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.ABSTRACT. Under a fairly mild completeness condition on spaces Y and Z we show that

every x-continuous function f: X Y Z M has a "substantial" set C(f) of points

of continuity. Some odds and ends concerning a related earlier result shown by the

authors are presented. Further, a generalization of S. Kempisty’s ideas of

generalized continuity on products of finitely many spaces is offered. As a

corollary from the above results, a partial answer to M. Talagrand’s problem is

provided.
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I. x-CONTINUITY.

The notion of symmetric quasi-continuity introduced by S. Kempisty [I] has been

generalized in Lee and Piotrowski [2], to x-continuity. In what follows let X, Y, Z

and T be spaces. Following Lee and Piotrowski [2] a function f: X Y Z T is

x-COnO if for every (p,q,r) g X Y Z, for every neighborhood U V W of

(p,q,r) and for every neighborhood N of f(p,q,r) there exists a neighborhood U’ of p

with U’c U and nonempty open sets V’ and W’ with V’c V and W’c W such that for all

(x,y,z) E U’ V’ W’ it follows that f(x,y,z) E N.

We shall first show that under certain general assumptions concerning the spaces,

x-continuous functions have "large" sets of points of joint continuity. In order to

do this we first list some necessary definitions.

Let A be an open covering of a space X. Then a subset S of X is said to be

A-6m2 if S is contained in a member of A. A space X is called ongy e0b
complete if there exists a sequence {Ai: i=1,2 of open coverings of X such that

and sequence {Fi} of Ai-small, closed subsets of X for which F
i
m F+ has a non-
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empty intersection.

The class of strongly countably complete spaces include countably compact and

complete metric spaces. This fact follows easily from a theorem due to A.

Arhandel’skii [3] and Z. Frolk [4] which states that in the class of completely

regular spaces, ech-complete and strongly countably complete spaces coincide

(Engelking [5]), see also Frolk [4] where some other properties of these spaces

such as their invariance under taking closed open subspaces or products are discussed.

A space X is called quasi-regular, (Oxtoby [6]) if for every nonempty open set

u, there is a nonempty open set V such that clV c u. Obviously, every regular space

is quasi-regular.

Let us recall that a function f: X y Z is said to be asi-coOS with

repecZ to x, (Kempisty [I] p.188,) if for every (p,q) X y, fore very neighbor-

hood N of f(p,q) and every neighborhood U V of (p,q) there exists a neighborhood

U’ of p with U’ c U and a nonempty open set V’ c V such that for all (x,y) U’ V’

we have f(x,y) N. Quasi-continuity with respect to y can be defined similarly.

LEMMA I. (Lee and Piotrowski [2] Lemma 3 p. 383). Let X, Y, Z and T be

spaces and let F: X Y Z T be a function. Then f is x-continuous if and only

if g: X S T is quasi-continuous with respect to x, where S Y Z and

g(x,(y,z)) f(x,y,z).

THEOREM 2. Let X be a space, Y and Z be spaces such that Y Z is quasi-regular,

strongly countably complete and let M be metric. If f: X Y Z M is x-continuous

then for every x E X, the set C(f) of continuity points of f is dense G subset in

{x} Y Z.

PROOF. In view of Lemma it is sufficient to prove the following:

CLAIM. Let X be a space Y be a quasi-regular strongly countably complete and

Z be metric. If f: X y Z is quasi-continuous with respect to x, then for all

x g X the set of points of joint continuity of f is a dense G subset of {x} Y.

PROOF. First we will prove that the set of points of joint continuity of f is

dense in {x} y. Let x E X, y Y and U V be any neighborhood U of x, contained

in U, and a nonempty open set V c V such that for all (x’,y’) and (x",y") in

U VI, we have p(f(x’,y’), f(x",y")) < I. Without loss of generality we may

assume that V is contained in an element A of the covering A of Y. Let W be a

nonempty open set such that cl W = VI. So cl W is Al-small. Then U W is a

neighborhood of (x,Yl), where u WI, and since f is quasi-continuous with respect

to x at (x,Yl), there is a neighborhood U2 of x, contained in U and a nonempty open

set V2 WI, such that for all (x’,y’) and (x",y") in U V we have p(f(x’,y’),

f(x",y")) < 1/2. Similarly, we may assume that V= is contained in an element A
2

of the

covering A
2. Let W= be a nonempty open set such that cl W2 V2. We see, that

cl W2 is A2-small.
VnNow proceeding by induction we get a neighborhood U

n Vn of (x,yn) Yn
such that for all (x’,y’) and (x" y") in U

n Vn we have (f(x’,y’), f(x",y")) <
n

and that Vn is contained in an element A of the covering of Y. Moreover, there
n n

is a nonempty open sets W
n

such that Vn+l cl Wn Vn. Thus each cl Wn is A -smalln
obviously cl Wn m cl Wn+l. Since Y is strongly countably complete cl W

n # . Let
n=l
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* Theny N cl W
n

n=l

(x,y*) N (Un cl Wn) c N (Un Vn) c U V
n=l n=l

Thus (x,y*) g (U V) ({x} y) and (x,y*) is a point of joint continuity of

f. This shows the density of the set of points of joint continuity of f in the set

{x} xy.

