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d4uABSTRACT. The fourth-order boundary value problem - +f (x)u e (x), 0 < x < n;

u "(0) u "(t) u ""(0) u ""() 0; where f (x) < 0 for 0 x t, describe the unstable static equilibrium

of an elastic beam which is supported by sliding clamps at both ends. This paper concerns the nonlinear

d4u
analogue of this boundary value problem, namely, -- + g(x,u)= e(x), 0 < x < , u’(O)= u’(n)

u"’(0) u’"(n:) 0, where g (x,u)u >_ 0 for a.e. x in [0,] and all u e R with lu sufficiently large. Some
resonance and nonresonance conditions on the asymptotic behavior of u-lg(x,u), for lul sufficiently

large, are studied for the existence of solutions of this nonlinear boundary value problem.

KEY WORDS AND PHRASES. elastic beam supported by sliding clamps, asymptotic conditions, reso-

nance, nonresonance, L**-resonance, Wirtinger’s inequalities, coincidence degree theory.
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1. INTRODUCTION
The static deformations of an elastic beam supported by sliding clamps at both ends are described by

the following fourth-order two-point boundary value problem:

d4u
dx4

+f (x)u e (x 0<x</l:, (1.1)

u "(0) u "() u ""(0) u ""(n) 0.

The static equilibrium of the elastic beam described by the boundary value problem (1.1) is said to be

unstable if f(x) < O, for 0 < x < . This instability iscaused by the fact that the term f (x)u may interact

with the eigenvalues, , n 4, (n 0,1,2 ), for the linear eigenvalue problem

d4u
dx4

=ku, O<x<t, (1.2)

u’(0) u’(n) u’"(0) u"’0t) 0,
whenf (x) < O, O < x < .

The purpose of this paper is to study the following nonlinear analogue of the boundary value problem(1.1):
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d4u
+g(x,u)=e(x), 0<x<r, (1.3)

u’(0) u’(n) u’"(0) u"’(n) 0,

where the nonlinear function g (x,u) is such that for some p > 0, g(x,u)u > 0 for x [0,r], u R with

u > p. More precisely, the purpose of this paper is to give non-resonance and resonance asymptotic con-

ditions at infinity on g (x,u)u -1 at the first two eigenvalues k 0 and , of the linear eigenvalue prob-
lem (1.2).

The methods and results of this paper are motivated by the papers of Gupta and Mawhin (Ill) and

Mawhin ([2]) (see also [3], [4]) for the second order boundary value problem

d2u
dxz + g (x,u) e (x) 0<x<2r,

u (0) u (2) u’(0) u’(2n) 0.

We present in Section 2 some lemmas giving a priori inequalities that are needed to apply degree-
theoretic arguments to obtain existence of solutions for the problem (1.3). In Section 3, nonresonance con-

ditions for the existence of solutions of (1.3) are studied, and in Section 4 we study the problem (1.3) when
it i at resonance. We sharpen the theorem of Section 4 in Section 5 when (1.3) does not have any L"-
resonance at the second eigenvalue of the linear eigenvalue problem (1.2): Additionally, we present

a necessary and sufficient condition that the righthand member e in (1.3) needs to satisfy for the existence

of a solution for (1.3) when, among other conditions, g (x,u) is nondecreasing in u for every x in [0,n].
In this paper, we use classical spaces C [0,], C[0,t], L k[0,t], and L**[0,t] of continuous, k-times

continuously differentiable, measurable real-valued functions whose k-th power of the absolute value is

Lebesgue integrable or measurable functions that are essentially bounded on [0,n]. In addition, we use the

Sobolev-spaces H:[0,t] (k 2,3or4) defined by

H’[0,t] {u :[0,] R lu fj) abs. cont. on [0,],

j 0,1 k-1 u (k) L2[0,/l:]}

with the inner product defined by

and the corresponding norm by I-I tt’. We define, for convenience, the norm in L :[0,n] by

lull
1 lu(x)l/dx
[=0

We also use the Sobolev space W4’ [0,r] defined by

Wn’l[0,r] {u" [0,r] - Rlu;u’;u"" abs. cont. on [0,rL1

with norm

ulw4. i luJ(t)ldt.
j=O 0

2. A PRIORI INEQUALITIES
For u e L 1[0,], let us write
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u (x)dx, (x) u()- u, (2.)

