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ABSTRACT. I, tiLLs paper we investigate the solvability of a non-local

l,roblem 1,v a line;-r elliptic equation, which is also known as the boundary

wlue l,,)l, I,.m with the Lilt sadze- Sm,arski condLt ion. We prove the

existence and uniqueness of a classical solution to this problem. In tile

fnal part ,f" this paper we propose an L’-approach which gives a rise to

weak stlutims in a weighted Sobolev space. The crucial point in proving

the existence of weak solutions is a suitable modification of the

B sadze--Samarsk [ condi on.

KEY WORDS ANt) PHRASES. Elliptic equations, non-local problems,

Bi tsa,-tz.-.aar.k cond ions.
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I. INTRODUCTION. In recent years several authors have studied the

solvability of non-local problems for elliptic and parabolic equations

[1-9]. The importance of non-local problems appears to have been first

noted in the literature by Bitsadze-Samarski. The problem studied in

these papers constitutes a direct generalization of the classical boundary

value problems. The most significant feature of nonlocal problems is that

the boundary condition relates values of a solution on the boundary to its

values on some part of the interior of the region. This type of the

boundary value problem is often referred to as the boundary value problem

with he B[tsadze-Samarskii condition [7],[8]. The problem (2.1),(2.2)

discussed in this article arises from the mathematical descri.ption of some

processes in a plasma (see paper [6] for full account of physical aspects

of non-],’al problems).
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’rhc pal,er is organized as follows. In Section 2 we give the

uniqueness and existence theorem of the classical solutions of the problem

o,.]),I,.. Our mehd is bnsed on lhe aximm principle developed in

papers [.] and [5]. Section 3 contains a discussion of the solvability of

th non I(,caI problem for harmonic functions in a disc in 2" The results

of this section slightly improve the explicit formulae derived by Bisadze

see ’1] :,,,,I [2]) f’r h,rmoni, functions associated with some non-local

problem, in a general case of a linear elliptic equation we reduce the

probl,m 2.1,’2.’2) I.,, lhe solvability of the integral equation of the

second kt,l. The final sections 4 and 5 are devoted to the study of the

non--],,::,l p’ohle.m l’,,i" a linear elliptic equlion with a paretcr, whose

princp:] part is in a divergence form. This allows us to remove some

restri,:-ons on the coefficient appearing in the boundary condtion (2.2).

On the olher hand ths also suggests further extensions of the solvability

of the l,roblem (2 l) (o 2) in a weighted Sobolev space 1,2 (). We adopt

2
here the L-approach to the irichlet problem with L-boundary data from

[13] a,,d I0].

2. UNIOUENESS AND A PRlORl ESTIMATE.

We consider a linear equation of the elliptic type

n n
[u Z a..(x) D .u + Z b (x)D u + c(x)u f(x)

i,j=l J ij
i=l

i
(2.1)

in O, where 0 is a bounded domain in R The purpose of this paper is to
n

investigate the following non-local problem: given continuous functions h

and p defined on the boundary of find a solution u

satisfying the boundary condition

u(x) p(x) u(@(x)) h(x) on 00, (2.2)

where @ is a given continuous mapping of 00 into O.

Throughout this section we make the following assumption

(,%) The coefficients of the operator L are bounded in Q and there

exists a constant 0 such that

n

i,j=l
aij(x) iCj

for all x e 0 and R
n

.Moret,w.r we assume that 0 satisfies an interior sphere condition at

each poknt of o0 (see [11], p. 33-35).

The uniqueness of the problem (2.1),(2.2) is a consequence of the

strong mxu,m, principle.

PROPOSITION 1. Let Ifl(x) 1 on DQ and c(x) _< 0 in 0 md suppose that
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e ther

(a’ -] ,(xO) at some point x
0

e aO

or

(b’ c(x 0 at some point x] e O.

Then the problem (2.1),(2.Z) has at most one solution in 02(0) C().

Pt/OOF. It is sufficient to show that if f(x) 0 on Q and h(x) _= 0 on 00

then u 0 is tl,,. only solution of the problem (2.1),(2.2). It is clear
that u,d--r-ach of the asstmq,tions (a) or (b) any constant solution must be

identially equal to O. If u / 0 then u must be a non--constant solution

and by the strong mximum principle ([Ii], Theorem 3.5) we may assume that

u ...,:_ m_ax u(x) 0 with x
2 e 00.

