), (2.20) and (2.26), implies that O. From this fact and

the monotonicity of [Aixn] for i O, i m-I it follows that (2.2Z) and (2.22)

hold. e proof is complete.

RE:ARK . From the proof of Lena 6 one can see that if [xn] is bounded then the

conclusion of Lena 6 is true without the condition (2.9’).

COROLLARY . Assume that m is even and that (2.18), (2.19), (2.I9’) and (2.20) hold.

Then every solution of Eq.(2.Z7) oscillates.

PROOF. Asse, for the sake of contradiction, that Eq.(2.7) has a nonoscillatory

solution [xn]. Then for n sufficiently large and for i m, (.2) yields

-(Xn)2 > 0

which is possible and the proof is complete.

LEI I. Assume that (2.Z8), (2.9) and (2.20) ho and assume that {xn] is a

nonoscillatory solution of the difference equation

AmXn Pnf(xn-k) 0, n 0, , (2.28)

hen te followi statements are true:

[i) if {xn] is bounded then

Xn(Amxn 0, (-l)ixn(Am-xn) 0 for i l, 2 m (2.29)

and

(Aixn) 0 for i O, 1 m-l.lira
ng

(ii) if {Xn] is unbounded and (2.19’)holds then

(2.30)
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li. (AXXn) for i O, 1 m-1. (2.31)
n

PROOF. t-le assume that {xn} is an eventually positive solution of Eq.(2.23). The case

where [xn] is eventually ne&ative is similar and will be omitted. From Eq.(2.28) we

see that eventually,

Amxn pnf(Xn_k >= 0 (2.32)

and so either

lm Am-lx {2.33)
n- n

or

Xn =Y
n

for each i O, 1 m-l, {Aixn} is monotonic and soHence

llm xn p [0, ].
n

B/ summin both sides of (2.32) from n, to n we obtain

(2.34)

n

Am-lxn Am-lxna E pif(xi_k ). (2.35)
i=n x

If {xn} is bounded then pR+ and

llm f(xn) f(). (2.36)
n

Also (2.33)cannot hold and so (2.34) holds. Then by (2.19, (2.20), (2.34) and (2.35)

it follows that O. From this fact and the monotonlcity of {Aixn} for i O, 1,

m-l, it is clear that (2.29) and (2.30) hold.

Next assume that {xn} is unbounded. Then p . By (2.35), (2.19’) and (2.20) we

see that (2.33) holds and so (2.31) is satisfied. The proof is complete.

COROLLARY 4. Assume that (2.18), (2.19) and (2.20} hold and that m is odd. Then

every bounded solutlon of Eq.(2.28) oscillates.

3. COMPARISON THEOR4S FOR EQUATIONS (I. I) AND (I. 2 ).

In this section we will establlsh some comparison theorens for the oscillation of

the difference equations (1.1) and (1.2).

THEOREM I. Assume that m is odd, (1.3), (2.19), (2.19’) and (2.20) hold, f or g is

nondecreasing in some neighborhood of the origin,

k >- t > 0, Pn >= qn’ (3.1)

f(u) >= 1 for u @ 0 (3.2)
g(u)

and

n+t
E qi 0 for n sufflciently large. (3.3)

i---n+1

3uppose also that every solution of Eq.(1.2) oscillates. Then every solution of

Eq.(1.1) also oscillates.

PROOF. Assume, for the sake of contradiction, that Eq.(1.1) has a nonoscillatory
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solution [Xn). We will assume that (xn} is eventually positive. The case where (xn]
is eventually negative is similar and will be omitted. By lemma 6, we see that (2.21)

and (2.22) hold. Hence, there exist a positive number o and a positive integer n

such that 0 < xn _-< o for n >_- n,-k and f or g is nondecreasinc in [0, ]. T.hen by using

(3.1) and (3.2) we obtain

Amxn + qng(Xn_) =< O, n >= n,.

By summing both sides of this inequality from m to Lnfinity and by using (2.22) we find

-Am-lxn +l=n qizg(xi- =< O.

By repeating the same procedure n times and by noting the fact that m is odd we are led

to the inequality

iz--n i,=i z im=im_z

Clearly {xn} is a decreasing positive sequence which tends to zero as n @ . Hence by

Lemma $ the equation

ix--n i,=ix im=im_ m

has a positive solution {Yn}n=n_g. This implies that {Yn}n__nx_g is also a

positive solution of Eq.(l.2) which contradicts the hypothesis that every solution of

Eq. (1.2) oscillates. The proof is complete.