so that f’(x)dx 0. Let H2[0,:] {u H2[0,:] I 0}.
0

LEMMA 1. Let 1-" L [0,t] be such that, for a.e. x [0,n],

1-’(x) _< (2.2)

with strict inequality holding on a subset of [0,:] ofpositive measure. Then there exists a 8 &’F) > 0

such thatfor all ff /[0,:] with ff "(O) ff "(n) O,

Br(fi’)
n

[(fi’"(x))2 F(x)fi’9-(x)]dx -> ilfi’l2. (2.3)

PROOF. Using (2.2), Wirtinger’s inequality [5], and the method of expanding a function ff /2[0,n]
with ff’(0)=ff’()=0 into a cosine-Fourier series, we see that, for all fi’/7210,rtl with

fi"(0) ff’(u) 0,

Moreover,

if and only if

By(if) >_ l[(fi’"(x))2 ff2(x)ldx >- 0.
o

(2.4)

if(x) A cos x, (2.6)

for some A R. But then by (2.5),(2.6) we get

[1 l"(x)]cos2xdx,

so that by our assumption (2.2) on F we have A 0 and hence ff 0.

Let us next assume that the conclusion of the lemma is false. Then there exists a sequence {if,J,

fi’n e/[0,] for every n 1,2,3 such that

B r(ffn)--’) 0 as n--) (2.7)

fi’n H2 1, for every n 1,2, 3

It follows from (2.7) and the compact embedding H2[0,m] Cl[0,m] that there exists a fi" e //’2[0,rt] such

that

fi’, --) fi" weakly in H2[0,t], (2.8)

if,, --) fi" in C1[0,].

Now (2.8) implies that if’(0) ff’(t) 0 and ff tt < lim inf fi’,t IH. Hence,

0 < B r’(ff) < lira inf B v(ffn) 0. (2.9)

It follows from (2.9) and the first part of this proof that ff 0. Also, (2.7)-(2.9) imply that

B r(fi’) 0, (2.5)
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![..n(x)12dx Br(.)+ lfF(x)2n(x)dx
2 o

so that if,, -- ff in H[0,] and I 1. We have thus ved at a condiction.

LEMMA 2. t F Fo + F + F where F L[O,g], F L [0,1, and Fo L [0,gl be such that

Fo(x) g for a.e. x [0,g] with strict ineqli lding on a sset o [0,] o positive easure. Let

(Fo) > 0 be as given bya1. Thenfor eve [0,1 ith ’(0) "() O,

Br() 8(Fo)- lF11Lt IF. IL- Il. (2.10)

PROOF. We have

o
Using, now, the fact that H2[0,] c C [0,] and the inequalities (see [9])

for fi" /72[0,x] with if’(0) ff’(x) 0, as well as Lemma l, we get that

Br(ff) m5(ro)lffl,- r IL," I’IL2- --I1"** IL-’lfflt2.*

2

! _/i;2Remark 1. The best value for 8(0) is clearly 2’
so that B r (if)-> (- 1-’1 IL )[fi’lt2t for all

ff /72[o,1 with fi"(0) ff’() 0.

LE 3. Let/ L[0,], F Fo + [’1 +F be as in Lemma2 and i(l"o) > 0 be given by Lemma I.

Then for all measurable functions p (x) on [0,;] such that <, p (x) _<r(x) for a.e. x [0,] and all

u W’1 [0,] with u’(0) u’() u’"(0) u’"(g) 0, we have

(2.12)

PROOF. For u W4’l[0,g] with u’(0)= u’(:)= u’"(0)= u’"(n:)= 0, we have (on integrating by

parts and using Lemma 2) that--![ff ff(x)][- uO’)(x) + p (x)u (x)]dx

+
;o
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3. NONRESONANCE CONDITIONS FOR THE EXISTENCE OF SOLUTIONS
Let g :[0,x]xR ---> R be a function satisfying Caratheodory conditions, namely,

(i) for each u R, the function x e [0,:] ---> g (x,u) R is measurable on [0,x];

(ii) for a.e. x [0,], the function u R --> g (x,u) R is continuous on R; and

(iii) for each r > 0, there exists a function r(x) LI[0,:] such that Ig(x,u)l <Or(X) for a.e. x [0,]

and all u e R with lul<r.

THEOREM 1. Let "t L [0,] with 1 > 0 be given. Also let F Fo + F1 + F** with F L 1|0,1,

F** L**[0,x], F0 measurable on [0,:], F0(x) with strict inequality holding on a subset of [0,] of
.2

positive measure, and --IF1 IL + IF** IL- < 5(F0), where 5(F0) > 0, is given by Lemma 1. Assume that

the inequalities

y(x) lim inf u -1 g (x,u) < lim sup u- g (x,u) < F(x), (3.1)

hold uniformlyfor a.e. x [0,:].
Then, for every given e (x) L [0,] the boundary value problem (I .3) has at least one solution.