0

It" "xo) 0 we get a contradiction. Therefore it remains to consider

two cases

(i) 0 (x2) < i and (ii) -I _< /(x2) < O.

u(x2)
In the first case u(@(x2) u(x2), which is impossible since

(x2)
#(X2) e O. In the second case (ii). we have

u(x2)
t,((x2)) 0

P(x2)

and by the strong maximum principle u takes on a negative minimum at

x
3 e 00, that is

u(x3) min u(x) 0

and we may asstme that (x3) 0 since otherwise we get a contradiction.

Hence
u(x3)

u(#(x3)) > 0.
P(x3)

Now we distinguish two cases either

u(x2) _< [u(x3) or u(x2) > [u(x3) I.

We show that both cases lead to a contradiction. Indeed, in the first case

we have

which is [ml,ossible. In the second case we have
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Since both values u(xo) and u(x..,)) are negative u attains its negative

min2mum :I :.xo) e O and we arrive at a contradiction.

[nsl-,p-tion of the proof of Proposition shows that the following

version or’ the maximtun principle holds true.

i’ItOI-’OSITION 2. Suppose that c() 0 in Q and 0

Let Lu 0 (_> O) in Q, and u(x) -p(x) u((x)) 0 (< O) on 8Q.

Then u Cx) 0 (_< O) on .
As an immediale consequence we deduce an a priori estimate

THEOIEM 1. Suppose that c(x) d in O and 0 fl(x) _< a where

d 0 and 0 a are constants. If u is a solution of the problem

( 1) o 2) then

1lu(x)[ sup[f(x)[ + : suplh(x)[., for all x e o.

PROOF. Let us define

then we have

in 0

c cLv f- suplf() : suplh() _> f + suplf(x) _> o
Q aQ Q

1 1

0 00

(x)

(1 - +
l-a sup[h(x)] 0

on OQ. llen,:e by Proposition 2

uCx3 , suplf(x) + l__ suplhCx)

on O. Similarly we can establish the inequality

u,’x

_
suplfCx)l.. $:S suplh(x)
0 aO

on O, ,_-onsderng the auxiliary function
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suplh(x)’""’ u":’d’u’lr)l i--A
0 oo

ItEMA}tE I. If c m 0 or 0 and (x) on OO, then any two solutions of the

problem (’.1),(’2.2) differ by a constant.

3. EX I,’t’I,:NCE 01," CI,ASSICAL SOLUTIONS.

We commence by considering a particular case of the non-local problem

’2. 1),,’,.’.’2 which consists of finding a harmonic function u on B(O,I) and

satist’ying the boundary condition

uz’ pu((z)) h(z’ on 08(0,1), (3.1)

where B(O,I is an open disc in N2 of radius centred at O, 1 is a

constant in the interval [-1,1] and h is a continuous function on B(O,1).
The mal,png is given by (z) ,(hz) with 0 5 1, where , is a

univalent analytic function on B(O,1) such thmt ],(z)] _< 1 in B(O,1) and

,(0) O. By virtue of Schwarz’s lemma we have

I%C.)1 Izl ro B(O,1). (3.2)

The function maps disc B(O,1) conformally and univalently onto certain

set contained in B(O,1). Letting o(Z) z and k(Z) (_l(Z)) for

k 1,2 we have

klz in B(0,1),

for k 1,2 Since u and u((z)) are harmonic functions we have the

following representation formula

uCz) uC(Z)) Re ]
n aB{0, I)

1 ]h(t)dt mF(z) (3 4)
t-z t

Suppose first that -1 / 1. Iterating (3.4) we get

u(z) /l
n

n
pk-1U(n(Z)) + z r([k_l(z)).

k=l

It follows from (3.3) that

(3.5)

t+(z)
j"[F(n(Z)) [Re .

OB(O,1) t-n(Z)t h(t) dt _<

I+6 n

lh(eis) lds2(I-) 0

for n 1,2 and consequently letting n in (3.5) we obtain
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uz) r pn-lF(
n=l -1 (z))

un for,,,1 y on

L,’t us now consider the case @ =-I. It follows from (3.4) that

h(t) dt2u(0) Re---.- I 2t"* oB(0, I)

and tile functional equation (3.4) can be written in the form

(3.6)

u(z) + u(#(z)) 2u(0) Re i= I
i OB(O, 1)

_1 1 1 ]h(t) dt"t z 2t 2t

1 h(t)Re I t(t-z) dt -z Re[ (z).z].
1 dB(0,1)

Iterating the last equation we obtain

and

2n-I
uCz) u(@on(z)) + z (-i) J Re[}(@j(z)) (3.7)

