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ABSTRACT. Mikusinskl-type expansions of operator-valued functions are discussed in

some detail. As a natural part of the development, a "kernel" concept for operators

is proposed and an elaborate system of convolution quotients in one and two variables

is obtained.
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I. INTRODUCTION.

Jan Mikusinski has presented [I] a very simple scheme for the development of

general integrals. In the case of the Lebesgue integral on the real llne R, for

example it consists of selecting real numbers and brick functions f (characterls-
n n

tic functions of finite intervals) satisfying

I lnl f < f length of the carrier of f (I.I)
n n n

and then summing the series

f(x) [ Infn(X) (1.2)

at those points x for which the series converges absolutely. Any real-valued function

f satisfying (1.2) is Lebesgue integrable over R and its Lebesgue integral is given

simply by the sum of the integrals,

n

Perhaps surprisingly, it turns out that Lebesgue class has such an expansion.

The entire Lebesgue theory can be based simply upon the concept of absolutely conver-

gent series of numbers! Mikusinski has introduced the notation

f [ I f
n n

to indicate the validity of such an expansion.
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The extension of this simple scheme to the Lebesgue integrals for real-valued func-

tions on higher dimensional real spaces and to the Bochner integrals for vector-valued

functions (where the % are in a Banach space and Iknl denotes the norms of the
n n

is straightforward and entails no serious additional complications [I].

In this paper we examine the situation where the function values lie in certain

generalized functions spaces. Specifically, we discuss distributlon-valued functions

and Mikusinski operator-valued functions, with the major emphasis being placed upon

the latter. We are led to the kernel theorem for distributions and, consequently,

propose a "kernel" concept for operators. A general arithmetical system of convolu-

tion quotients and operations evolves naturally from this rather formal program;

however, there are no serious theorems to be found here only definitions, explana-

tions and examples. (For serious theorems, see Mikusinski’s book [I].)

2. DISTRIBUTION-VALUED FUNCTIONS.

Let’ denote the space of distributions on R and let denote the space of

infinitely differentiable test functions of compact support.

If ’ and if f are brick functions, then (in analogy with the Lebesgue
n n

case) we write

f m knfn, if for each ,
I <I ,>I f < (2.I)

n n

and

<f,> (x)-- <ln, fn(X) (2,2)

at those points x for which the series converges absolutely. In such a case, it is

clear that

F [ X I f converges in ’, (2.3)
n n

(i.e. <F,>-- <Xn,> fn for each f .)

So F ’. But what is f itself? By (2.1), (2.2) here, one has for each

<f,#> m [ <l ,> f
n n

in the original Lebesgue sense; so f maps into the Lebesgue space. It is not

difficult to see that f is linear and continuous (because of (2.1)). Hence it

extends, by the kernel theorem, to a distribution of two variables (which we denote

by t and x) on the test function spacet =t (R) of two variables. If we retain
,x x

the notation f for the extended (kernel) distribution, then f applied to the special

(t)(x), with #(t) t and (x)d . is simplyproduct

<f (t,x),(t)(x)> <kn,Xfn=’ <An’> I fn@-

(There are, of course, other test functions int,x. This extended distribution is

semi-regular in t, since (as in (2.2))
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<f(t,x), (t)> <kn,> fn (x)

is an ordinary (Lebesgue integrable) function, but in general is not semi-regular in

x, since

<f(t,x),(x)> A
n f fn@

is only a distribution inl (as in (2.3)). In this context (2.3) becomes

F-- Xn ’[ fn=f f(t,x)dx.

We shall encounter an analogus situation in the following section. However,

before taking up the case of operator-valued functions let us make a couple of obser-

vations concerning the brick functions f Condition (2.1) is a requirement only onn
the lengths of the carriers, and so in (2.2) the carriers themselves can be distri-

buted about the real line R arbitrarily, always producing an integrable function.

However, once the locations of the carriers are selected, then they remain the same

collection of brick functions in (2.2) is varies in. So the kernel f(t,x) which

is integrable with respect to x appears to be rather special in this category. (See

section 4, where the analogus situation is seen not to be the case for operators.)