PROOF. Let rl -rmn{y, 8(F0) IF ILl IF** It,-} > 0. Then, by (3.1) we can find an r > 0

such that for a.e. x [0,] and every u e R with u _> r we have

?(x) rl < g (x,u)u- < F(x) + rl. (3.2)

Next, define: [0,x]xR --> R by

u-g(x,u) if lul _>r
r-g (x,r) if 0 < u < r

-r-g (x, -r) if -r < u < O
F(x) if u=0.

Note that’(x,u)u satisfies Caratheodory’s conditions and, from (3.2),

v(x) q <_’#(x,u) <_ rx) +

for a.e. x [0,g] and all u R. Now, define h [0,g]xR R by

h (x,u) g (x,u) (x,u)u,

for x [0,g], u R. We then see that

h (x, u < sup g (x, u (x,u)u

(3.3)

(3.4)

(3.5)

< a(x),

for x [0,], u R, where tt(x) L [0,n:] depends on y, F, and .
The equation in (1.3) is equivalent to the equation

d4u +’(x,u (x))u (x) + h (x,u (x)) e (x),

to which we apply coincidence degree theory [6,7] in a manner similar to the method used in Theorem of

[3]. LetX C[0,:], Z LI[0,:], domL {u w4’l[0,] u’(0) u’(:) u"’(0) u’"(n) 0}.
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L" domL cX ---)Z, u --->-
d4u
dx4

G" X -- Z, u --> (.,u (.))u (.)

H" X Z, u --> h(.,u(.))-e(.)

A" X --) Z, u (’,0)u (’) l"(.)u (.).

It is easy to check that G, H, A are well defined and L-compact on bounded subsets of X and that L is a

linear Fredholm mapping of index zero. We consider the homotopy (I): dom L x [0,m] ---> Z defined by

(u, ) =- Lu + (1 k)Au + .Gu + d-lu,

for u dom L, k [0,1 ]. Now, in order to apply Theorem IV.5 of [7] (see also [8],[9]), it suffices to show

that the set of possible solutions of the family of equations

d4u + [(1 k)F(x) + .’(x,u(x))]u(x)+ .h(x,u(x))- e(x) 0, . (0,1) (3.6)

u’(0) u’(r0 u’"(0) u"’() 0,

is, a priori bounded in C[0,m] independently of (0,1). If u is a solution of (3.6), then multiplying (3.6)

by if, integrating over [0,], and using (3.3),(3.5) together with Lemma 3 with F** replaced by F** + rl

and y replaced by ,- rl, we get

o= (-(xll --2 +[(l-3r(x+’(x.u(xll].(x+(x..(xl-(xl dx

>2 + 2
2

r0)- lrl IL, r.- ff, -,u

for some constt > 0, independent of e [0,1 ]. It en follows that u n /, which implies that

lu Ic[0,n] C,

where C is a const independent of e [0,1], in view of the compact imdding of

H2[0,] C[0,1].

COROY 1. t a r F0 + rl + r. be in Torem 1 above. Then, for e given

e (x) e L [0,hi the bounda value problem

d4u
4

+F(x)u=e(x)’ 0<x<n (3.7)

u’(0) u’(n) u’"(O) u"’(n) O,

has exactly one solution.

PROOF. The existence of a solution for (3.7) is immediate from Theorem since g (x,u) F(x)u obvi-

ously satisfies all the conditions of Theorem 1.

Let u (x), u 2 (x) be two solutions of (3.5). Setting v (x) u (x) u 2 (x), we get that
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d4v
dx4

+ F(x)v(x O, O < x < r (3.8)

v’(O) v’(:) v’"(O) v’"(:) O.

Multiplying the equation in (3.8) by - ’, integrating by parts on [0,:], and using Lemma 3, we get that

o J’ff-(x)] + r(x)v(x dx
o

2_>2 + [(i.,0) ._ IF1 [L’ 1"** [L-I 1"1 2H ->0.

Thus 0 and I" H O. Since, now,

IIL- < I’IL -< - IlH =0,

we get’=0andhencev=+’=0. []

4. RESONANCE CONDITIONS FOR THE EXISTENCE OF SOLUTIONS
Let g" [0,]xR - R be a function satisfying Caratheodory’s conditions.

