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ABSTRACT. A theory of e-countable compactness and e-Lindelfness which are weaker

than the concepts of countable compactness and Lindelofness respectively is

developed. Amongst other results we show that an e-countably compact space is

pseudocompact, and an example of a space which is pseudocompact but not e-countably

compact with respect to any dense set is presented. We also show that every e-

Lindelof metric space is separable.
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1. INTRODUCTION.

Using the terminology and notation in [3], it is known that a topological space X

is compact iff its enlargement *X contains only near-standard points, and that a

subset A of a regular Hausdorff space is relatively compact Iff *A contains only near

standard points. Hechler [I] wanted to know what this condition implied topologically

in not necessarily regular spaces. He was led to the notion of what he called ’e-

compactness’ which is weaker than the notion of compactness. It is the purpose of

this paper to develop a theory on the analogous concepts of e-countable compactness

and e-Lindelofness in the spirit of Hechler’s study of e-compactness [I]. In

particular we extend the well-known result that a countably compact space is

pseudocompact to an e-countably compact space is pseudocompact. We also show that

the Lindelof condition in the theorem that every Lindelof metric space is separable

can be weakened to e-Lindelof.
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2. PRELIMINARIES.
We begin by recalling Hechler’s definition of e-compactness and e-regularity.

Let D be a dense subspace of a topological space X.

DEFINITION 2.1. ([|I): (a) X is said to be e-compact with respect to 0 if each

open cover of X contains a finite subcol[ect[on that covers D. (b) X is e-regular

with respect to a dense subset D if for each closed FoX and each p F there eist

disjoint open sets U and V such that p U and F 0Dc V. By analogy we introduce the

following:

DEFINITION 2.2. X is e-countably compact with respect to D if every countable

open cover of X has a finite subcollectlon coerl, D.

DEFINITION 2.3. X is e-Lindelf with respect to D if every open cover of X ha n

countable subcollectlon covering D.

Recall Hechler’s extension of the topology T for X:

Let be a family of subsets of X, and let T(E)= {U-FIU,T and F Is a subset of a

flnie union of members of }. By K() we shall mean K with th, extended topology

T(). Hechler used the construction of the extended topology T() to provide examples

of spaces which are e-compact but not compact (see Ill p. 223.

3. RESULTS.

The following two theorems are analogous to the corresponding theorems on e-

compactness (see [I]).

THEOREM 3.1. Let X be Lndelof. Then X() is e-Lindelof iff there exists a

dense set D (with respect to X(E)) such that for every E g E, E O D is countable.

PROOF. Suppose X(E) is e-Llndelof with respect to a dense set D. Assume for some

E g E, E D is uncountable. Then {X-(E-{x}) x E} is an open cover of X having no

countable ubcover of D, contrary to E() being e-Lindelof Thus E O D is countable

for all E g .
Conversely suppose END is countable for all E and D is dense with respect to

X(). Suppose {U F A} is an open cover of X. Then U ,m E A} covers X,

and as X is Lindelof, there is a countable subcollectlon [U say, coverlng .
i i--I

Now [Ui F! will cover all except at most countably many points {xj of O.

But {x.j }J-I c U, where is a countable subcollectlon of {Ua -Fa: a A} Thus

F U is a countable subcollection of {U F a A] covering D,

showing that X(E) is e-Lindelf.
THEOREM 3.2. Let X be countably compact. Then X() is e-countably compact

there exists a dense subset D (with respect to X()) such that for every set E g ,
E O D is finite.

PROOF. Suppose X() is e-countably compact with respect to D. Assume for

some E g , E N D is infinite. Choose an lnfinlte sequence {x n IN#in EO D and
n

let F ix n e IN}. Then iX (F-x}): x F is a countable open cover of X with no

finite subcover of D, contrary to X being e-countably compact.
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Conversely suppose E 0 D is finite for all E E E, and D a dense set with respect

to X(E). Suppose {U
i Fi}i= is a countable open cover of X(E). Then {Ui}i. covers

X, and as X is countably compact there is a finite subcover {Ukl}ri=l of X.

Now {U
k Fki}r {xj }=covers all except at most finitely many points of D, say.
i
t

i=l
But {xj}j c U where is a finite subcollection of {Ui Fi}t=I* Thus

{Uki- Fkt}r U is a finite subcollectlon of {U
i Fi}

i=I
i=

covering D, showing X(E)

is e-countably compact.

THEOREM 3.3. If X is e-countably compact, then X is pseudocompact.

PROOF. Suppose X is e-countably compact with respect to D. Lec f be a continuous

of X. Then if G {x X If(x) < n}, {G n IN} would be anreal valued function
n n

open cover of X having a finite subcover of D. Clearly then D c G for some n IN.
n

By continuity of f, we have f(X) c [-n,n], showing f is bounded. It is well known

that a countably compact first countable Hausdorff space is regular. We have the

ollowlng:

THEOREM 3.4. Every e-countably compact first countable Hausdorff space is e-

regular (with respect to a dense set D).

