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ABSTRACT. Consider the difference equations
m. _qya+l = =

A%, + (-1) pnf(xn_k) 0, n=20,1, ... (1)

and
+

Ay, + (DM g(y, ) =0, n=0,1, ... (2)
We establish a comparison result according to which, when m is odd, every solution of
Eq.(1) oscillates provided that every solution of Eq.(2) oscillates and, when m is
even, every bounded solution of Eq.(1) oscillates provided that every bounded solution
of Eq.(2) oscillates. We also establish a linearized oscillation theorem according to
which, when m is odd, every solution of Eq.(1) oscillates if and only if every
solution of an associated linear equation

m _q)ya+l - = .

ATz, + (-1) Pz = 0, n=20,1, ... (*)
oscillates and, when m is even, every bounded solution of Eq.(1) oscillates if and only
if every bounded solution of (*®) oscillates.

KEY WORDS AND PHRASES. Linearized oscillations, Higher order difference equations,
Comparison results.
1980 AMS SUBJECT CLASSIFICATION CODE. 39A12

1. INTRODUCTION

Let M = {0, 1, 2, ...} denote the set of nonnegative integers, let A be the first

order forward difference operator, Axn = Xp41 T Xp and for m 2 1, let A" be the nth
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order forward difference operator, Amxn = A(Am-lxn).

Consider the difference equations
n m+1
A X, + (-1) pnf(xn_k) =0, n=20,1, ... (1.1)
and
m m+1
A Yn + (-1) qng(yn_l) =0, n=20,1, ... (1.2)

where

m,k, Em, 21, r, gECIR Rl and
(1.3)
{py}. {q,} are sequences of nonnegative real numbers.

Our aim in this paper is to establish a comparison result according to which,
when m is odd, if every solution of Eq.(1.2) oscillates, then so does every solution of
Eq.(1.1) and, when m is even, if every bounded solution of Eq.(1.2) oscillates then so
does every bounded solution of Eq.(1,1). We will also establish a linearized
oscillation theorem according to which, when m is odd, every solution of Eq.(1.1)
oscillates if and only if every solution of an associated linear equation with constant
coefficient p E (0, =),

+1
A%+ (-1 pz =0, n=0,1, .. (1.4)

oscillates, and when m is even, every bounded solution of Eq.(1,1) oscillates if and
only if every bounded solution of Eq.(1.4) oscillates.
By a solution of Eq.(1.1) we mean a sequence {x,) which is defined for n 2 %

and which satisfies Eq.(1.1) for n =0, 1, ... . Clearly, if

a_k. XEY) a.. ecen am_l
are given real numbers, then Eq.(1.1) has a unique solution (xn) satisfying the initial
conditions

X, =a, for n =<k, ..., 0, ..., m-1,
When k € M, Eq.(1.1) is a difference equation of order (k+m). However, one may

also think of Eq.(1.1) as being an u*? order delay difference equation with delay

(k+r). Vhen k is a negative integer, Eq.(1.1) is a difference equation of order equal

to max{-k, m} but one may also think of Eq.(1.1) as being’an oth

order advanced
difference equation.

A solution (xn) of Eq.(1.1) is said to oscillate if for every n, 2 0 there exists
ann 2 n, such that

XnXn41 <o,

Otherwise the solution is called nonoscillatory.

Recently there has been a lot of interest in the oscillations of delay difference
equations. See, for example, [1]1-[3]1, (51-(7] and [10]. For the oscillation of second

order difference equations see [4], [8] and [9] and the references cited therein.

2, SOME BASIC LEMMAS

In this section we will present some basic lemmas which are interesting in their
own rights and which will be used in the proofs of the main theorems in Sections 3, 4
and 5. The first lemma is a special case of a general result which was established in
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[3], see also [10].
LEMMA 1. Assume that

eaERrand k€7 = (..., -2, -1, 0, 1, 2, ...). (2.1)
Then every solution of the difference equation

8%, + qupy = 0 (2.2)
oscillates if and only if the characteristic equation

G- + ¥ =0 (2.3)

has no positive roots.

