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ABSTRACT. This present paper is concerned with two main conditions,that of normality of a
lattice, and separation and semi-separation of two lattices,both looked at using measure theoretic
techniques.We look at each property using {0,1} two valued measures and associated {0,1}
valued set functions.

For normal lattices we look at consequences of normality in terms of properties of their
measures and closely allied set functions.For separation and semi-separation of two lattices,we
investigate the realtionship between regular measures of both lattices, define the notion of weak
going up and look at this notion in terms of separation and semi-separation.We then give necessary
and sufficent conditions for semi-separation in terms of equality of two set fuctions, derived from
regular measures on the smaller lattice on the larger lattice.
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1. INTRODUCTION

In this paper we consider necessary and sufficent conditions for a lattice of subsets of an
abstract set to be normal,in terms of measure theoretic conditions.We also consider conditions
when two lattices separate or semi-separate each other,again using measure theoretic methods.

In the first part of the paper,we consider consequences of a lattice L of subsets of an
abstract set X being normal. This is is equivalent as is well known ,(and which we prove), to each
element of Pel(L),the set of non-trivial finitely additive{0,1} two valued measures having a unique
regular extension VeIR(L) st v2u (L).We then extend this work to look at relations with various
classes of measures I$(L),IW(L) , set functions p',u",and side conditions on the lattice such as
cg,, and look at necessary and sufficent conditions that a lattice of subsets have the normal
property.

In the second part of the paper we investigate when two lattices L1 ,L2 of an abstract set X
LooL1,L1 either separates or semi-separates L2,as well as consequences of separation or semii-
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separation of two lattices.We again, investigate these properties in some detail in a measure
theoretic setting,where they are equivalent to the existence and uniqueness of extensions or
restrictions of regular measures on the two lattices.

We also include a section on notation,terminology ,basic backround,and references for the
readers convenience.In addition other notions are introduced as needed in the sections in which

they occur.
2. BACKROUND AND NOTATION

We begin by reviewing some notation and terminology which is fairly standard (see,for
example, Alexsandroff [1], Camacho [2], Grassi [3], and Szeto [4]).We supply some backround
and notation for the readers convenience.

Let X be an abstract set and L a lattice of subsets of X st @,XeL.A delta lattice is one that is
closed under countable intersections,and the delta lattice genereated by L is denoted 8(L) .A lattice
is complement generated iff for every LeL there exists a sequence of subsets Ayel n=1,2,... such
that L=r'\An'(' denotes complement). L is countably paracompact if for every sequence LeL and
L1 @ then there exists Ly~eL st L,~'DL,, and Ly~ @.A tau lattice is one that is closed under
arbitrary intersections,and the tau lattice generated by L is denoted tL.

Let I(L) denote the set of non-trivial two valued {0,1} fintely additive measures on the
algebra A(L) generated by {L}.Also let pel(c*,L) denote those elements of I(L) that are sigma-
smooth on L,i.e. Lyel Lle Juel(o*,L) then limp(L,)=0.1$(L) denotes those elements of
I(o*,L) such that if LeL pel$(L),Lnl, and NL,=LeL then HL)=limp(Ly), I(o,L) will denote
those measures that are sigma-smooth on A(L),i.e. if ApeA(L) Anl@ then limp(Ap)=0. Note that
this is equivalent to countable additivity.IR(L) will stand for those measures on A(L) that are L-
regular on A(L) ,i.e. peIR(L) then for AeA(L) n(A)=sup{p(L): LeL,ADL}.IR(c,L) denotes those
measures in I(o,L) that are L regular.The obvious relations hold
I(L)2I(c*,L)21I$(L)2I(o,L)oIR(o,L) and I(L)2IR(L).

A lattice is said to be disjunctive if for any xeX and LeL such that x¢ L then there exists a
Liel st xeL1 and LNL1=@.A lattice is said to be normal if for I.1,L2¢eL and L1nL2=@,there
exists L3,L4eL such that L3'DL1 L4'DL2 and L3'NL4'=@.A lattice is said to be T2 if for x,yeX
there exists L1,L2€eL such that xeL1',yeL2' and L1'nL2'=@.