PROOF. Let p F, F closed in X. Let B be a countable open neighbourhood base

p. Since X is Hausdorff, for each q E F there exists open G and B E B such
q q

that GqO Bq . Let {B_}qq F’ which, being a subfamily of must be

q

is a countable family of open sets covering F so that {X-F}U {HBI B B’} covers K.

Since X is e-countably compact there exists a finite family "cB’ such that

Dc(X-F)U U{HB: B 8"}- Thus FNDcU{: B B’g V. Let N{B:B 8"} which is

open and contains p. It is easily verified thatUNV .
We now show how separability relates to the generalizations of compactness

and Lindelofness introduced above. It is well known chat every Lindel’f metric space

is separable. In fact the Lindel’f condilon can be weakened to e-Lindelofness as the

following result shows.

THEOREM 3.5. If X is meCrlc and e-Llndel’f with respect co a dense set D then X

is separable.

PROOF. For each n E IN let U ={S(x, I/n) Ix E X}. Since U is an open cover of
n n

X, there exists a countable set F c X such that D cu {S(x, I/n): x F }.
n n

Let F U {F n IN }. Then F is countable.
n
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CLAIM. F is dense in X: Let y c X be arbitrary, e > O. Find N such thac

I/N < . Now S(y, 1/2N)O D # # so there exists z D such that d(y,z) < I/2N. Now

DcU {S(x,I/2N): F2N implies that there exists F2N c F such that

d(z,x) < I/2N. Thus d(y,x) < d(y,z) + d(z,x) < 1/2N + I/2N I/N < .
Hence S(y,)fl F , showing F dense in X.

We then have:

THEOREM 3.6. For metric spaces the following are equivalent

(a) X is separable

(b) X is 2nd countable

(c) X is Lindelof

(d) X is e-Lindelof (with respect to any dense set)

Since eve ry e-countably compact space is pseudocompact and eve ry

pseudocompact T
4 space is countably compact we also have

THEOREM 3.7. For T
4 spaces, the following are equivalent

(a) X is countably compact

(b) X is e-countably compact (with respect to any dense set)

(c) X is pseudocompact

4. EXAMPLES.

This is an example of a space which is pseudocompact but not e-countably compact

with respect to any dense set.

Consider Z+,the positive integers wlch the relatively prime topology, i.e. with

basis B {U (b) a,b ,(a,b) I} where U (b) {b + na Z
+

n Z}. We shall show
a a

that there exists a countable open cover of Z
+

such that the closures of no finite

Z
+

subcollectlon of covers Z
+

This would then imply that is not e-countably

Z
+

compact with respect to any dense set Recall that is pseudocompact ([2], p.83).

Let then {U3(1) U5(2) U5(3) U5(4) U7(5), U?(6), UII(7) UII(8),...},
and let {Upi(al)}in.l be any finite subcollectfon of.

Case U3(I) ’. Then let m PlP2"’’Pn and note that

u (m+,)0u (ai) i
m Pl

so chac U ’ Z+.
Case 2: U3(I) ’ If U3(1) is the only element in ’, then

U3(2) 0U3(1) @, so that U’ # Z+; otherwise let m p2P3...pn where pl-3, and

Pi # 3 V i, 2 I m.

The n

U (re+l)OU (ai) @V, 2 < I n
m

and U3(m+l) O U3(I) (in the case where m+1) so Chat U (m+l)O U3(m+l) is a
m

nelghbourhood of m+l meeting no member of ’. If m+l, let

m’ pom
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3. Then 3p and 3p + I.where PolS a prlme 3 Po- and Po o
m om

Hence Um,(m’+l) O U3(m’+l) is the required nelghbourhood of m’+l meeting no member of

’.
This example is motivated by the result that a Llndelf countably compact space is

compact. The analogous statement that an e-Llndel’df, e-countably compact space is e-

compact is not in general true as the following example shows:
+

Recall the Novak space (see [2] p. 134): Lec Z denote the positive integers with the

discrete topology and S the Stone Cech compactiflcatlon + +
of Z Let F be the

family of all countably infinite subsets of S, well-ordered by the least ordinal r of

cardinal 2
c

card (S). Let {PAIA F} be a collection of subsets of S such that

card (PA) < 2c’ PDC PA whenever D < A, and (PA 0 PA where is the unique

extension to S of the continuous function f: Z
+ +

+ Z which permutes each odd integer

n+l
with its even successor, i.e. f(n) n + (-I) Then we define

P U {PAIA F}, and then define Novak’s space by

XffiPU Z+.
Note that Cx(Z+) X ([2] p. 135), hence X is e-Lindel’f with respect Z

+
to Also X

is countably compact ([2] p. 135), but as X is not compact, X cannot be absolutely

closed (as a regular absolutely closed space is compact). Thus X is not e-compact

with respect to any dense set.
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