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ABSTRACT. Irudayanathan and Naimpally [i] introduced a topology for function

spaces (called the "connected-open" topology) which has the property that the

connected functions form a closed set provided that the codomain is completely

normal. Pervin [2] gave an example showing that the proviso cannot be weakened to

normality. The purpose of this note is to point out a lacuna in his demonstration,

and to re-establish the validity of the example.
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1. INTRODUCTION.

Let X and Y denote topological spaces, and F the set of all mappings from X to

Y. For each connected subset K of X and each pair U, V of open subsets of Y denote

by W(K; U, V) the subset

{f F f(K) U u V, f(K) n U # # # f(K) n V}

of F. The collection S of all these sets W(K; U, V) is a subbase for the connected-

open topology T on F, introduced by Irudayanathan and Naimpally in [I] where it is
-2

proved that the collection C of all connected (Darboux) functions is T-closed if Y

is completely normal.

To show that normality of Y is not sufficient for this result, Pervin [2] took

Y as a modification of the Tychonoff plank, with an open interval of reals

interpolated between each ordinal and its successor in the construction; appealed to

cardinality to obtain a function f from the unit interval X [O,I] onto a subset

A* u B* of Y, where A* and B* were separated but had no disjoint neighbourhoods in Y,

and where f-l({y}) was dense in X for every y in A* u B*; and proved that any member

W(K; U, V) of S which contained f must also contain a connected function. However,

this does not suffice to establish that the (non-connected) function f belongs to

the T-closure of C-2, it being perfectly possible for every subbasic neighbourhood
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of a point to intersect a set without every basic neighbourhood doing so. We shall

show that f is, nevertheless, a limit of connected (indeed, of continuous) functions.

2. PERVIN’S EXAMPLE REVISITED.

Let J denote the connected, compact T
2 space formed from the second uncountable

ordinal WD by interpolating a copy of (O,I) between each element (other than the

maximum) and its successor, and imposing the order topology on the resulting chain;

and consider the product space Y Jx[O,l]. (The space W used here by Pervin

instead of [O,I] is homeomorphic to [O,I] .) Denote by a and b (respectively) the

least and greatest elements of J, and by A* and B* the following subsets of Y:

A* [a,b){l}, B* {b}x [0, I).

(Pervin’s definition of these sets is incompatible with his assertion that they are

connected; the above is presumably what was intended.) Considerations of cardinality

establish the existence of a mapping f from ,I] onto A* u B* such that the preimage

of each singleton is dense. It will now be shown that every neighbourhood of f

contains a connected function.

Consider a typical basic T-neighbourhood

G n{W(Ki; Ui, Vi) i-- I, 2, n}

of f where (for each i) K. is a connected subset of [O,i], U. and V. are open in Y,
I I i

and V. and meets them both. No loss ofand f(Ki) is contained in the union of U
I 1

generality will be incurred by assuming that the sets K. are distinct since

W(K; U, V) n W(K; U’, V’) W(K; U o U’, V V’).

Denoting by the number of degenerate intervals amongst the Ki, where O s n, we

can arrange the labelling so that K. is a singleton for i and is non-degenerate
i

for i > j. The strategy of the proof is to determine a subset Z of Y of the form

suggested by a876e8 in the diagram below (which see), where x is chosen to ensure

that Z is contained in U. u V. for all i j, and z is selected so that Z includes
I

n V. for each i; a path-connectedness argument within Z willat least one point of U
then produce a continuous function belonging to G.

u V.. Thus forFor i > j, f(Ki) is the whole of A* u B* and is contained in U
each positive integer n the product of compact sets

{b}x[O,l-2-n]

is contained in U. u V., and a lemma of A.D. Wallace (see [3], p.142) allows us to
i 1

find x. [a,b) such that
l,n

b]x[O I-2-n] cU. uV..(Xi,n’ i
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[0,1]

0

B*

a J z b

FiE_ure I.

Now [a,b) inherits from its cofinal subset Wfl \ {b} the property that each countable

subset is bounded above: choosing then a strict upper bound x. < b for the sequence

(xi, n) we see that

[xi,b][0,1) ! Ui u Vi;

and so if x denotes the maximum of the elements x. here chosen, we have

[x,b]x[O,l) U. u V. for all i j. (2.1)

(In the event that n, i.e. that all the K. are degenerate, (2.1) may be obtained

by an arbitrary choice of x b.)

Still considering the case i j, we see from (2.1) that the connected set

A* u (x,b]x[O,l) is contained in the union of U. and V. and intersects them both;
1 1

so it must be possible to choose a point t(i) (t(i) I, t(i) 2) of Ui n Vi
such

that either t(i) e A*, or else t(i) e (x,b]x[O,l): and in the latter case, the

observations that U. n V. is a neighbourhood of t(i) and that b is not isolated in J
I 1

will allow us to assume that x t(i)l < b. Turning now to the case i j, f(Ki)
is here a single point of (A* u B*) n U

i
s Vi; if this point lies in A* we denote it
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by t(i) (t(i)l t(i)2), while if it belongs to B*, an argument like that above

will yield t(i) (t(i)l t(i)2 in U
i

n V
i satisfying x t(i)l b. Lastly let

z denote the maximum of t(l}l t{2)l t{n} I" the consequence of the choices of x

and of z is that the set

Z [a,zlx{1} u [x, z] [O,1]

a V. for every i, and is contained in U. u V. for thoseincludes the point t(i) of U
I 1 1 1

values of i (if any) for which Ki is non-degenerate.

Now since z < b, the interval (x,z) contains only countably many elements of

Wa and only countably many interpolated real intervals or parts thereof, so it

possesses a countable dense subset. It is routine to verify that it contains a

supremum and an infimum for each of its bounded subsets, and it has no least nor

greatest element and no gaps. Thus by a well-known characterization due to

Hausdorff ([4], p. 54) it is homeomorphic to the real line. Then Ix,z] and,

similarly, [a,z] are homeomorphic to bounded closed real intervals; and Z, being

essentially the unit square in the real plane with a line segment attached to one

corner, is path-connected. Choosing distinct elements k. in K. for each i, which
1 1

will be possible since the K. are themselves distinct intervals this guarantees
1

the existence of a continuous (and therefore connected) function g [O,I] Z

such that g(ki) t(i) for each i. Regarding g as a mapping into Y, we see that it

is common to all the sets W(Ki; Ui, Vi) and the demonstration is complete.
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