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ABSTRACT. A theory of e-countable compactness and e-Lindelofness which are weaker
than the concepts of countable compactness and Lindelgfness respectively 1is
developed. Amongst other results we show that an e-countably compact space 1is
pseudocompact, and an example of a space which is pseudocompact but not e-countably
compact,uw:lth respect to any dense set 1is presented. We also show that every e-

Lindelof metric space s separable.
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1. INTRODUCTION.

Using the terminology and notation in [3], it is known that a topological space X
is compact iff its enlargement *X contains only near-standard points, and that a
subset A of a regular Hausdorff space is relatively compact iff *A contains only near
standard points. Hechler [1] wanted to know what this condition implied topologically
in not necessarily regular spaces. He was led to the notion of what he called 'e-
compactness' which is weaker than the notion of compactness. It is the purpose of
this paper to develop a theory on the analogous concepts of e-countable compactness
and e-Lindelgfness in the spirit of Hechler's study of e-compactness [l1]. In
particular we extend the well-known result that a countably compact space 1is
pseudocompact to an e-countably compact space 1is pseudocompact. We also show that
the Lindelof condition in t.he theorem that every Lindel(;f metric space is separable

can be weakened to e-Lindelof.
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2. PRELIMINARIES.
We begin by recalling Hechler's definition of e-compactness and e-regularity.

Let D be a dense subspace of a topological space X.

DEFINITION 2.1. ([11): (a) X is said to be e-compact with respect to D if each
open cover of X contains a finite subcollection that covers De (b) X is e-regular
with respect to a dense subset D if for each closed FcX and each p l F there exist
disjoint open sets U and V such that p « U and FNDc V. By analogy we introduce the
following:

DEFINITION 2.2. X is e-countably compact with respect to D if every countable
open cover of X has a finite subcollection covering D.

DEFINITION 2.3, X is e-Lindelof with respect to D if every open cover of X has 2

countable subcollection covering D.

Recall Hechler's extension of the topology T for X:
Let E be a family of subsets of X, and let T(E) = {U-F'UCT and F is a subset of a
finite union of members of E}. By X(E) we shall mean X with the extended topology
T(t). Hechler used the construction of the extended topology T(E) to provide examples

of spaces which are e-compact but not compact (see [1] p. 223).

3. RESULTS.

The following two theorems are analogous to the corresponding theorems on e-
compactness (see [1]).

THEOREM 3.1. Let X be Lindeh;f. Then X(E) is e-Lindelgf iff there exists a
dense set D (with respect to X(E)) sux.:h that for every E€ E, EN D is countable.

PROOF. Suppose X(E) is e-Lindelsf with respect to a dense set D. Assume for some
E € E, END is uncountable. Then {X -(E-{x}) l x € E} is an open cover of X having no
countable subcover of D, contrary to X(E) being e—Lindelo.f « Thus END i{s countable
for all Eet.

Conversely suppose END is countable for all E € E and D is dense with respect to
X(E). Suppose {U(1 -F,:ac¢ A} is an open cover of X. Then {UQ: x € A} covers X,

and as X is Lindelof, there is a countable subcollection [Ua. }m , say, covering X.
© i i=1

Now (U, - F_1} will cover all except at most countably many points (x }m_

Y. % 1=l 1=t

0

But {xj }j=l cU A, where 8 is a countable subcollection of {Ua -Fioae A} . Thus
U -F. ) . Upis a countable subcollection of {U - F : a e A} covering D,
ui \"1 i=1 a o

showing that X(E) is e-Lindelof.
THEOREM 3.2. Let X be countably compact. Then X(E) is e-countably compact iff

of D.

there exists a dense subset D (with respect to X(E)) such that for every set E € F,
EN D is finite.

PROOF. Suppose X( £) 1is e-countably compact with respect to D. Assume for
some E € E, EN D is infinite. Choose an infinite sequence (xn: n cINtin EN D and
let F = {xn: n ¢ Ni). Then {X - (F-{x}): xeF } {s a countable open cover of X with no

finite subcover of D, contrary to X being e-countably compact.
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Conversely suppose END is finite for all E ¢ E, and D a dense set with respect

to X(E). Suppose {Ui is a countable open cover of X(E). Then {Ui};ﬂ=l covers

Fitia
X, and as X is countably compact there i{s a finfte subcover {Uk )r of X.
i 1=1

Now {U, - F }r covers all except at most finitely many points of D, {x }c , Saye.

ke R 173=1

t o
But {xj }j -1 € UB where 8 1s a finite subcollection of {Ui - Fi}{sl' Thus
F.}5
- r
K k1}1=1 11=1

is e-countably compact.

{u U 8 is a finite subcollection of {U1 covering D, showing X(E)

THEOREM 3.3. 1If X is e-countably compact, then X is pseudocompact.

PROOF. Suppose X is e-countably compact with respect to D. Let f be a continuous
real valued function of X. Then if Gn = {x ¢ XI if(x)' < n}, {Gn: n € IN} would be an
open cover of X having a finite subcover of D. Clearly then DcC Gn for some ne IN.
By continuity of f, we have £f(X) ¢ [-n,n], showing f is bounded. It is well known
that a countably compact first countable Hausdorff space i{s regular. We have the
following:

THEOREM 3.4. Every e-countably compact first countable Hausdorff space 1is e-
regular (with respect to a dense set D).