A fact we will use throughout this paper is that there exists a 1-1 correspondence between
prime L-filters and elements of I(L),and a one to one correspondence between L-ultrafilters and
elements of IR(L).This correspondence is set up by letting pel(L) and H={LeL | u(L)=1}.Then H
is a prime L-filter and conversely if H is a prime L-filter there exists a measure associated with H
such that if LeH p(L)=1. A similiar correspondence holds for H and peIR(L) in which case H is
an L-ultrafilter.

We define p<v (L) for v,uel(L) if p(L)<v(L) for all LeL.We now prove two results that will
be useful in the sequel:

THEOREM 2.1: Let L be normal and countably paracompact,then if pel(c*,L) there exists a
unique p1€IR(o,L) such that p<py (L).
Proof: Let pel(o*,L) and pelR(L) such that p<pt) (L).Then we must prove that pt1eIR(o,L).Let
{An)eL Apd@.Since L is countably paracompact there exists {Bp'}such that Bn'l@.Bpel and
Bn'2An for every n.Since By'DAp and L is normal and ApnBp=@,there exists Cp,Dpel such
that Ch'2A R Dn'2Bp and Dpy'nChr'=@.Then B'oDpnoCh'2Ap and we can assume without loss
of generality that these inclusions hold with Dnl@.Then p1(An)<u1(CnH<u(Cn<u(Dy) Land
since Bp'V@ Dpd@ plus the fact puel(o*,L) imply that limpu(Dp)=0 as n—eo.Then p1(Ap)=0 as
n—eo and P 1€IR(o,L).Uniqueness follows from normality.
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THEOREM 2.2:If the lattice L is complement generated, it is countably paracompact.
Proof: Let {An}@ Apel and Ap=NLpj' =1,2..., Lpjel. Since Apnl@ Bp'=n"Lm;' both i and
m go from 1 to n,Bnl& Bpel' Bp'oAn. Thus L is countably paracompact.

Now consider various sets of measures defined on the algebra generated by the lattice L.For
example consider I(L),I(c*,L),IR(L) and IR(c,L).Denote such sets by I.Also consider the
collection of sets H(L) where H(L)={H(L) | LeL} and H(L)={pel | p(L)=1)}.Then the following
hold: a) H(AUB)=H(A)UH(B) A,BeL.b) HLAnB)=H(A)NH(B) A,BeL.c) H(A"\=H(A)' AeL.d)
If ADB then H(A)DH(B) A,BeL. e) If L is disjunctive (if necessary) and H(A)2H(B) A,BeL then
ADB.f) The collection H(L) is a lattice and H(A(L))=A(H(L)).

We will assume in discussing H(L) for convenience, that L is disjunctive ,although it will be
clear that this assumption is not always necessary.

If pel then define a measure on A(H(L)) pAreI(H(L)) by pA(H(A))=pn(A) for
AgeA(L).Conversely if for preI(H(L)) define a measure on A(L) pel by pu(A)=pr(H(A))
H(A)eA(H(L)) .Then the following hold:

THEOREM 2.3: If L is disjunctive (if necessary) then there exists a 1-1 correspondence
between the sets I and I(H(L)) given by pe>pA.Further pel is 6-smooth or L-regular iff
pAeI(H(L)) is o—smooth or H(L)-regular.

If I=IR(L) we let H(L)=W(L).

If I=I(L) we let H(L)=V(L).

If I=I(o*,L) we let H(L)=V(o,L).
If I=IR(o,L) we let H(L)=W(o,L).

3. ONNORMAL LATTICES
In this section we extend the work of Eid [5].and Huerta [6],and consider further

consequences of a lattice being normal as well as new equivalent characterizations of
normality.First we have the following measure theoretic characterization of normality:

THEOREM 3.1: A lattice L is normal iff for pel(L) and v1,v2eIR(L) st u<vy (L) p<va (L)
implies that v1=v2,
Proof: Let L be normal.Assume that for pel(L) there exists v1,v2€IR(L) st u<v] (L) ,usv2 (L)
and v1#v2 Then there exists L1€L v](L1)=1 v2(L1)=0.Since v2€IR(L) there exists L2eL L1'2L2
and v2(L2)=v2(L1")=1 and L1NL2=@.Since L is normal there exists L3,L4eL st L3'2L1,
L4'2L2 and L3'NL4'=@.Since vi(L1)=1 this implies that v1(L3')=l,énd v2(L2)=1 implies
v2(L4")=1.Thus pu(L3")=p(L4")=1 since u=v] (L') and p=v2 (L'). Then pu(L3'NL4")=1,but
L3'nL4'=@ implies that p(L3'NL4")=0,a contradiction .Therefore v1=v2.