By investigating the conditions under which Eq.(2.3) has no positive roots one is
led to the following corollary of Lemma 1 which gives explicit necessary and sufficient
conditions for the oscillation of all solutions of Eq.(2.2).

COROLLARY 1. Assume that (2.1) holds. Then every solution of Eq.(2.2) oscillates if
and only if one of the following conditions is satisfied:

(i) m is even and q > 0;

(ii) m is odd, k = 0 and q 2 1;

(iii) o is odd, k = -m and q £ -1;

k+m
(k+m) > o

kk )

Concerning the oscillation of all bounded solutions of Eq.(2.2) one can see that
the following result holds.
LEMMA 2.  Assume that (2.1) holds. Then every bounded solution of Eq.(2.2) oscillates

if and only if Eq.(2.3) has no roots in (0, 1].

(iv) m is odd, k > O or k < -m, and q

By investigating the conditions under which Eq.(2.3) has no roots in (0, 1] one
is led to the following corollary of Lemma 2.
COROLLARY 2. Assume that (2.1) holds. Then every bounded solution of Eq.(2.2)
oscillates if and only if one of the following condition is satisfied:

(i) m is even and q > O;

(ii) m is even, qe (-, -1] and k = 0;

2%
(iii) m is even, qe (=, - = ) and k 2 1;
(k+m)

(iv) m is odd and q € 0;
(v) m is odd, qE [1, =) and k = 0;
k
(vi) m is odd, qE ( —iﬂ}fm
(k+m)

LEMMA 3. Assume that every solution of Eq.(2.2) oscillates and that one of the

, ©) and k 2 1.

following three conditions is satisfied:

i) q€ o, =) and kE (1, 2, ...}; (2.4)
(ii) Q€ (1, =), k = 0 and m is odd; (2.5)
(ii1) € (0, @), k = 0 and m is even. (2.6)

Then there exists an e, € (0, q/2) such that for every e € (o, €,] every solution of

the delay difference equation
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m =
Au + (q-c)un_k =0 (2.7)

also oscillates.
PROOF. In view of Lemma 1 it suffices to show that the characteristic equation of
Eq.(2.7) has no positive roots. The hypothesis that every solution of Eq.(2.2)
oscillates implies that the characteristic equation

FA) = -1)0 + a7k = ¢ (2.8)
of Eq.(2.2 has no positive roots. As F(=) = = it follows that

F(x) > 0 for all A ER*.
First assume that (2.4) holds. From (2.8) we obtain, F(0%) = F(=) = =, Hence

p =min {(F(A): 0 ¢ A € =)
exists and is a positive number and so

G-D® + a ¥ 2 4 for 2 > 0.

Set & = q/2 and choose 0 < A, < A, such that

-1 + 2275 0 ror AE (0, 1) U @, ).

Let
n = max (A7K: A, $a &)
and set
e, = min (5, 3% ).
Now let 0 £ e £ e,. Then for A E (o, A,) U@, =),

-1 + (@menF 2 -1 + 3276 o,

On the other hand for A, £ad A,

(-1" + (q-t)l.k 2m - eon 2n- % > 0.

The proof when (2.4) holds is complete.
Next assume that (2.5) holds. Set e, = S%l. Then for A 2 1 and 0 & ¢ & ¢,
(-1)" + q-¢ 2 q - €, = 9%1 >0
while for A ¢ 1and 0 $ ¢ & L
O-1" +q-e2-1+q-¢ =31>0,

Finally when (2.6) holds, one can see that e, = q/2 is a good choice. The proof is
complete.