THEOREM 2. Let F L [0,2] be such that

g(x,u)
<F(x) (4.1)lim sup

I--,. u

uniformly for a.e. x [0,:] and F F0 + F1 + F** where F** L**[0,:], F1 L [0,:], and Fo L [0,]
are such that F0(x) < for a.e. x [0,] with strict inequality holding on a subset of [0,nl of positive

2
measure and IF** IL- + --IF11L < i(Fo), where 5(Fo) > 0 is given by Lemma 3. Suppose, further, that

there exist real numbers a, A, r, and R with a < A and r < 0 < R such that

g (x,u) > A (4.2)

for a.e. x [0,n] and all u > R, and

g (x,u) < a

for a.e. x [0,:] and all u < r.

Then, for every given e (x) L [0, n] with a < - < A, the boundary value problem

(4.3)

d4u
+g(x,u(x))=e(x), 0< <, (4.4)

u’(0) u’(n) u"’(0) u’"(n) 0

has at least one solution.

PROOF. Define gl’[0,]xR--R by gl(x,u)=g(x,u)-(a+A) and el Ll[0,t] by

el(x) e(x)- -(a + A), so that for a.e. x [0,] we have, by using (4.2),(4.3), and the assumption

a < e < A, that

g (x,u) > -(A a) > O if u > R (4.5)

gl(x,u)<-(a-A)<O if u <r, (4.6)
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and

(a-A)_<el <- (A-a).
The equation in (4.4) is clearly equivalent to the equation

d4u
dx4

+g(x,u(x))=e(x), O<x<x.

(4.7)

Moreover, we have

lim sup u-g (x,u) < F(x)

uniformly for a.e.x e [0,g] and for lu > max(R,-r), a.e. x e [0,g], gl(x,u)u >0. Hence, F(x) >_0 for

a.e. x e [0,:].

Now let rl [(F0)- --IF IL IF**IL-I >0. Then, there exists an rl >0 such that for a.e.

x [0,m] and for all u R, u >_ r, we have

O < u-g (x,u) < F(x) + rl (4.9)

Proceeding as in the proof of Theorem 1, we write the equation (4.8) in the equivalent form

d4u
dx4

+’(x,u(x))u(x)+h(x,u(x))=el(x), (4.10)

where O<’(x,u)<F(x)+rl, Ih(x,u)l No(x), for a.e.x e [0,t], all u e R and some x L[0,n]. Once

again degree arguments will ensure the existence of a solution for (4.4) if the set of all possible solutions of

the family of equations

d4u
dx4

+ [( z.)(r’(x) + rl) + Z.x,u(x))]u(x)

+,h(x,u(x.)) ke1(x), e (0,1)

u’(0) u’(x) u’"(0) u"’0t) 0,

is, apriori, bounded in C[0,x] independently of. (0,1). If, now, u(x) is a possible solution of (4.11) for

some . (0,1), then integrating the equation in (4.11) over [0,t] after multiplying it by -fi’, we get

(using Lemma 3 with , 0, and F** replaced by F** + rl)

0= [-ff(x)] -- + [(1- ;k)(F(x) + rl) +’(x,u (x))]u (x) + ;kh (x,u (x)) ke (x) dx

> 5(1"0)---IF L, -IF** IL--rl 1fi"12H --(10tlL, + lel IL’)I-’IL-

for some constant 13 > 0, independent of (0,1). Hence

Next, integrating the equation in (4.11) over [0,g], we get

(4.12)
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1( x)(r(x) + n)u(x + lx[g (x,u(x)) e (x)] 0. (4.13)
0 0

ff u(x)>R for all x [0,x], then (4.5) and (4.7) imply that (1-.)(F+rl)R _<0, contradicting

F + ri-> rl > 0. Similarly, u(x)<_ r for all x [0,] leads to a contradiction. Thus, there must exist a

x [0,x] such that

r <u(x) <R.

It is easy to see from u (x) u (x) + fu "(s)ds that

Il _< max(R,-r) + IfflH. (4.14)

The inequalities (4.12) and (4.14) now imply that

’ _/2 < (21/rl) ’ln + ([/rl)max(R -r),

so there exists a constant p, independent of k (0,1) such that

fflH < p. (4.15)

Finally, (4.14) and (4.15) imply that there is a constant C independent of k (0,1) such that

lulu <C

which implies that u c t0,nl < C l, for some constant C l, independent of Z. (0,1). []

Remark 2. We say that the boundary value problem (4.4) has "no L’-resonance" at the second eigenvalue
d4u% 1, of the linear eigenvalue problem - .u, u’(0) u’(n) u’"(0) u’"(x) 0, if F0 F** 0 in

Theorem 2. In the case of no L’-resonance, Theorem 2 implies the existence of a solution for the boun-
3dary value problem (4.4) if F t, < -. We develop this result further in Section 5.