Conversely let pel(L) v1,v2eIR(L) pu<vi (L),u<v2 (L) imply that vi=v2 and assume that L
is not normal.Then there exists L],L3eL st L1nL2=@ and any L3'2L] L4'2L2 L3,L4€eL imply
that L3'nL4'#@.Let H={L' | L'2L1 or L'DL2).Since H has the finite intersection property and
forms a filter base there exists a prime L-filter containing H and an associated measure pel(L') st
H(L)=1 L'eH.Look at u(L5)=1 LseL then p(L5')=0 and
L5" does not contain L] thus L1nLs#@.Since the collection of all such Ls 's has the fip there
exists a measure W1€IR(L) st p<pj (L) and pu1(L1)=1.By similiar reasoning there exists a
W2eIR(L) st p<p? (L) and p2(L2)=1. By hypothesis v1=v7 But then v1(L1)=v2(L2)=1 or
V1(L1NL2)=1.But L1nL2=@,thus v1(L1"L2)=0,a contradiction.L must be normal,
cemnts n th i (Lol ek a0 ot oumatl oo of
NLn;=@ i=1,2,...N.This is equivalent measure the:o;';;;cally to ::ee:;::i:l' e S}Ibm.de’““g .

ion that if pel(L) then

pel(o*,L) .
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Definition 3.2: A lattice L is almost countably compact (acc) if peIR(L") implies that pel(o*,L) .

We then have the following theorem.

THEOREM 3.2: If L is normal and cp then L is cc iff L acc.
Proof: Assume L is cc,then let peIR(L') which implies that pel(L) .But since L is cc this implies
that pel(o*,L).(Note L cc implies L acc without any other conditions on the lattice).Conversely let
L be normal cp and acc.Then let pel(L). This implies that pel(L') and since every filter is contained
in an ultrafilter ,there exists an associated VeIR(L') st p<v (L') or p=v (L).Since L is acc
vel(o#,L) ,and also since L is normal and cp there exists a V{€IR(o,L) st v<vi (L) . Thus because
L is normal this implies that v&u<v] (L) ,uel(o*,L) and L is cc.

THEOREM 3.3: If L is normal,and if pel(o*,L) veIR(L),u<v (L) then vel(c*,L").
Proof: Assume not then there exists Apel. {Ap'}4@ and v(Ap')=1all n.Since veIR(L) there exists
BneL st Ap'oBj and V(Bp)=1 all n.Without loss of generality we can assume that {Bp )@ since
{An'}{@ and Ap'DBj all n.Since L is normal there exists Cp,Dpel st Cn'oBn Dn'2An and
Cn'nDp'=@ all n. v(Bp)=1 all n, u(Bp)=0 n>N because pel(o*,L) . v(Cp")=p(Cn")=1 since
Cn'2Bn v(Bp)=1 all n and p>v (L').Now Ap'2Dn2Cn'2Bn and since {Bp}l@ (An'}1@ then
{Dn){@ and because pel(c*,L) ,u(Dp)=0 for n>M.Then since Dp2Cp'n(Cn")=0 n>M,a
contradiction.Then veI(o*,L').

THEOREM 3.4: Let L be cg and normal,and pel$(L) then pelR(L).
Proof: Suppose pel$(L) and L cg normal.Let veIR(L) be such that u<v (L).If u#v there exists
A€l st u(A)=0 v(A)=1.A=NAp' n=1,2..., AneL by cg property.But L is normal and
AnNA=@.Therefore there exists Cp,BpeL st Cp'2A Bn'2Ap and Cp'nBp'=@ all n.v(Ap")=1 all
n since Ap'DA.Also u(Ap')=1 all n since v<pu (L') .Now p(Bp)=1 all n since Cp'2A all n
,V(A)=1,thus v(Cp")=1 all n,u>v (L') and BhoCp' all n.But An'2Bn2Cn'2A which implies

=NBp n=1,2,..., and since pel$(L) n(A)=1,a contradiction.pelR(L) and IR(L)2I$(L).