By using Lemma 2 and by an argument similar to that in the proof of Lemma 3 we can
easily establish the following result. The proof will be omitted.
LEMMA 4, Assume that every bounded solution of Eq.(2.2) oscillates and that one of the
following three conditions is satisfied:

(i) q€ (-, 0) and kE (1, 2, ...);

(ii) qE (=, 0), k = 0 and m is odd;

(11i) qE (~, ~1), k = 0 and m is even.
Then there exists an ¢, € (0, -q/2) such that for every e € 1o, ¢,] every bounded

solution of the delay difference equation
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o
+ =
8%+ (g*e)u | =0

also oscillates.
LEMMA 5. Assume that h € CIR, R), uh(u) > 0 for u # 0, and h(u) is nondecreasin; in a
neighborhood of the origin. Let {rn) be a sequence of nonnesative real nuwmbers and
let k EW - (0} be such that

n+k

2: ry >0 forn=20,1, ... . (2.9)
i=n+1

Suppose that the difference inequality

©

I T..L

< b
L L ry h(yi —k) 2V, n& N (2.10)
i,7n i,=1i, 4p=i_, @ n
has a positive solution {ynl defined for n 2 N - k and such that
lim v, = 0. (2.11)

ny=
Then there exists a positive solution (xn]. defined for n 2 N - k, of the corresponding

difference equation

i i Z r, hix

) =x,n2N (2.12)
1,70 4,71, 4=t m kD
which satisfies
lim x, = 0. (2.13)
n¥

PROOF. Choose a positive number & and an integer N’ 2 N such that

h(u) is nondecreasing in [0, 8],

Yp > Yy+ for H-k £ n ¢ N’ and 0 Cy <& forn 2 N'-m. (2.14)
Define the set of nonnegative sequences

X =(x=1{(x}: 0&x Sy fornlN)
(%) by

and for every x E X define the sequence ¥
xn for n 2 N’
2h =
xN, + yn = Yy for N-k £ n < N'.
Clearly
< < 2 N
02 2n 2y, for n 2 Nk
and
%, >0 for N-k $n < N', (2.15)
Define the mapping T on X as follows: For every x = (xn} E X 1let the nth term of the

sequence Tx be

Z Z rih(ii —k"
i,90 i,=1, ip=i__, m m

It is clear that T is monotone in the sense that if x(l). x(z) € x and x(l) $ x(2)

(that is, xnu) £ xn(z) for n 2 N') then Txu) £ Tx(z). Note that Ty LS y and so xEx
implies Tx < Ty £ y. Thus T: X 9 X. We now define the following sequence on X:
b

x(0) N' and x(3) = (57D gor 5 21, 2, ... .

= {yn] for n
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It follows by induction that the sequence (x(S)) of elements of X is such that

¢, (s41) ¢ (s) ¢ > 1o
02 X, = X =V, forn 2 N'.

Hence
xn = lin xn(S). n2n
S

exists and x = [xn):=N' belongs to X. Also x = Tx and so ¥ is a solution of

Eq.(2.12). Furthermore (2.13) holds. It remains to show that

%, > 0 for n 2 N-k.

Otherwise, in view of (2.15), there exists an s 2 N’ such that
X, =0 and ¥, > 0 for N~k & n & s-1,

Then from (2.12),

Lo L orona peg o
i,s 1,=1, dig=i Tig gk s

m-1
But by (2.9) and (2.16),

EE fi ii 3*;3'1
. r. (X, )2 r.h(X,_ ) > 0.
i,7s i,=1, ig=i_, ‘m oK j=s 11K

This is a contradiction and the proof is complete.
LEMMA 6. Consider the difference equation

m

ATx, + pnr(xn_k) =0,

where
kEwm, [pn] is a nonnegative sequence of real numbers,
fECIIR, BRI, uf(u) > 0 for u # 0

and there exist a, B € (0, =) such that
Ir(u)l 2 a for Iu ' 2 8.