3. OPERATOR-VALUED FUNCTIONS.

Let denote the field of Mikusinski operators on the half line t O, and let

denote the convolution ring of continuous functions on this half line. ( is,

of course, the algebraic field of equivalence classes of convolution quotients of

t.)
If 1 and if f are brick functions, then we writen t n

f [ Anfn,
some nonzero (t)6 we have (t) t for all nif for

n t

converges in t (3.1)

(i.e. uniformly on compact sets) and for all t 0,

of(x) Oln(t)f (x) (3.2)
n

at those points x for which the series converges absolutely. In such a case, it

follows that

F-- I k
n f fn converges in% (type I convergence) (3.3)

(i.e. for some nonzero o(t) t’ oF(t) [ OXn(t f fn converges in 5.3
In this situation f itself can be interpreted as a mapping similar to what occurs in

the distributional case. Indeed, the collection If { t (3.1) holds} forms

t-ideal and for in this ideal, (3.1) and (3.2) imply that for each t -> 0,

o f -= o% (t)f
n n
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in the Lebesgue sense (and that the sum of the series is a continuous function of t).

x and is linear, multiplicatlve in t (commutesThus f maps the ideal If into t
with convolution involving elements of t and is continuous. We can interpret f as

an operator-valued function of x R, which is integrable with respect to x and whose

integral over R is given by (3.3). In the following section we shall give a reinter-

pretation of this situation using the more traditional setting of convolution frac-

tions.

4. SEMI-OPERATORS.

Let [h(t,x) h is locally integrable in the two variables, supported on the

half space t >= 0 and f h(t,x)dx exists for almost every t -> 0}. Actually, we need

to work here and elsewhere with Lebesgue equivalence classes of such functions but

will not introduce additional notation for such purposes. Note that t = "x
In we introduce the natural convolution (in two variables)

t

h*k(t,x) h(T,y)k(t-r,x-y)dyd
0

and addition + (pointwise) to form a ring with many divisors of zero. However, it is

readily seen that a mixed convolution o(t)*h(t,x) in the t variable only, with
t

and h ., can result in the zero of only if at least one of the factors is the

zero of its respective ring. Hence we can form meaningful convolution fractions of

,tthe form h/o (h and nonzero o with equivalency, convolution product and

addition defined in the expected way. The equivalence classes we will call semi-

operators and we note that they form a ring.

If f [ f is an expansion, as in the previous section, then (3.1), (3.2) and
n n

(3.3) mean that f is the semi-operator h/G, where h f [ nfn (i.e. h(t,x)

ln(t)fn(X) in, while F I A
n f fn f f dx f h(t,x)dx/(t) , the field

of Mikusinski operators in the t variable.

An interesting example of a semi-operator can be constructed using an infinite

series a Sn in the differentiation operator S. Boehme [2] has shown that such
n

series converges inL (type I) if the sequence of numbers a is appropriate. (He
n

gave necessary and sufficient conditions for this to happen.) His proof showed

absolute convergence, as in (3.1), and hence if we select brick functions f so that
n

their carrier lengths satisfy f fn lanl for such an appropriate sequence, then

f I Snf becomes a Mikusinski-type expansion of a semi-operator, where
n

f f :[ IanlSn-
In order to pursue the analogy with distribution theory and obtain some sort of

kernel operator associated with a seml-operator it becomes necessary to treat the two

variables ,symmetrically. We do this in the next section and obtain not only kernels

but a general arithmetical system of fractions which may be of some independent

interest.

5. AN ARITHMETIC OF FRACTIONS, KERNEL OPERATORS, SELF CONVOLUTION.

For our purposes in this section we introduce still another space of functions,

name ly,

+ {h(t,x) h is locally integrable and supported in the quarter space

t _-> 0, x _>- 0}.
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This is a substitute for the space r of section 4 where we have further limited the

supports of our functions but we do not impose any global integrability conditions.

The latter is unnecessary since convolution in two variables is guaranteed by the

support restrictions. This space (of Lebesgue equivalence classes) becomes a ring

without divisors of zero under convolution and addition, and its quotient space is

isomorphic with (and shall be identified with) the Mikusinski operator field# in
,x

two variables.

one can form two rings, say t and x’ of semi-operators of the twoNow forms

h(t,x) k(t,x)
o(t)

and
(x) with h,k + and nonzero o(t)6 _t, nonzero (x)6 x. Of course

these rings are isomorphic but we shall keep them distinguished here by indicating the

single variables in the denominators. It is quite natural (and pertinent) to define

h(t,x)
another ring ,. of fractions of the special form o(t)(x) which we will call kernel

They are merely Mikusinski operators in-YW with special denominatorsoperators. ,x
(where the variables are separated).

In addition to these three rings of fractions we wish to consider all fractions

constructed without zero denominators using any combination of two functions from

the three rings+ Examples are the ten formst,X.

7 h(t,x) h(t,x) h(t,x) k(t,x) (t) re(x) (t) (x) re(x) (t)
k(t,x) o(t)(x) o(t) (x) o(t) (x) h(t,x) k(t,x) o(t)’ (x)

h,k + and o,with
t

The first six of these belong respectively to the convolution rings ,x’

t’ ]x,t, identified earlier while the last two are formal numerical fractions.