5. RESONANCE CONDITION WHEN NO L**-RESONANCE EXISTS
We need the following lemma for a sharper resonance condition which gives the existence of a solu-

tion for the boundary value problem (4.4) when there is no L**-resonance.

I_MMA 4. Let e L [0, :], F L [0, :] with >_ O. Then every possible solution u (x) of the linear

boundary value problem
d4u
dx4

+p(x)u(x)=e(x), 0<x<, (5.1)

with p L [0,] such that

u’(0) u’(n) u"’(0) u’"(n) 0

p <F, O<_p(x) (5.2)

for a.e. x [0,], satisfies the inequality

1- ---r <21e It,, Fie It,’ u I2, (5.3)

PROOF. Letp L [0,] be as in the lemma, and let u(x) be a solution of (5.1). Then, on multiplying
the equation in (5.1) by

1
u (x) and integrating over [0, g], we get
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[(u"(x))=dx + (x)u=(x)dx (x)u(x)dx

Since p _< I", we have, by using Schwarz’s inequality,

+/-i p (x)u (x dx < (x)dx

< r - fx)ufx)dx

and hence, using the equation in (5.1),

n d4u n

Since u’"(O) u’"(n) 0, we have

u"’(x) d._._.u )ds j_4 ts)as
xdx

so that

Hence,
01 41

Now, we get from (5.4), (5.6), and (5.7) that

So,

t__ ld4ul2 d4ul 2 + e
4 IdX41Lt+ e(x)+ dx41t.l<- ’u"l -,u’", ’L’" lull.-

(5.4)

(5.5)

(5.6)

(5.7)

le ILl lu L-

which then gives that
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Finally, -- + e(x)-e(x) --4-"

[dx---- +e(x)
L’

+21e IL’" [04
+e(x) + lel T

d4u[<-2’eIL,’I--,+FlelL’’ lUlL-+3le,,. []

TttEOREM 3. Let g: [0,n]xR R be a function satisfying Casatheodory’s conditions. Assume that

there exists a F L [0,] such that

lim sup u-lg(x,u) <F(x)

4
uniformlyfor a.e. x [0,:] and that F < --. Supposefurther that there exist real numbers a, A, r, R with

a <A and r < 0 <R such thatfor a.e.x e [0,t], g(x,u)>_A when u >R and g(x,u) <a when u <r. Then

the boundary value problem

d4u
dot4

+g(x,u(x)) e(x), 0<x <, (5.8)

u’(O) u’(n) u’"(0) u"’(x) 0,

has at least one solution for each given e L 1[0,] with a <- < A.

PROOF. We first define g and e as in the proof of Theorem 2 so that the equation in (5.8) can be

written as

d4u
+ g(x,u(x)) e(x), (5.9)

dx4

with g (x,u) > 0 where u > R and g (x,u) < 0 when u < r for a.e. x [0,] and lim sup u-g (x,u) < F(x)

uniformly for a.e. x [O,gl. Consequently, for a.e. x [O,gl, F(x) >_ 0. Let 1 - > 0, so that

4F + rl < - and let r > 0 be such that

0 <_ u- g (x,u) < F(x) + rl (5. 0)

for a.e. x [0,n], u >_ r 1. proceeding as in the proof of Theorem 1, we can write (5.9) in the form

d4u +(x,u(x))u(x)+h(x,u(x))=el(x) (5.11)
dx4

whereO<’(x,u)<F(x)+rl, Ih(x,u)l <ct(x) for a.e. x e [0,x] and all u R and some (z L1[0,z]. The

same degree arguments will imply the existence of a solution for (5.8) if the set of possible solutions of the

family of equations
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d4u
dx4

+[(1 ,)(l"(x) + rl)+’(x,u(x))]uOc) =-h(x,u(x))+ el(x), . (0,1), (5.12)

u’(O) u’(n) u’"(O) u"’(n) O,

is, a priori, bounded in C[0,:] independently of L (0,1). Let u(x) be a solution of (5.12) for some. (0,1). Since

0g(1 .)(r’(x) + r) + Z(x,u(x))<_V(x)+r
4for a.e. x [0,], with F + rl < and since
2

lel-h(’,u(’))lt, < lel It..1 + Ictlz.