By Remark 1 and by an argument similar to that in the proof of Theorem 1 we are

led to the following result.

THEOREM I’. Assume that m is odd, (1.3), (2.19) and (2.20) hold and that (3.1)-(3.3)

are satisfied. Suppose also that every bounded solution of Eq.(1.2) oscillates. Then

every bounded solution of Eq.(1.1) also oscillates.

THEOREM 2. Assume that m is even, (1.3)o (2.19), (2.20) and (3.1}-(3.3) hold. Suppose

also that every bounded solution of Eq.(1.2) oscillates. Then every bounded solutlon

of Eq. (1.1) also osolllates.

PROOF. Otherwise, Eq.(1.1) has a bounded nonoscillatory solution {xn}. We will assume

that {xn} is eventually positive. The case where {xn} is eventually negative is

similar and will be omitted.

By Lemma 7, (2.29) and (2.30) hold. Hence, there exist a positive number and a

positive integer nx such that 0 < xn =< o for n )_- nx-k and f or g is nondecreaslng in

[0, o]. Then by using (3.1) and (3.2) we obtain

Amxn -qng(Xn_g) )= 0 for n >= nz.
By summing both sides of this inequality m times from n to infinity, by using (2.30)

and by noting the fact that m is even we are led to the inequality

iz--n iz=i z im=im_ m
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As {Xn}n=n,_t is a decreasing positive sequence and llm xn O, it follows from

Lemma 5 that the equation

i,--n ii ira;ira_

has a positive solution {Ynln=n_t such that lim Yn O. Clearly this sequence is also

a bounded positive solution of Eq.(l.2) which contradicts the hypothesis that every

bounded solution of Eq.(l.2) oscillates. The proof of the theorem is complete.

4. LINEARIZED OSCILLATIONS.

In this section we will establish linearized oscillation theorems for Eq.(l.l)

with m odd or even.

THEOREM 3. Assume that m is odd, (2.18), (2.19) and (2.19’) hold,

llmlnr Pn p ( (o, (R)) (4.1)
n-

and that

liminf
f(u) )= 1. (4.2)

u-)O u

Suppose that every solution of Eq.(l.4) oscillates. Then every solution of Eq.(1.1)

also oscillates.

PROOF. Assume, for the sake of contradiction, that Eq.(1.1) has a nonosclllatory

solution {xn}. We will assume that {xn} is eventually positive. The case where |xn} is

eventually negative is similar and will be omitted. By Lemma 6, (2.21) and (2.22)

hold. Now for n sufflciently large we rewrite Eq. (1.1) in the form

Amxn + PnXn_k 0 (4.$)

where

Note that

f(x
n-kPn Pn"’ Xn-k

llminf Pn >- p"

Then for any positive number s in the interval 0 < ( (1/2)p, Eq.(4.3) yields, for

n sufficiently large,

Amxn + (p-e)Xn_k -( O.

By summing both sides of this inequality m times from n to infinity, by using (2.22)

and by noting the fact that m is odd we find

i,=n is=i , im=im_,
where N is sufficiently large and [xn} is a decreasing positive sequence which tends to

zero as n =. Then by Lemma $ we see that the equation
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i1=n i1=i im=im_IVim-k
has a positive solution [vn] for n N-k. It is easy to see that [vn] is also a

positive solution of the difference equation

Amvn + (p-e)Vn_k O. (4.4)

Hence, by Lemma 3 and because of the fact that the e is arbitrarily small, it follows

that Eq.(I.4) has a positive solution. This contradicts the hypothesis and completes

the proof of the theorem.

THEOREM 4. Assume that m is even (2.18), (2.19), (4.1) and (4.2) hold and that

every bounded solution of Eq.(1.4) oscillates. Then every bounded solution of

also oscillates.

PROOF. Otherwise there exists a bounded nonosciilatory solution [xn) of Eq.(1.1). We

will assume that (xn} is eventually positive. The case where [xn] is eventually

negative is similar and will be omitted. By Lemma 7, (2.29) and (2.30) hold. Now for

n sufficiently large we rewrite Eq.(1.1) in the form

Amxn PnXn_k 0 (4.$)

where

Note that

f (Xn_kPn Xn_k

llminf Pn )-- p"
n

Then for any positive e in the lnteraval 0 e (1/2)p, Eq.(4.$) yields

A xnm (p_e)Xn_k => O.