The proof that this set is G6 subset of {x} y easily follows, when we recall

that the function f takes values in the metric space Z. This completes the proof of

Claim.

Thus, Theorem 2 is shown.

The forthcoming, Proposition 3 is contained in Lemma 5.1 of [6], since any

quasi-regular strongly countably complete space is pseudo-complete; take

B(n) the class of all nonempty open sets that are A -small. Then {B(n)} is a
n

sequence of (pseudo-) bases that shows X to be pseudo-complete.) We would like to

thank the referee who make the above observation.

PROPOSITION 3. (Oxtoby [6], Lemma 5.1) Every quasi-regular strongly countably

complete space X is a Baire space.

REMARK 4. Observe that neither base countability nor metrizability assumptions

are made on the considered spaces X, Y, Z in Theorem while in Theorem 2 of [2] the

same conclusion concerning the set of points of continuity is obtained under an

g assumption that X is first countable, Y is Baire, Z is second countable in a

neighborhood of any of its points and such that Y Z is Baire.

2. CONDITIONS IMPLYING x-CONTINUITY COUNTER-EXAMPLES.

Given spaces X and Y; a function f: X Y is said to be quasi-continuous

(Martin [8], compare Kempisty [l]) if for every x e X and for every neighborhood U of

x and for every neighborhood V of f(x) have: U N Int f (V) # .
The main result of Lee and Piotrowski [2] is the following:

THEOREM A. (Lee and Piotrowski [2], Theorem I, p. 383). Let X be first count-

able, Y be Baire, Z be second countable such that Y Z is Baire and let T be

regular. If f: X y Z T is:

(I) continuous at X {y} {z}, y Y, z Z, and

(2) quasi-continuous at points of {x} y {z} for all x e X and z Z, and

(3) quasi-continuous at points of {x} {y} Z for all x E X and y Y

then f is x-continuous.

The first natural question which comes up is to check whether the converse of

Theorem A is true. Apparently, the following Example 5 settles this question in the

negative.

EXAMPLE 5. Let f: 3 be defined by

sin
f(x,y,z) if (x,y,z) # (0,0,0)

0, otherwise
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The function f is x-continuous, however, fixing y 0 z we obtain that

f(x,0,0) is not continuous.

Now we shall investigate the necessity of the assumptions in Theorem A, in

particular:

(*) c0ti/ty of f at points of X {y} {z}

(**) qu%-eouy of f at points of {x} Y {z}, and

(***) qu%-eoubt of f at points of {x} {y} Z.

In what follows (Examples 6 and 7) such constructions will be provided.

EXAMPLE 6. The assumption (*) is essential. In fact, let us consider a func-

tion f: [-1,1] 3 3 given as follows

(x,y,z+l), if (x,y,z) e [0,I] [0,I] [0,I]
f(x,y,z) (x,y,z-l), if (x,y,z) e [-I,0] [-I,0] [-I,0]

(x,y,z), otherwise

A standard verification that f has the required property (namely f is not

x-continuous at (0,0,0)) is left to the reader. Using somewhat more complex, but

still elementary techniques we shall show that also (**) (as well as (***)) is

essential. In fact, we have

EXAMPLE 7. Consider the function g:[-l,l] 3 3 given as follows:

(x,y,z + I) if (x,y,z) g [-I,i] [-,I]
g(x,y,z) {([-,) n IQ) 0 [,11}

(x,y,z), otherwise

Again, we leave to the interested reader a standard verification that f is not

x-continuous at (0,0,0).

3. ONE-PROMISING HYPOTHESIS.

Observe that the definition of x-continuity at (p,q,r) requires the existence

of a "small" neighborhood U’ of p and "small" nonempty open sets V’ and W’ such that

q and r "clusters" to V’ and W’ respectively and such that the set f(U’ V’ W’)

is contained in a "small", previously chosen, open set N. This observation prompts

us to label this kind of product almost continuity as 1-5-e0btinu/g since we

require the existence of only one "small" neighborhood U’ (around p) of the three

neighborhoods U, V, W.

The term "1-3-continuity" has been used already, in a different sense in

Breckenridge and Nishiura [9].

So, now let us consider "2-3-continuity".

More precisely, given spaces X, Y, Z and T, we say that f: X Y Z T is

f-3-COR0u or more specifically xg-colcZi.naOU.6, if for every (p,q,r) e X y Z,

for every neighborhood U V W of (p,q,r) and for every neighborhood N of

f(p,q,r) there is a neighborhood U’ of p, with U’ U, there is a neighborhood V of

q, with VIc V and a nonempty open set WI, with WIc W such that for all

(x,y z) e U x V W we have f(x,y,z) e N.

Now, 3-3-continuity can be defined easily; the set W in definition of

2-3-continuity is assumed to be a neighborhood of r not just only a nonempty open

subset of W.
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Clearly, every 3-3-continuous ( continuous) function is 2-3-continuous;

2-3-continuous functions are l-3-continuous and the latter are in turn 0-3-continuous

(E quasi-continuous).