it follows from Lemma 4 that

+ (F+rl)(le It., + 10tlLl)lu IL- + 3(lel ILl + ICtlL)2

Also, we see as in the proof of Theorem 2 that there exists a [0,x] such that

r < u(1:) < R. (5.14)

d4u
Next, since it is easy to obtain the solution u, with =0, of the linear problem - =y,

u’(0) u’(x) u"’(0) u’"(x) 0, for any given y E L l[0,] with y 0, we see that there exist con-

stants 5 > 0, > 0 such that

and

Using (5.15) in (5.13), we find that

(5.16)

+ (+rl)(le ILl + IctlLt)ll +3(lel ILl + ICtlL1)2

Also, it follows from (5.14),(5.16) that

lu(x)l u(l:)+ u’(s)ds < max(-r,R) + rclu’lL- < max(-r,R) +
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so that

I1 <_ max(-r,R) +: (5.18)

Finally, it follow:; from (5.15), (5.17), and (5.18) that there exists a constant p, independent of ),. e (0,1)

such that

lUlL-< p []

Remark 3. If there is no L**-resonance, (i.e., F0 F** 0), Theorem 3 improves the condition on F to

< ---, when compared to Theorem 2, where would be required to be such that <
3

2r2
Remark 4. If p (x) in Lemma 4 satisfies in addition that for a given rl > 0, p (x)> rl > 0 for a.e.

x [0,r] and < --2’ then it follows easily from inequality (5.3) that the boundary value problem (5.1)

has at most one solution.

We need the following theorem of Mawhin (Theorem 1, [2]) which we state here as a proposition.

PROPOSITION 1. Let X and Z be normed vector-spaces such that C[0,] c X c Z L [0,|. Let

L:dom(L)X---}Z be a linear Fredholm operator of index zero such that D(L)C[O,rI,

kerL {u D(L)Iu is constant on D}, ImL {v Z v(x)dx 0}. Let g" [0,n]xR --} R be a func-
tio such that for a.e. x [0,;], g (x, .) is non-decreasing and that the corresponding Nemytskii operator

N :X --) Z, defined by (Nu)(x) g (x,u(x)), x [0,] is L-compact. Further, suppose that the canonical

injection J "2(---) Z is L-compact and h Z be given.

Let, now, there exist a positive measurable function a: [0,n] R such that ker(L + A) [0}, where

A " Z is defined by Au (x) a (x)u (x), and there exists a real number R > 0 and a 8, 0 < 8 < such

that

implies

Then the equation

Lu + (1 ,)Au + LNu .h . (0,1)

I’1L-_<R 1+811.

Lu + Nu h,

has at least one solution ifand only if h Imp where :R R is defined by

(v) - (x,v)dx.

THEOREM 4. Let g" [0,:]xR R be a function satisfying Caratheodory’s conditions and suppose

thatfor a.e. x [0,n], g (x,u) is nondecreasing in u. Let F L [0,n] be as in Theorem 2 or 3 and

lim sup u-g (x,u) < l"(x)

uniformlyfor a.e. x e [0,:].
Then, for e L [0,:], given the boundary value problem

d4u
dx4

+ g(x,u(x)) e(x)

u’(O) u’(n) u’"(O) u"’(n) O,
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has at least one solution ifand only if- (x)clx Im

In case F satisfies the conditions of Theorem 2, Theorem 4 follows from Proposition in view of (4.12)

with

L dotaL c C[0,] ---) L [0,:]

by

dotaL {u . w4’l[0,n] u’(0) u’(n) u’"(0) u"’(n) 0}

and

d4uLu=- for u dotaL.

and .4"C[0,1 --L[0,g] defined by (,4u)(x) (F(x)+tl)u(x), where rl i(F0)-

:2/3 F1 Zl F. L" ]. We note that ker(L + ,4) (0] by Corollary 1.

And in case F satisfies the conditions of Theorem 3, Theorem 4 again follows f-ram Proposition in

view of (5.15),(5.17) with L and .4 as in the above paragraph except now 1 and Remark 4

implies ker(L + ,4) {0} in this case.

Example. It is easy to see that the boundary value problem

d4u
+u(x)=cosx, 0<x<,

u’(O) u’(n) u’"(O) u"’(n) O,

has no solution, even though

0 __1cosxdx R Im (identity).
/I; 0

(Note here g (x,u) u so that (x,u)dx u for u R.)

This example points out the necessity of some conditions on F in Theorem 4.
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