THEOREM 3.5: Let L be cg,and pel(o*,L") then peIR(L).
Proof: Let pel(o*,L') and let pu(L)=1 LeL.Since L is cg L=NLi' i=1,2,....L'=UL{j.Now
@=L'AL=L'"(NLj{) and thus Ap'=L'~(NL{) i=1,2..n Ap'eL' {Ap'}@. Since puel(o*,L')
limp(An')=0 or u(An")=0 for n>N or pu(Ap)=1 n>N.An=LU(ULj) i=1,2,...n p(L)=0, which
implies that p(ULj)=1, ULjeL for i=1,2,...,n.L'DUL; i=1,2,...n ,thus peIR(L).

If L is cg and normal then I$(L)2IR(0,L)2I$(L) by theorem 3.4 and I$(L)=IR(c,L). L cg
implies that L is cp so I(o*,L)2I(o*,L") holds by theorem 2.2.In addition from theorem 3.3,if L
is also normal I(o*,L)2I(6*,L')2IR(q,L) ,clearly I(o,L')2IR(0,L). Also by theorem 3.5 if L is
normal and cg IR(L)2I(o*,L') or IR(o,L)2I(o,L").Thus if L is cg and normal
I(o,L")=IR(c,L)=1(o,L).

DEFINITION 3.3: Let pel(L) X2E then p'(E)=inf{p(L") | L'2E}.
DEFINITION 3.4: IW(L) consists of those pel(L) st p(L")=1 implies that L'2L1,where L€l and
n(Lp)=1.

THEOREM 3.6:_Let L be normal then IR(L)=IW(L).
Proof: First it is clear that IW(L)2IR(L) thus only need to prove IR(L)2IW(L).
Let peIW(L) and p(L")=p'(L")=1 LeL,then there exists a L3eL st L'2L3 and p'(L3)=1.Since L
is normal and L3NL=0 there exists L1,L2€eL st L1'2L,L2'2L3 and L1'nL2'=@.This implies
that X=L1UL2.Assume that p(L2)=1 then p(L2)=p'(L2)=1.Thus p(L2")=p'(L2")=0.But L2'2L3
and p'(L3)=1,a contradiction.Therefore pu(L2)=0 and p(L1)=1,and L'2oL1.Thus one must have
pelR(L) ,IR(L)2IW(L),and IR(L)=IW(L) if L is normal.
DEFINITION 3.5: Let uel(o*,L),E st X2E then p"(E)=infZp(Lj") i=1,2,..., st UL{'2E and
LieL.
Note that p1" is an outer measure.
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THEOREM 3.7: Let pel(o*,L), then p'=p" on L' iff peI$(L).

Proof: Let pel(o*,L) and p'=p" on L".Also let "AplAel Apel n=1,2,...,00 .Assume pe I$(L)
and let the above sequence NAplA be such that u(Ap)=1 all n and p(A)=0.Then H(AY=1 and
L(A)=p'(A)=n"(A")=1 by hypothesis.But u"(A")=p"(UAR)SZU(ARQ")=0 since p(Ap")=0 all n,a
contradiction.peI$(L).

Conversely let peI$(L).Clearly u"<p' on L'.Let p"(L')=0 LeL then there exists ULj' LieL
i=1,2,...,00 st Zu(ULi")=0 or u(Li)=0 all i,or p(L;)=1 and LoNLj i=1,2,...,.2.Thus one has that
L=n(LULj) LULjel and Lp=n(LULj) i=1,2,...,n LneL and LnlL.This implies that
p(L)=infu(LUL;j)=inf1=1 since pel$(L).Then p(LH)=p'(L")=p"(L")=0 and p'=p" on L".

THEOREM 3.8: If pel$(L) ,and if L is cg then peIW(L).
Proof:_Suppose that LelL and p(L')=p"(L")=1.Then from the previous theorem 3.7
p"(L")=1.Since L is cg then L'=UL; LjeL i=1,2,...,00 and 1=p"(UL;j)<Zp"(Lj).Thus p"(Lj)=1 for
some i and since p<p"<p'on L p'(Lj)=1 L'SLj thus peIW(L).