Suppose also that

and let (x,)} be a nonoscillatory solution of Eq.(2.17). Then eventually,
o < _qyitl m-i =
xn(A xn) 20, (-1) xn(A xn) >Ofori=1,2, ..., mn
and

lin (Aixn) =0 fori=0,1 ..., -1,
ny=

(2.16)

(2.17)

(2.18)
(2.19)

(2.19°)

(2.20)

(2.21)

(2.22)

PROOF. We assume that (xn) is an eventually positive solution of Eq.(2.17). The case
where (xnl is eventually negative is similar and will be omitted. From Eq.(2.17),

Oy = <
A a -pnf(xn_k) =0
and so either

lim A“'lxn = —
ni=

or

(2.23)

(2.24)
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lim Am-lxn = yEn,. (2.25)
ny
We claim that (2.25) holds. Otherwise (2.24) holds which implies that
lim Aix =-o for i =0, 1, ..., m-1,
ny n

This contradicts the hypothesis that (xn] is positive and so (2.25) holds. From (2.23)
and (2.25) it is easy to see that for each i = 0, 1, ..., n-1, the sequence {Aixn] is
eventually nonotonic. Now by summing both sides of (2.23) from n, to =, for n,

sufficiently large, we obtain

v - A% --L p.f(x. ). (2.26)
n, j=n. * i-k
As {xn] is eventually monotonic,

lim x, = p € [0, =),
ne

We claiu that p is finite. Otherwise, p = = and there exists an n, 2 n, such that x, 2
£ forn 2 n,. Then (2.19') implies that

£(x;) 2a> 0 forn 2n,. (2.27)
In view of (2.20) and (2.27), (2.26) 4is impossible and so g € B'. Then by the
continunity of f(u),

lim £(x;) = £(p)
ny=

which, in view of (2.19), (2.20) and (2.26), implies that p = 0. From this fact and
the monotonicity of [Aixn} for i =0, 1, ..., m-1 it follows that (2.21) and (2.22)
hold. The proof is complete.
REMARK 1. From the proof of Lemma 6 one can see that if (xn] is bounded then the
conclusion of Lemma 6 is true without the condition (2.19').
COROLLARY 3. Assume that m is even and that (2.18), (2.19), (2.19') and (2.20) hold.
Then every solution of Eq.(2.17) oscillates.
PROOF. Assume, for the sake of contradiction, that Eq.(2.17) has a nonoscillatory
solution [xn}. Then for n sufficiently large and for i = m, (2.21) yields

-(x? 0
which is impossible and the proof is complete.
LEMMA 7. Assume that (2.18), (2.19) and (2.20) hold and assume that (x,} is a
nonoscillatory solution of the difference equation

m
avx pnf(xn_k) 0,n=0,1, .... (2.28)

Then the following statements are true:
(1) if {x,)} is bounded then

m > _qyi m-i -
X, (A7xp) 20, (-1)7x (A Xp) > 0 for 1 =1,2, ..., m (2.29)
and
lim (Alx ) =0 for i =0, 1, ..., m-1. (2.30)
n)

(ii) if (xn] is unbounded and (2.19') holds then
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lim (Aixn) =wfori=0,1, ..., m-1. (2.31)
nd

PROOF. e assume that (x,) is an eventually positive solution of Eq.(2.28). The case
where [xn) is eventually negative is similar and will be omitted. From Eq.(2.28) we

see that eventually,
m = )
Axy pnf(xn_k) 20 (2.32)

and so either

1im A%
n

ny»

[}
8

(2.33)

or
1m 4% - yER. (2.34)
ny=

Hence for each i = 0, 1, ..., n-1, (Aixnl is monotonic and so

1im x, = uE€ [0, <],
ny '

By summing both sides of (2.32) from n, to n we obtain

n

o-1 m-1

A" Txp - A X, = 2: pif(xi_k). (2.35)
i=n,

Ir (xn] is bounded then p ER' and

lim fx,) = f(p). (2.36)
nye

Also (2.33) cannot hold and so (2.34) holds. Then by (2.19, (2.20), (2.34) and (2.35)
it follows that p = 0. From this fact and the monotonicity of (Aixn) for i =0, 1,
eees m-1, it is clear that (2.29) and (2.30) hold.