These and the other two forms can be thought of as belonging to four other multiplica-

tive semigroups which we might labelTt x,xt for the sake of completeness.t’ x’
Any two of these ten types of fractions can be multiplied simply by multiplying

the numerator and denominator functions separately to form the product fraction, which

will again be one of these ten types. Multiplication of two functions means convolu-

tion whenever variables are repeated in t, x or both variables. When no variables are

repeated then multiplication means ordinary numerical pointwise multiplication.

Equivalency of fractions is then the expected one (cross multiplication) based upon

this general rule for multiplication of functions and addition of fractions is also

defined in the expected way based upon this rule for multiplication of functions.

Because of the latter the expected distributivity property of multiplication with

respect to addition holds. Moreover the expected associativity (and commutativity)

properties hold as may be verified directly. But we note also that each of the non-

zero fractions in this collection has an inverse which is again in the collection!

In short the collectionof (equivalence classes of) the ten forms of fractions

becomes a field provided multiplication is appropriately interpreted. (The three

functions+, ft’ x can also be joined to the field.) Actually this fieldrings of

to the subfieldt of Mikusinski operators itself. An isomorphism isisometric
,x

simply the mapping f f where is any fixed nonzero function in+. However,

the structural differences among these various fractional forms are masked by such an
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isomorphism (i.e. the fractional forms reveal some of the interesting sub structures

of the Mikusinski field in two variables). There is no difficulty in generalizing

this formal construction of fields of fractions which involve more than two variables.

he essential step is to just interpret multiplication of functions properly.

If f
h(t,x)
o(t) is a semi-operator in t’ then the fraction

h(t,x)*@(x) (t,x) ’x)O(t)(x) O(t)(x)
(for any nonzero will be called the kernel

o.perator associated with f. In this case, where o f of h is an ordinary

function (in’/+ the kernel is said to be semi-regular in t. In general f -ois not an ordinary function for any nonzero so that is not semi-regularx’
in x.

In the present setting a Mikusinski-type expansion (in x, say) requires that the

brick functions used have carriers restricted to the half line x > O. Then the semi-

f< ’r has an expansion f I hnfn if h and f are brick functions onoperator
t n t n

the half line x >. 0 such that for some nonzero o(t)-
t
we have Ohn(t) t for all

’ (5.)Ihn(t) fn converges in t’

and for all t -> 0

of(x) oh (t)fn(X)n
(5.2)

at those points x for which the series converges absolutely. In such a case,

f
h(t,x)
o(t) where h(t,x) is given on the right in (5.2), and we have

F . h
n

f converges in’
n

(5.3)

with F lh(t,x)dx h(t,x)*(x) (t,x)
o(t) Here, of course, the kernel operator f o(t)(x) o(t)(x)

is semi-regular in t (i.e. o of h oh f is a function). However, the product
n n

@f hn f fn@ is in general only an operator int, so is not semi-regular

in x.

Similar observations concerning an expansion of a semi-operator fromC could
x

be made simply upon interchanging the roles of the two variables. Perhaps it is un-

necessary to do so explicitly.

Finally because we deal with two variables it is of interest here to introduce

a third natural operation, called self convolution which can be applied to all frac-

tions in the field. First for functions the self convolution of a function of

one variable k(x) will simply be the function k(x) itself (or, if desired, a shift to

the other variable k(t)), while for a function of two variables the self convolution

of h(t,x) will be the function of one variable given by

x x

h,(x) h(t,x-t)dt h(x-t,t)dt
0 0

(or, if desired, the same function with x replaced by the t variable, h,(t)). When h
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has separated variables, say h(t,x) hl(t)h2(x), self convolution h, becomes just

*h of the two factors hence the name Moreover, selfordinary convolution h
2

convolution in this circumstance is distributive with respect to ordinary convolution,

since if (t,x) gl(t)g2(x), then h**g, hl*h2*gl*g 2 (h’g),. In fact, this

distributivity property holds quite generally for all locally integrable functions

(as will be shown in section 6) regardless of the number of variables of the factors

or which of the variables appear in the factors.

The self convolution f, of a fraction in . is then defined as that fraction

obtained from the self convolution of the numerator and denominator functions

individually, provided the denominator does not vanish. This last can occur only for

a function of two variables. Self convolution of fractions is distributive with

respect to multiplication as well as addition, that is, the equations

f, g, (f g), f,+g, (f + g),

hold in the field (when denominators are nonzero). Actually, we have two kinds of

self convolution one where the resulting variable is x and one where the resulting

variable is t. Both exhibit the above distributivity properties.