By an argument similar to that in the proof of Theorem 3 and by notin that m is even

we see that the difference equation

Amvn (p-e)Vn_k 0

has a bounded positive solution. Hence, by Lemma 4 and because of the fact that e is

arbitrarily small, it follows that Eq.(1.4) has a bounded positive solution. This

contradicts the hypothesis and completes the proof of the theorem.

$. EXISTENCE OF POSITIVE SOLUTIONS

The next theorem is a partial converse of Theorem 3 and shows that, under

appropriate hypotheses, Eq.(l.l) has a positive solution provided that an associated

linear equation also has a positive solution.

THEOREM $. Assume that m is odd, (2.18) holds and suppose that there exist positive

constants p and 5 such that

and that

either 0 =(f(u) =( u for 0 =( u =( /$
(S.2)

or o -_> (u) >_- u rot - -_< u =< o.
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Suppose also that

f(u) is nondecreasing in a neighborhood of the origin (5.3)

and that the characteristic equation of Eq. (1.4)

(_l)m + p-k 0 (5.4)

has a positive root. Then Eq.(l.l) has a nonoscillatory solution.

PROOF. Assume that 0 =(f{u) _-( u for 0 =( u =( 5 holds. The case where 0 )= f(u} -)_

u for -5 =( u _-( 0 holds is similar and will be omitted. Let . be a positive root of

Eq.{5.4). Then it is easy to see that , 1. Set zn n. Then there exists a

N )-k such that

0 zn =( 5 for n -)_ N-k

and f is nondecreasing in [0, ZN_k]. Clearly,

zn ) O, Azn O, A2Zn ) 0 Am-lzn ) O, Amzn < O, (5.5)

lira AiZn 0 for i O, I mo (5.6)

and {zn} satisfies the difference equation

Amzn + pZn_k O. ($.7)

By summing both sides of (5.7) m times from n )- N to and by using (5.6) we obtain

i,--n i,=i, im=im_,PZim-k
In view of (5.1) and (5.2), this equation implies that

i,=n i,=i, Ira=ira_ m

Then from Lemma 5 it follows that the corresponding equation

i,=n i, =i, im=im_,
has a positive solution. This implies that Eq.(l.1) has a positive solution. The

proof of the theorem is complete.

By combining Theorems 2 and 4 we obtain the following necessary and sufficient

condition for the oscillatlon of every solutlon of Eq.(1.1) when m is even.

COROLLARY 4. Assume that m is even and that there exist positive constant c., p and 5

such that (22) (2.19), (2.19’), (5.2) and (5.3) hold and that

0 -( Pn =( p lira Pn" and lira
f(u)

I. (5.8)
n ugO u

Then every solution of Eq. (I.I) oscillates if and only if the equation

(_l)m p-k 0 (5.9)

has no positive roots.

The next theorem is a partial converse of Theorem 4 and shows that under

appropriate hypotheses, Eq.(l.l) has a bounded positive solution provided that an

associated linear equation also has a bounded positive solution.

THEORF34 6. Assume that m is even, (2.18) and ($.1)-($.3) hold. Suppose also that the

characteristic equation (5.9) of Eq.(l.4) has a real root in the interval (0, I). Then

Rq.(l.l) has a bounded nonoscillatory solution.
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PROOF. Assume that 0 =< f(u) -< u for 0 =< u =< . The case where 0 )_- f(u) )= u for -5 =< u

=( 0 is similar and will be omitted. Let o be a root of Eq.(5.9) in the interval (0,

1). Set zn on. Then there exists a N -) 0 such that

O< zn =< 5 for n => l-k

and f is nondecreasing in [0, ZN_k]. Clearly,

zn 0, Azn 0, A2Zn > 0 Am-lZn O, Amzn 0,

lira AiZn 0 for i O, 1, 2 m
n

and {zn} satisfies the difference equation

Amzn pZn_k O.

Then by noting that m is even and by an argument similar to that in the proof of

Theorem 5 we find that Eq.(1.1) has a bounded positive solution. The proof of the

theorem is complete.

Finally by combining Theorem 4 and 6 we obtain the following necessary and

sufficient condition for the oscillation of every bounded solution of Eq. (I.I) when n

is even.

COROLLARY 5. Assume that m is even, and that there exist positive constants p and 5

such that (2.18), (2.19), (5.2), (5.3) and (5.8) hold. Then every bounded solution of

Eq.(l.1) oscillates if and only if Eq.(5.9) has no real roots in the interval (0, I].
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