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ABSTRACT. The object of the present paper is to show a result for functions belonging

to class P’(I-e,0) which is a subclass of close-to-convex functions in the unit disk U.
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I. INTRODUCTION

Let A denote the class of functions of the form

f(z) z + anZ (I.i)

nffi2

which are analytic in the unit disk U {z: Izl < i}. A function f(z) belonging to A

is said to be in the class P’(=) (according to Goodman [4]) if and only if it satisfies

the condition

Re{f’(z)} > = (1.2)

for some (0 < i) and for all z e U. Note that P’(a) the subclass of close-to-

convex functions of order e in the unit disk U. Further, let P’(I-e,0) (according to

Goodman [4]) be the subclass of A consisting of all functions which satisfy the

condition

If’(z) 11 < 1 e (1.3)

for some (0 < < i) and for all z U.
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It is clear that P’(l-a,0) is the subclass of P’(a) for 0 & I. Nunokawa,

Fukui, Owe, Saitoh and Sekine [I] showed that functions in P’(l-e,0) are starlike in

Izl < r I, where r is the root of the equation

log
1 (21(3-=)) 2 (r- (I-=)r212)2

2

+ Sin-l((1-a)r) .

Also, Fukui, Owe, Ogawa and Nunokawa [2] proved that functions in P’(a) are starlike

in Izl < r2, where r2
is the smallest root in [0,i) of the equation

-1
2(1-a)r 1

Sin + log .
(2a-1)r2 r

2

For the functions f(z) and g(z) belonging to A, we say that f(z) is subordinate to

g(z) in D if there exists an analytic function w(z) in U such that lw(z)l < for

z’ U and f(z) g(w(z)). We denote by f(z)- g(z) this subordination. In particular,

if g(z) is univalent in U the subordination f(z)- g(z) is equivalent to f(0) g(0)

and f(U) g(U) (cf. [3]).

2. MAIN RESULT

In order to prove our main result, we have to recall here the following lemma due

to Miller and Mocanu [5].

LEMMA. Let q(z) be an injective mapping of U onto Q, with q(0) i, such that
2q(z) is regular on U except for at most one pole on U. Let p(z) + plz + p2z +...

be analytic in U with p(z) I. If there exists a point z0
e U such that p(zO) e 8U

and p(Izl < Iz01) c Q, then z0p’(z0) mw0q’(w0), where m and w
0

ei8 =-q-l(p(z0)).
Applying the above lemma, we derive

THEOREM. Let the function f(z) defined by (I) be in the class P’(I-a,0). Then

f(z) (I a)z-- I + (1.4)
z 2

PROOF. Let q(z) i + (i a)z/2 and p(z) f(z)/z. It is clear that the result

holds true if p(z) E for z e U.

Assume that p(z) for z e U and the subordination p(z)-q(z) does not hold in

U. Then there exists a point z
0

e U such that p(z0) e 8q(U) and p(Izl < Iz01) c q(U).

Therefore, applying the lemma, we get

f’(z0) z0p’(z0) + p(z0)
nw0q’(w0) + q(w0)
m(l-)w

0 + (l-)w
0 +I

2 2

(m + 1) (l-a)w
0+ (1.5)
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where R >- and [Wo[ I. Thus

(R+ i) (i -a)
[f’(z0) 11 a a, (1.6)

2

which contradicts the hypothesis that f(z) e P’(1-a,0). So we Rust have p(z)-q(z)

in U. This coRpletes the proof of Theorem.

Finally, we have

CORALLARY 1. Let the function f(z) defined by (1.1) be in the class P’(1-a,0),

Then

Re ei
f(z)

> 0,
Z

where 181 /2 Sin-l(l )/2.

CORALLARY 2. Let the function f(z) defined by (I.I) be in the class P’(l-a,0).

Then

f(z)
Re >0.
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