For a Mikusinski-type expansion f m % f
h(t,x)

n n o(t) we might write (rather

naturally)

h, (t) oh *f

f* m An* fn’ where f,(t) o(t) In*fn no n
and where this

series converges (uniformly on compact sets) because of (5.1).

We shall conclude this section with an example using convergent infinite series

in differentiation operators of the type considered in section 4. Let f m [ Sfn(X)
and g [ m

Sxgm(t) be two convergent Mikusinski-type expansions of semi-operators in

t and :x, respectively. Here fn and gm are brick functions on x 0 and t O, and

S and S denote the derivative operators in the indicated variables Thenx t

f
[ o(n) (t)fn(X) (m) (X)gm(t)

o(t)
and g [ (x)

for certain infinitely differentiable o and , where the exponents denote ordinary

differentiation. Thus,

(n) (m)
[o *gm(t)]’[ *fn(X)]

f.g
o(t)(x)

is the product of these two fractions in the field. However, we can also consider

another, even more interesting combination of these two semi-operators in the form of

a convergent Mikusinski-type expansion in two sets of two variables, namely the tensor

product operator

p( y;t x) n m
STSygm(t)fn (x)

The products gm(t)fn(X) form brick functions in two variables (t,x) and the products

snsm are Mikusinski operators in two variables (r,y). Theny
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(n) (m)op(,y;t,x) . o () (y)gm(t)fn(X),

for suitable infinitely differentiable o and . Hence (by self convoluting in two

sets of two variable each) we obtain

x t

f op(,y’, t- ,x- y)ddy-- [(n)*gm(t)]" [(m),fn(X)]
0 0

which, as can be seen from the above, is also equal to the function o@f’g(t,x). This

means that the field product f.g(t,x) in two variables (t,x) is the self convolution

p,(t,x) of the multidimensional semi-operator p(,y;t,x) in two sets, (,y) and (t,x)

of two variables each.

6. EXPANSIONS FOR LOCALLY INTEGRABLE FUNCTIONS.

If h +, then h h(t,x) is integrable over the square 0 t N, 0 x N

for each natural number N. Because we deal with absolutely convergent series and

because these squares cover the quarter space t 0, x 0, there exists a Mikusinski-

type (two-dimensional) expansion for h of the form

h(t,x) =- [ %mngm(t)fn(X),

where the mn are real numbers and _mm, fn are brick functions supported on t 0,

x - O, respectively. In this situation we have

’%mn j gmj f < =’ fr eachNn
and

h(t,x) mngm(t)fn(X)

(6.1)

h,(x) [ [ Xmngm*fn(X),

While on the other hand,

so that

at those points (t,x) for which the series converges absolutely. This results in the

integral
N N N N

hdtdx [ [ Imn gm fn’ for each N. (6.3)
0 0

Note that the series in (6.2) converges to h almost everywhere in the entire quarter

space t 0, x O, so we can identify this one series with h throughout.

One application of this expansion result is the proof that self convolution is

distributive with respect to ordinary convolution. For if also,

then

k(t,x) -= [ [ ijki(t)hj(x),

h(t,x)*k(t,x) [ [ [ [ lmnij[gm*ki(t)]-[fn*hj(x)],

(h * k),(x) [ [ [ [ lmnijgm*ki*fn*hj(x).

k,(x) [ [ ijki*hj(x),

(6.2)
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and so h**k,(x) is the same fourth order sum with four convolutions in each term. A

similar argument can be given for all the other cases considered in section 5.

Other interesting applications are to Mikusinski-type expansions of arbitrary

kernels and semi-operators. Indeed we have immediately for kernels

h(t,x) . gm (t) fn(X)
o(t)@(x) mn o(t) (x)

where

gm(t) fn(X)
o(t) 6 7t and tp(x) tx

and for semi-operators in

h(t,x)
X (t)

o(t-
mngm

o(t) fn(X)
n m

whe re .
m

where

Xmngm t .
o(t) gt’ and for semi-operators in /x’

X f (x)h(t,x) . . mn n
(x) (x) gm (t),

m n

% f (x). mn n
,(x) x

n

These expansions are of the local type (on squares, as in (6.1), though valid through-

out, as in (6.2)) and not necessarily the same as those considered in section 5. The

later two do become the former versions, however, when h(t,x) is integrable over the

half line x 0 or t 0, respectively.

The above Mikusinski-type expansion result for locally integrable functions

supported on the quarter space t 0, x O, is easily extended to apply to arbitrary

locally integrable functions without suppost restrictions. In particular, the semi-

operator expansions of sections 3 and 4 can be shown to encompass all the cases where

the operator-valued functions of x R are integrable over R.
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