From theorems 3.6,3.7 and 3.8 we have that IR(L)=IW(L)2I$(L) or I$(L)=IR(o,L) if L is cg
and normal.This gives a second proof of this fact.

THEOREM 3.9: If L is normal and if p<v on L pel(L) veIR(L) then v(L")=1 LeL implies there
exist L~eL L'DL~ and p(L~)=1.Conversely this condition implies that L is normal.
Proof: Let L be normal ,u<v (L) puel(L) veIR(L) and let v(L")=1 for LeL.Assume that for 'L,
LieL p(L1)=0 for all such L1.Then look at H={L{'|Lq'2L} then for all such Li'eH
pu(L1")=1,L1eL.Then if p(L1)=1 then p(L1")=0 and thus L' does not contain L so that
L1NL#@.The collection of all such L has the fip ,and thus there exists a ultrafilter and its
associated measurev2€eIR(L), st u<v2 (L) .Since L is normal v=v2 and since v(L')=1 v(L)=0.But
because V2 is an ultrafilter containing all such Ly st u(L1)=1 which is a filterbase and all such L
have non-empty intetsection with L v(L)=1,a contradiction.Thus there must exist a L st L'2L)
u(L1)=1LjeL when v(L")=1.

Conversely suppose L is not normal then there exists L1,L.2¢eL st L1nL2=@ but there does not
exist L3,L4eL st L3'DL1, L4'2L2 and L3'NL4'=@.Then H={L' | L'2L1 or L'2L2} has the fip
and thus there exists a prime L-filter containing H and an associated measure pel(L') st p(L")=1

L'eH. Look at at u(Ls)=1 LseL then p(L5"=0 and _L5' does not contain L] thus L1NLs#@.Since
the collection of all such Ls has the fip there exists a p1€el(L) st p<p) (L) and ni1(L1)=1.By

similiar reasoning there exists a pel(L) st u<p2 (L) and p2(L2)=1.But since every filter is
contained in an ultrafilter there exists v1 v2eIR(L) st p<py<v] and p<pr<va (L).Now L1'2L2
L2'2L1 therefore v2(L1")=1 and v1(L2")=1.By hypothesis there exists Ls,LgelL st
L1'2L5,L2'2L6 st p(L5)=p(Lg)=1, thus p(LsNLg)=1.In addition L1'2LsNnLg and
L2'2L5NLe.But since p<v] (L) and p<vy (L),v1(LsNL6)=v2(L5NLg)=1.Now vi(L1)=1 so
vi(L1nL5nLg)=1.But L1'2L5NLg thus LsNLeNL1=@ thus v (L1nLsNLg)=0,a
contradiction.L must be normal.

Finally,we prove one further result that holds for normal lattices.

THEOREM 3.10: If L is normal and pel(L),veIR(L),and p<v (L) then p'=v (L).

Proof:_Since by definition p'(L)=infl(L4") L1'2L L,L4€L ,and since p<v (L) or v<u (L') ,then
psvsp' (L).
Assume that v#p' (L) then there exists LeL st v(L)=0 and p'(L)=1.Thus v(L')=1 and since
VeIR(L) there exists L3eL st L'oL3 and v(L3)=1.Since L is normal and L3NL=@,there exists
L1,L2¢eL st L1'2L and L2'2L3 and L1'NL2'=@.Thus since L2'2DL3 and v(L3)=1 and v<u (L'
;1(L2")=1 which implies p(L2)=0.Also since Ly2L1’ K(L19=0 and L1'2L.But p'(L)=inf u(L')
L'2L thus p'(L)=0,a contradiction.If L is normal p'=v (L). .
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4. LATTICE SEPARATION

In this section we study and characterize separation and semi-separation between pairs of lattice
in a measure theoretic fashion,and give some applications of these results .We first give some
definitions.