PROOF. Let p 4: F, F closed in X. Let B be a countable open neighbourhood base at

pe Since X 1is Hausdorff, for each q € F there exists open Gq and Bq € B such
that anBq = ¢ let B'= {Bq}q e F’ which, being a subfamily of B , must be
countable. For each B ¢ B' let HB = U{qu anB = ¢}. Then {HB‘B € B'}

is a countable family of open sets covering F so that {X-F}U {HB| B € B'} covers X.
Since X is e-countably compact there exists a finite family B"cB' such that

Dc (X-F)U U{HB: B ¢B"}e Thus FNDc U{H,B: B eBM=V. Let f =n{B:B ¢B"} which is

open and coantains p. It 1s easily verified thatUNV = ¢.

We now show how separability relates to the generalizations of compactness
and Lindelofness introduced above. It is well known that every Lindelof mectic space
is separable. In fact the Lindelof condition can be weakened to e-undelofness as the
following result shows.

THEOREM 3.5. If X is metric and e-Lindelc;f with respect to a dense set D then X
is separable.

PROOF. For each n ¢ IN let Un ={S(x, I/n)lx € X}. Since Un is an open cover of
X, there exists a countable set Fncx such that DU {S(x, 1/n): x € Fn}.

Let F= U {Fn: neIN}. Then F i{s countable.
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CLAIM. F is dense in X: Llet y € X be arbictrary, € > O. Find N such that
1/N< e. Now S(y, l/zn)” D # ¢ so there exists z € D such that d(y,z) < l/ZN' Now

DU {S(x,lYoN): x € FZN} lmplies that there exists x ¢ F,  c F such that

d(z,x) <lYpy. Thus d(y,x) < d(y,z) + d(z,x) <YpNy + Yy = 1/N< €.

Hence S(y,e)N F # ¢, showing F dense in X.
We then have:
THEOREM 3.6. For metric spaces the following are equivalent
(a) X is separable
(b) X is 2nd countable
(c) X is Lindelgf
(d) X is e—Lindele (with respect to any dense set)
Since every e-countably compact space is pseudocompact and every
pseudocompact '1'4 space 1s countably compact we also have
THEOREM 3.7. For T/. spaces, the following are equivalent
(a) X is countably compact
(b) X is e-countably compact (with respect to any dense set)
(c) X is pseudocompact

4. EXAMPLES.
This is an example of a space which is pseudocompact but not e-countably compact
with respect to any dense set.
+
Consider Z ,the posicive integers with the relatively prime topology, i.e. with
basis B = {U (b)Ia be Z ,(a,b)=1} where U (b) = {b + na €2 ' nelle We shall show
that there exists a countable open cover Qf of z* such that the closures of no finite
subcollection of QI covers Z . This would then imply that Z is not e-countably
compact with respect to any dense set. Recall that Z+ is pseudocompact ([2]), p.83).
Let then Qf = {U3(1), US(Z), 05(3), US(A). U7(5), U7(6). U“(7). U“(8),...},
and let lf ''o= {Up ((x:l)};l be any finite subcollection of f.f.
. A} =
Case 1: U3(1) tll’ . Then let m P PyeeeP and note that
U (mt)NU_ (a,) =P V1
m Py i
so that U G # 2%,
Case 2:  U;(1) el . 1f UL(1) ts the only element in ', then
. +
U3(2) ﬂU3(l) = ¢, so that Ufp' # 2 ; otherwise lec m = PyPye+++p, Where pl-3, and
pi#3V1,2<1<m.
Then
U (1) NU (a,) = ¢Vi, 2 <1i<n
m Py i
and U3(m+l)ﬂU3(l) = ¢ (in the case where 3{m+l) so that Um(m-i-l)n Ua(m+l) is a
neighbourhood of mtl meeting no member of l{'. If 3vfm+l, let
L

w'=p m
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where pois a prime 33fp°— 1 and po* 3. Then 3‘rp°m and 3fp°m + 1.

Hence Um, (m'+1)N U3(m'+1) is the required neighbourhood of m'+l meeting no member of
B,

This example is motivated by the result that a Lindelof countably compact space is
compact. The analogous statement that an e-Lindeldf, e-countably compact space is e-
compact is not in general true as the following example shows:

Recall the Novak space (see [2] p. 134): Let Z+ denote the positive integers with the
discrete topology and S the Stone-Cech compactification SZ+ of Z+. Let F be the
family of all countably infinite subsets of S, well-ordered by the least ordinal T of
cardinal 2% = card (s). Let {PA.A ¢ F} be a collection of subsets of S such that

card (PA) < 2c, PDC PA whenever D < A, and ?(PA) n PA = ¢ where f is the unique

+
extension to S of the continuous function f: Z+ + Z which permites each odd integer
with its even successor, i.e. f(n) = n + (-l)n“. Then we define
P =U {PAIA ¢ F}, and then define Novak's space by

X=PU Z+.
Note that cf.x(Z+) = X ([2] p. 135), hence X is e-Lindeldf with respect to Z+. Also X
is countably compact ([2] p. 135), but as X is not compact, X cannot be absolutely
closed (as a regular absolutely closed space is compact). Thus X is not e-comwpact

with respect to any dense set.
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