It now follows from a result of T. Neubrunn [I0] that if X, Y, Z are "nice"

(e.g. Baire, second countable), T-regular then if f: X y Z T is separately

quasi-continuous then it is (jointly) quasi-continuous.

We can present this fact in the following symbolic equality:

"0 + 0 + 0 0",

where the numbers (0 or I) on the left side of the equality stand for quasi-continuity

(0) or continuity (I) of the corresponding sections and the numbers on the right

(i 0, I, 2 or 3) denote the corresponding i-3-contlnuity of f as a function of

three variables.

Theorem A implies that if X, Y, Z and T are as above and if f: X y Z T is

continuous in x and is quasi-continuous in y and is quasi-continuous in z, then f is

l-3-continuous. Consequently, we get:

"I + 0 + 0 i".

In view of the above considerations it is now natural to state the following:

HYPOTHESIS. Let X, Y and Z be Baire, second countable spaces and let T be

regular. If f: X y Z T is:

I) continuous in x, and

2) continuous in y, and

3) quasi-continuous in z,

Then f is 2-3-continuous;

In other words:

"I + + 0 2"

We shall resolve this Hypothesis in the nggavg in the forthcoming Example 8.

Now we shall exhibit two examples of i-3-continuous functions which are not

(i + l)-3-continuous, i 1,2.

EXAMPLE 8. A l-3-continuous functin which is not 2-3-continuous. Let

f: 3 be given by f(xl,x2,x3) g(xl,x2) where g is an arbitrary separately

continuous function which is discontinuous at (0,0).

EXAMPLE 9. A 2-3-continuous function which is not 3-3-continuous (E continuous).

Take f: 3 to be f(xl,x2,x3) h(x3), where h is any function which is

continuous except for 0.

Using the above pattern the reader will easily construct 0-3-continuous function

(E quasi-continuous) which is not l-3-continuous.

Apparently, the above constructions can be illustrated with the following very

specific formula-ready example.

EXAMPLE I0. Let f: be a function.
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3 i 1,2 wheref(xl,x2,x3) gi(xl xi)
i

ml=I

ji= (xj)i i
3 if Z (xjgi(xl x

0, otherwise
j=l

Then f is i-3-continuous which is not (i + l)-3-continuous, i 1,2.

4. FURTHER GENERALIZATION OF i-3-CONTINUITY.

Having defined I-3 and 2-3-continuity for f: X X2 X3 T, we shall now

extend these ideas to a general case.

Namely, let n be an arbitrary natural number. We say that f function

n n
f: i X

i
T is A-n-continuo if for every (PI’ P2 Pn i X

i
and for every

neighborhood U U
2 Un of (pl, P2’ pn and for every neighborhood N of

f(Pl’ P2’ pn there are neighborhoods U (i s k) of the first k out of n
,s

with U’ c U and there are (n-k) nonemptYkopen sets V’points PI’ P2’’’’’ Pn i,s i n-k i,m
U
i Vwith V’ m n-k such that for all (x I, x

2 Xn) I U’ I ,mi,m s i,s m

.we have f(x I, x
2 Xn N.

An interested reader will easily observe that the formula

k

i x
i

k
k

k k
if Z (xi) # 0

iI (xi)n
gk (Xl Xk)

0, otherwise

where f: n describes a k-n-contlnuous function f given by
nf(x Xn) gk(Xl Xk), k I, 2, 3 n-l.

One can also give analogues of Example 8 and 9 for k-n-continulty.

Studies of C(f) in hyperspaces for separately continuous functions and related

ones were done also in Bgel [II] and Hahn [12].

5. A PARTIAL SOLUTION TO A PROBLEM OF M. TALAGRAND.

M. Talagrand ([13] Problem 3 p. 160) asked whether if X is Baire, Y is compact

and f: X y is any separately continuous function, is there the set C(f) of

points of continuity of f nonempty.

We shall answer this question in the positive if a compact space Y is additionally

In fact, we have shown the following result:

LEMMA II. (Lee and Piotrowskl [2], Lemma 2 p. 381). Let X be Baire, Y be first

countable and Z be regular. If f: X Y Z is a function such that all its

x-sections fx are continuous with the exception of a first category set, and all its

y-sections fy are quasi-continuous, then f is quasi-continuous with respect to y.

It follows from the definition that

REMARK 12. Every quasi-contlnuous function with respect to y is quasl-continuous.

LEMMA 13. (Marcus [14]). Let X be a Baire, M be metric. If f: X M is quasi-

continuous, then C(f), the set of point of continuity of f is dense G6 subset of X.
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PROPOSITION 14. Let X be Baire, Y be compact first countable and let

f: X Y--]R be any separately cont[nuous function. Then C(f) # O.

PROOF. By Lemma II and Remark 12 such f is quasi-continuous. Now, since the

Cartesian product of a compact space and a Baire space is Baire, we are done by

Lemma 13.
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