DEFINITION 4.1: Let L1,L2 be lattices st LooL1{.Then L1 is said to semi-separate L2 if for
Liel{ and L2eL2 and L1NL=@,there exists a L1~elL1 st L1~2L2 and L1"L1~=@.
DEFINITION 4.2: Let L1,L2 be lattices such that LooL1{ then L1 is said to separate L2 if for
L2,L2~el2 and L.oNL2~=@,then there exists L1,L.1~eL1 st L1joL2 L1~2L2~ and L1NL1~=0@.
DEFINITION 4.3: Let L1 and L2 be lattices such that L2oL 1, then if pel(L2) the restriction of i
to A(L1) will be noted by pl ,and plel(L1).

We now proceed to look at what separation and semi-separation implies about the relationship
between IR(L1) and IR(L2).

THEOREM 4.1: Let L1 and L2 be lattices such that LoDoL1{ and L1 semi-separates L2. Then

if veIR(L2) we have that p=v | (L1) and peIR(L1).
Proof: Let veIR(L2) and let p=v | (L1) then pel(L1).Assume that p(L1")=v(L1")=1,then since
L2oL 1 and velR(L2) there exists a LpeL2 st L1'2L2 and v(L2)=1,also L1nL2=@.But L1
semi-separates Lo Jthen there exists Lj~el1 st L1~2L2 and L1~NL1=@. This implies that
L1'2L1~ and v(L1™)l=p(L17)=1 (L1) .Thus peIR(L1).

THEOREM 4.2: Let L1,L2 be lattices such that L22L1{ and let L1 separate L2.Then there

exists a one to one correspondence between IR(L1) and IR(L2).
Proof: Since separation implies semi-separation we know from theorem 4.1 that if peIR(L2) then
wl=v (L1) then veIR(L1) .Thus we need only prove if peIR(L1) there exists a unique veIR(LD) st
vl=p (L1) .Assume that this is not true and thus there exists a peIR(L1) and v1,v2€eIR(L2) st
vil=p=v2Il (L1) and v1#v2 .Then there exists a L2eL2 st vi(L2)=1 and v2(L2)=0 say.But
v2€eIR(L2) therefore there exists L2~eL2 L2'2L2~ and v2(L2™)=1,and L2NL2~=@.Since L1
separates L2 there exists L1,L1~eL1 st L12L2 and L1~2L2~ and L1nL1~=@.Also v](L1)=1
v2(L1™)=1 thus p(L1)=v1(L1)=1 and p(L1~)=v2(L1™)=1 which implies p(L1nL]~)=1.But
L1nL1~=@ so p(L1nL1~)=0,a contradiction.vi=v2 (L2) and thus there exists a one to one
correspondence between IR(L1) and IR(L2) if L{ separates L2.

THEOREM 4.3: Let LopL1,and L separate L2 then L1 is normal iff L2 is normal.

Proof: Assume that L{ is normal and let L3,12~eL2 st LoNnLy~=@.Since L1 separates L2 there
exists L1,L1~eL{ st L{2L2 L1~2L2~ and L{NL1~=@.Now since L1{ is normal there exists
L3,L4elq st L3'DLj L4'DL1~.But L2l 4 and L3'2L12L2 and L4'DL1~2L2~,and thus this
implies that L2 is normal.

Conversely assume L2 is normal and let pel(L1) and vi,v2eIR(L1) st pu<vy (L4) and p<v2
(L1).Extend pel(L1) to vel(L2) .We know by theorem 4.2 that since L1 separates L2 there
exists a one to one correspondence between IR(L1) and IR(L2).Thus projecting v1,v2€IR(L1) up
onto unique elements v3,v4eIR(L2) st vi=v3|(L1) and v2=v4|(L1 )-Also since L1 separates L2
v<v3 and v<v4 (L2) (see theorem 4.6).Further since L2 is normal v3=v4 (L2) ,then
v]=v2=v3l=v4l (L1).This implies that L1 is nofmal.

THEOREM 4.4: Let L1,L2 be lattices such that L1 separates L2 then veIR(L2) is L1 regular
on L2'.Conversely if L1 semi-separates L2 and the above condition holds for all such veIR(L2) ,
then L1 separates L2.