Next assume that {xn} is unbounded. Then u = =, By (2.35), (2.19') and (2.20) we
see that (2.33) holds and so (2.31) is satisfied. The proof is complete.
COROLLARY 4, Assume that (2.18), (2.19) and (2.20) hold and that m is odd. Then
every bounded solution of Eq.(2.28) oscillates.

3. COMPARISON THEOREMS FOR EQUATIONS (1.1) AND (1.2).

In this section we will establish some comparison theorer.s for the oscillation of
the difference equations (1.1) and (1.2).
THEOREM 1. Assume that m is odd, (1.3), (2.19), (2.19') and (2.20) hold, f or g 1is

nondecreasing in some neighborhood of the origin,

k22>0,p, 24, (3.1)
31}8-11&»1:#0 (3.2)
and
n+
2: q; > 0 forn sufficiently large. (3.3)
i=n+1

Suppose also that every solution of Eq.(1.2) oscillates. Then every solution of
Eq.(1.1) also oscillates.
PROOF. Assume, for the sake of contradiction, that Eq.(1.1) has a nonoscillatory
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solution {x;}. We will assume that {x,} is eventually positive. The case where (x,}
is eventually negative is similar and will be omitted. By lemma 6, we see that (2.21)
and (2.22) hold. Hence, there exist a positive number ¢ and a positive integer n,
such that 0 < X, $eforn? n,~k and f or g is nondecreasing in [0, o]. Then by using
(3.1) and (3.2) we obtain

m
A% + que(x; ) £0, n2n,.

By sumuing both sides of this inequality from m to infinity and by using (2.22) we find

) Lo,

)
-A" Tx o+ q, 8(x
n -n 1,°771,2

11
By repeating the same procedure n times and by noting the fact that m is odd we are led
to the inequality
I: 2: oeo 2: q, 8(x, _ ) $x,n2n,.
1y i,=1,  4=i, w w7 n !
Clearly (xn) is a decreasing positive sequence which tends to zero as n 9 », Hence by
Lemma 5 the equation
-] © @«
I: E: . 2: q, gly, _)) =y
17740

i,=n i,=i, ip=ip_,

n

has a positive solution (y,] This implies that [ynln=nl-l is also a

®
n=n,-%"°
positive solution of Eq.(1.2) which contradicts the hypothesis that every solution of
Eq.(1.2) oscillates. The proof is complete.

By Remark 1 and by an argument similar to that in the proof of Theorem 1 we are
led to the following result.
THEOREM 1‘’. Assume that m is odd, (1.3), (2.19) and (2.20) hold and that (3.1)-(3.3)
are satisfied. Suppose also that every bounded solution of Eq.(1.2) oscillates. Then
every bounded solution of Eq.(1.1) also oscillates.
THEOREM 2. Assume that m is even, (1.3), (2.19), (2,20) and (3.1)-(3.3) hold. Suppose
also that every bounded solution of Eq.(1.2) oscillates. Then every bounded solution
of Eq.(1.1) also oscillates.
PROOF. Otherwise, Eq.(1.1) has a bounded nonoscillatory solution {xn}. We will assume
that {xn] is eventually positive. The case where (x,} is eventually negative is
similar and will be omitted.

By Lemma 7, (2.29) and (2.30) hold. Hence, there exist a positive number o and a
positive integer n, such that 0 < § e for n 2 n,~k and f or g is nondecreasing in
[0, o]l. Then by using (3.1) and (3.2) we obtain

m
A Xy = qng(xn_z) 20 forn 2 n,.

By summing both sides of this inequality m times from n to infinity, by using (2.30)
and by noting the fact that m is even we are led to the inequality

© © ©

. L oa

1,70 i,=1, ip=i .