Proof: Let L{ separate L2 and let veIR(L2) and let L2€L2 st v(L2")=1.Since veIR(L2) there
exists L2~eLl2 st L2'2DL2~ st v(L2~)=1 and LpnL2~=@.Since L{ separates L2 there exists
L1,L1~elq st LioLp,L1~2L2~,and L1nL1~=@.Since there exists a 1-1 correspondence
between IR(L{) and IR(L2) there exists a unique peIR(L{) st vi=pu (L1). Since
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v(L2™)=1,v(L1™)=1 and L1'2L1~ implies that p(L1")=1.But L2'2L1' and since pelR(L1) there
exists LeL{ st L2'2L1'2L and p(L)=v(L)|.Therefore veIR(L2) is L1 regular on L2'.

Conversely let L1 semi-separate L2 and let all veIR(L2) be L1 regular on L2'.Assume that L1
does not separate L2.Then there exists L2,L2~eL2 st LoNL2~=@,but L12L),L1~2L2~ has that
L1nL1~#@ for all such L1,L1~.Then H=(L | LoL2 or LoL)~ LeL 1} has the fip and there exists
a associated measure and thus a regular measure on L1 st u(L)=1 for LeH and peIR(L1) .Since
L1 semi-separates L2,LNL2#@ and LNL2~#@ for all LeH.Therefore we can extend L to
measures V1,v2€IR(L2) such that v1(L2)=1 and v2(L2~)=1.Therfore v1(L2~)=v2(L2)=0 and
hence v1(L2~")=v2(L2")=1.Since v] and v are L] regular on L2’ there exists L3,L4eL] such
that L2'DL3 ,L2~'2L4 and v2(L3)=v](L4)=1.Therefore u(L3)=p(L4)=1.Thus
p(L3NL4)=v1(L3NL4)=1,a contadiction since L2'DL3NL4 and v1(L2")=0.

We next define the notion for two lattices of the weak going up property.
DEFINITION 4.4: Let L1 and L2 be two lattices st L2oL1{ and let p1el(L1),u2eIR(L1)
,v1el(L2) with p1<p2 (L1) and v1 an extension on L2 of it on L1,i.e. vil=p] (L1). Then the
weak going up property holds if there exists v2eIR(L2) st vi<v2 (L2),and pu2=v3|.

THEOREM 4.5: Let L1 semi-separate L2 (L22L 1) and let L1 be normal,then the weak going
up property holds.
Proof: Let p1el(L1),u2eIR(L1) and v1el(L2) st p1<p2 (L1) and v] is an extension of p1
vil=p1.Let v2€IR(L2) be an element such that vi<v) (L2).Then since L1 semi-separates L2
v2J=u (L1) and pelR(L1) and p1<p (L1). Since L{ is normal and pj<p (L1) and p1<p2 (L1)
we have u2=v2|=peIR(L1) and v2 extends p2 and the weak going up property holds.

THEOREM 4.6: If L1 separates L2 then the weak going up property holds.

Proof: Suppose not and let p1€l(L1),12eIR(L1),v1€el(L2) and u1<puy (L1) and p1=vi| (L1) .
Also, let v2eIR(L2) be st v2eIR(L2) st v2|=p2 (L1) and vi<v2 (L2) does not hold. Then there
exists LoeLo st vi(L2)=1 ,v2(L2)=0 say or v2(L2")=1.Since V2€IR(L2) there exists a L2~eL2 st
v2(L2~)=1 and L2'2L2~.Also since L1 separates L2 there exists L1,L1~eL1 st
L12L2,L1~2L2~ and L1AL1~=@.Then p1(L1)=1 and thus p2(L1)=1 since p1<p2 (L1) .In
addition L1~2L2~ therefore u2(L1~)=1,a contradiction.visv2 (L2). Thus the weak going up
property holds.

We have from theorem 4.2 that if L{ semi-separates L2 then y:IR(L2)—IR(L]) the restriction
map is defined .A converse holds for special lattices in the next theorem.

THEOREM 4.7: Let L1,L2 be lattices such that LoDoL1,L2 is disjunctive and L1 is normal.

Also suppose that y:IR(L2)—IR(L1) is defined where IR(L1),IR(L2 ) have the wallman topology
ie. TW1(L1),tW2(L2) are the respective lattices which define a topology on IR(L1),IR(L2).
Then L1 semi-separates L2,
Proof: Suppose L1eL{ and L2eL2 and LinL2=@.Then W2(L1)NW2(L2)=0,and also
y(W2(L2))NW1(L1)=@.For if p=y(v) where veW2(L2) and v(L2)=1 and v(L1)=p(L1)=1,a
contradiction. Thus y(W2(L2))NW1(L1)=@.Second, y(W2(L2))="W1(L1;) i€l an arbitrary index
set ,and L1j2L2.This hold since W2(L2) is closed and thus compact since the space W2(X) is
compact and W2(X)2W2(L2).In addition y is continous since Yy~ 1(Wl(L1))=W2(L1),L1 is
normal which is equivalent to W1(L1) normal and thus T2 by a known result .Therefore since
W2(L2) is compact and since  is continuous then y(W2(L2)) is compact and since W1(L1) is
T2,y(W2(L2)) is closed and thus y(W2(L2))=nW1(L1j) i€l an arbitrary index set.Since L2 is
disjunctive and since y;IR(L2)—IR(L1) is defined,L1 is disjunctive.But this implies
L1ij2L2.Thus y(W2(L2))=nW1(L1i),iel and L1;2L2.
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Now look at Wy(W2(L2)NW 1(L1)=(nW 1(L1i)"W1(L1)=@.Then by compactness
("W (L1g)NW1(L1)=@,0=1,2,...N.Since L1 is disjunctive,this implies that "Lig2L2
,L17=NLjq.L17el1 and L1NL1~=@.Thus L{ semi-separates L2,

DEFINITION 4.5: Let puel(L) and define for E,st XoF, u~(E)=infu(L]) where L1€L1.

We now state and prove a theorem giving necessary and sufficent conditions for semi-separation
of lattices LopL 1.

THEOREM 4.8: L{ semi-separates L2 iff p'=pu~ on L2 where uelR(L1).
Proof: Look at p'(L2)=inf p(L1") L1'2L2.Then since L]NL2=@,and L{ semi-separates L2 there
exists a L1~el1 st L1~2L2 and L1~NL1=@.L1'2L1~ thus infu(L1)2infu(L]1™)
U2p~ on L2.Now look at u~(L2) assume that p~(L.2)=0.Then there exists a L1~elL{ st L]1~2L2
and p(L17)=0 or p(L1~")=1.Since pelR(L 1) there exists a L3eL1 st L1~'2L3 pu(L3)=1 or
K(L3)=0 and L3'2L1~2L2 or u'(L2)=p~(L2)=0.Thus u'=u~ on L.

Conversely assume that L1 does not semi-separate L2 then there exists L1eL1,and L2€L2 st
LinL2=@ and L1NL1~#@ L1~2L2 and L1~eL{.Look at H=({L1~ | L1~2L2,L1~eL1). Then H
has the fip and there exists a filter and thus an ultrfilter and its associated measure peIR(L1{) st
u(L1™)=1,L17eH and since L1NL1~#@,u(L1)=1.Now look at p'(L2).Since L1nL2=@ then
L1'2L2 and since p(L1)=1,u(L1"=0,and thus p'(L2)=inf p(L3')=0 L3'2L2,and L3eL{.Now
look at p~(L2)=infu(L4) L42L2,L4€L{ then every such L4 is a member of H and thus
u~(L2)=influ(L.4)=1,a contradiction.Thus L1 must semi-separate L2.

ACKNOWLEDGEMENTS. I wish to thank the referee's for their helpful comments that greatly
enhanced the readability of this paper.

REFERENCES

1) A.D. Alexandroff (Aleksandrov),Additive set functions in abstract spaces,(chapter 1) , Mat. Sb.
8 (1940),307-348.MR 2-315.

2) J. Camacho,Jr.,Extensions of lattice regular measures with applications,Jour. of the Indian
Math. Soc.,54 (1989),233-244.

3) P.Grassi,On subspaces of replete and measure replete spaces,Canad. Math. Bull 27 (1),
1984,58-64.

4) M.Szeto,Measure repleteness and mapping preservations,Jour. of the Indian Math. Soc. 43
(1979),35-52.

5) G. Eid,On normal lattices and Wallman spaces,Internat. J. Math. and Math. Sci. 13 (1),
1990,31-38.

6) C. Huerta,Notions of compactness on the lattice and on the point set in terms of measures,Ann.
Sc. Math. Quebec,13 (1),1989,49-52.