<
-£) 2 X,.

g(x
i iy
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As (x )5 _gy 1s a decreasing positive sequence and 1lim x_ =0, it follows from

n n=nx no=
Lemwa 5 that the equation

n

@

z Z con z q. é‘;(y - ) = yn

1,70 i,=i, ig=ig_, @ u .

has a positive solution (yn):_n _g Such that lim y, = 0. Clearly this sequence is also
LY nye .

a bounded positive solution of Eq.(1.2) which contradicts the hypothesis that every
bounded solution of Eq.(1.2) oscillates. The proof of the theorem is complete.

4. LINEARIZED OSCILLATIONS.

In this section we will establish linearized oscillation theorems for Eq.(1.1)
with m odd or even.
THEOREM 3. Assume that m is odd, (2.18), (2.19) and (2.19') hold,

liminf p; = p € (0, =) (4.1)
noy=

and that
liming £ > o (4.2)
ud0 u

Suppose that every solution of Eq.(1.4) oscillates. Then every solution of Eq.(1.1)
also oscillates.

PROOF. Assume, for the sake of contradiction, that Eq.(1.1) has a nonoscillatory
solution [xn). We will assume that [xn) is eventually positive. The case where Ixnl is
eventually negative is similar and will be omitted. By Lemma 6, (2,21) and (2.22)
hold. Now for n sufficiently large we rewrite Eq.(1.1) in the form

m
Ax, + Ppxp_ =0 (4.3)
where
o - flx )
n pn xn_k ¢
Note that

liminf P, 2 p.
nde

Then for any positive number ¢ in the interval 0 < ¢ < (1/2)p, Eq.(4.3) yields, for
n sufficiently large,

m, - 4
ATx, + (p ‘)xn—k = 0.

By summing both sides of this inequality m times from n to infinity, by using (2,22)
and by noting the fact that m is odd we find

(-)X Z): $x,n2N
P 1,=n i,=1, im=im_:im-k *ns °

where N is sufficiently large and [xn) is a decreasing positive sequence which tends to
zero as n > », Then by Lemma 5 we see that the equation
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(p-¢e) Z Z cee Z v =v

- n
1,00 8,71, i ik

=i
n “m-1
has a positive solution [vn] for n 2 N-k. It is easy to see that [vn] is also a

positive solution of the difference equation
m
Av, + (p-e)vn_k = 0. (4.4)

Hence, by Lemma 3 and because of the fact that the e is arbitrarily small, it follows
that Eq.(1.4) has a positive solution. This contradicts the hypothesis and completes
the proof of the theoren.

THEOREM 4. Assume that m is even , (2.18), (2.19), (4.1) and (4.2) hold and that

every bounded solution of Eq.(1.4) oscillates. Then every bounded solution of Eq.(1.1)
also oscillates.

PROOF. Otherwise there exists a bounded nonoscillatory solution [xn) of Eq.(1.1). We
will assume that {x;} is eventually positive. The case where {x,} 1s eventually
negative is similar and will be omitted. By Lemma 7, (2.29) and (2.30) hold. Now for
n sufficiently large we rewrite Eq.(1.1) in the form

m
Ax, = Pox . =0 (4.5)
where
. flx )
n Xk
Note that

liminf P, 2 p.
nie

Then for any positive e in the interaval 0 < ¢ < (1/2)p, Eq.(4.5) yields
0 _ (5= 2
A x, (p °)xn—k 2 0.

By an argument similar to that in the proof of Theorem 3 and by noting that m is even

we see that the difference equation
m
Av, - (p-e)vn_k =0
has a bounded positive solution. Hence, by Lemma 4 and because of the fact that e is

arbitrarily small, it follows that Eq.(1.4) has a bounded positive solution. This
contradicts the hypothesis and completes the proof of the theorem.

5. EXISTENCE OF POSITIVE SOLUTIONS
The next theorem is a partial converse of Theorem 3 and shows that, wunder

appropriate hypotheses, Eq.(1.1) has a positive solution provided that an associated
linear equation also has a positive solution.
TﬁEOREM 5. Assume that m is odd, (2.18) holds and suppose that there exist positive
constants p and & such that

0s Py $op (5.1)
and that

either 0 & £(u)

(4
N (5.2)
or 02 f(u 2ufor-5S%ufo,
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Suppose also that

f(u) is nondecreasing in a neighborhood of the origin (5.3)
and that the characteristic equation of Eq.(1.4)
-1" + a7k =0 (5.4)

has a positive root. Then Eq.(1.1) has a nonoscillatory solution.
PROOF. Assume that 0 £ f(u) Su for 0 £ u $ & holds. The case where 0 2 f(u) 2
u for -8 £ u £ 0 holds is similar and will be omitted. Let A, be a positive root of
Eq.(5.4). Then it is easy to see that A, < 1. Set z, = A,7. Then there exists a
N 2 k such that

0 <z, £8 forn 2Nk
and f is nondecreasing in [0, zy_, 1. Clearly,

2 m-1 m
2z, >0, Az, <0, A z, >0, «eo, A z, >0, A z, <O, (5.5)
1malz =0for1=0,1, ..., m, (5.6)
ndye
and (zn] satisfies the difference equation
m -
Az, +pz . = 0. (5.7)

4

By summing both sides of (5.7) m times from n 2 N to = and by using (5.6) we obtain

L
1, i=1

i,=n i, o=ig-1
In view of (5.1) and (5.2), this equation implies that

~le

= )
zn. n £ N.

pz
ik

©

Z: 2: ces Z: p, f(z )$z.,n2N.

i,en i,=i, dp=i . i ipk

Then from Lemma 5 it follows that the corresponding equation

@

© ®
= >
1‘2 1,z=:i‘.“im-§m_‘ pimt‘(xim_k) X n 2 N

has a positive solution. This implies that Eq.(1.1) has a positive solution. The
proof of the theorem is complete.

By combining Theorems 2 and 4 we obtain the following necessary and sufficient
condition for the oscillation of every solution of Eq.(1.1) when m is even.
COROLLARY 4. Assume that m is even and that there exist positive constant c¢,, p and &

such that (22), (2.19), (2.19'), (5.2) and (5.3) hold and that
0<&p, $p=1linp,, and lin L:) =1. (5.8)
n¥ u’y0
Then every solution of Eq.(1.1) oscillates if and only if the equation
(-8 - ¥k =0 (5.9
has no positive roots.

The next theorem is a partial converse of Theorem 4 and shows that , under
appropriate hypotheses, Eq.(1.1) has a bounded positive solution provided that an
associated linear equation also has a bounded positive solution.

THEOREM 6. Assume that m is even, (2.18) and (5.1)-(5.3) hold. Suppose also that the
characteristic equation (5.9) of Eq.(1.4) has a real root in the interval (0, 1). Then
Eq.(1.1) has a bounded nonoscillatory solution.
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PROOF. Assume that 0 £ f(u) S u for 0 £ u £ 6. The case where 0 2 f(u) 2 u for -6 S u
£ 0 is similar and will be omitted. Let A, be a root of Eq.(5.9) in the interval (O,
1). Set z, = A,". Then there exists a N 2 0 such that

0< z, £6 forn 2 Nk
and f is nondecreasing in [0, zN-k]' Clearly,
>0, 8z, <0, A%z >0, ..., A%

2z <o, Amzn >0,

n n n

limalz =0fori=01,2 ..., m
nye

and (z,) satisfies the difference equation

Amzn = Pzpy = 0.
Then by noting that m is even and by an argument similar to that in the proof of
Theorem 5§ we find that Eq.(1.1) has a bounded positive solution. The proof of the
theorem is complete.

Finally by combining Theorem 4 and 6 we obtain the following necessary and
sufficient condition for the oscillation of every bounded solution of Eq.(1.1) when n
is even.

CORULLARY 5. Assume that m is even, and that there exist positive constants p and &
such that (2.18), (2.19), (5.2), (5.3) and (5.8) hold. Then every bounded solution of
Eq.(1.1) oscillates if and only if Eq.(5.9) has no real roots in the interval (0, 1].
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