2n-2
u(z) 2u(0) U(@Zn_l(z)) + Z (-])J Re[}(@j(zl) @j(z)].(3.81

j=0

It is easy to see that

2
I_(%(z)) _< =(_s) [h(es) [ds

0

for all n 1,2 and z B(0,1). Since l#j(z)l < oJ i. B(0,) the

1) J Re[(j(z)),(z)]__.a converges uniformly on B(0,1). Lettingseries Z (-

j =0
n n (3.7) and (3.8) we obtain the se lim[ in boh cases

u(z, u(0)+ z (-i)
j Re[(#j(z)) j(z)]

and invoking (3.6) we get that

1 I h(t) dt + z (-I) j
Re[(@j(z))@j(z,].u(z) Re

4n OB(O,I) j=O

Finally let 1 i, then

u’z) u((z)) Re I= I { h(t) dt
’1 OB(O, 1)

By Remark any two solutions differ by a constant. If z O, then
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0 urO)- u((O)): ICe _1.. I f(t) dt
n.

6B(0,1)

which g,w".; a necessary and sufficient condition for the solvability of the

problem (3.l). Hence

() u(#(z)) a[(z)z].

Iterating this functional equation we obtain

n--1

j:l

Letting n we obtain

u(z) u(O) + Z Re[(j(z)) j(z)].
j=l

To determine a solution in a unique way we may impose an additional

condition u(0) C, where C 0 is a given constant. The case / 1 was

considered by Bitsadze in [1] and [2] under the assumption that h is Holder

continuous

In a general case we reduce the problem (2.1),(2.2) to the Fredholm

integral equation of the second kind.

THEOHEM 2. Suppose that the assumptions of Proposition 1 hold and that

D[j aij (i,j n), D b
i

(i n) and c are Holder continuous on. Then the pr,blem (2.1),(2.2) admits a unique solution u in C2(O) O C().

PROOF. We try to find a solution in the form

v(y) dSy I G(x.y) f(y) dy,ux) f dn
dO y O

(3.9)

where v C(oO) is to be determined, G is the Green function for the

dGoperator I, and -- denotes the conormal derivative. The boundary condition
y

(2.2) ]ud o tho Fredholm integral equation of the second kind.

dn y
80 y

+ I ,tl(x) G((x),y) f(y) dy. (3.10)
O

Since (O0) c O the kernel p(x)
a (&(_G,v,x,,y, is continuous function on

dn
Y

0 x 0. [;y Proposition the homogeneous equation corresponding to (3.10)

has only trivial solution, tlence by the Fredholm alternative there exists
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a unqu,. :.,,lution v e L"’dO) which by the continuity of the kernel belongs
c, C(oO’. ’,nse,luently the formula (3.9) gives a solution to the problem

(2.1), (.’.. ’:’. .
4. ENERGY F.T[MATE.

In tlis se-tlOn we co,raider the elliptic equation in the form

Mu + h u
n n
Z I) (a (x) Dju) + Z b (x) D u + c(x)u +

i,j:l
ij

i=l i

+ hu f(x) in O, (4.1)

with the boundary condition (2.2).

Throughout this section we assume that /] is a continuous function on

bO and :o,O O is a C1--mapping with the positive Jacobian. Further we

assume t|mt ai3 Diai3 b (i, n) c and f are Holder continuous on

0 and that O is a bounded domain with the boundary of class C2.

Th, ,,bje,:tive of this section is to show that the problem (4.1),(2.2)

hns a unique solution for large values of the parameter A.

For small 6 0 we define 06 0 n {x" rain Ix-y[ > ).
y. OO

According to Lemma 14.16 in [II] (p. 355), the distance

r(x) dist(x,O0) belongs to C’(0-06. if o is sufficiently small. Denote
0

by p(x) the extension of the function r(x) into 0 satisfying the following

properties

36
p.’.’< r(x) for x e 6 06 p e C2(), p(x) -4 in 06

o 0

-1
I r(x: p(x) _< ] r(x) in 0 for some constant v I> O, 006 {x" p(x)

6.1for 6 e tJ 6 and finally o0 (x’p(x) 0}.

TIIEOREM 3. There exist positive constants A C and d such that if u is a
o

solutioi tn (:"0)rl C() of the problem (4. I),(2.2) for A then
O

llVu(x)[ r(x)dx + lu(x) 2
2

r(x)dx + sup I u(x) dS
X

0 0 0<_< d o08

(x)2C( I h(x) dS + I f dx).
X

Proof. We follow the proof of Theorem 5 in [13]. Multiplying (4.1)

by
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v(x’l :u(x) Ip(x)-6} on (}6

and integt’at[ng by parts we obtain

n

dO
6

i,j--I
aij(x) DiP DiP u

2 dS 1 n

x . I Z Di(aij(x) Djp)u2dx+
0
6

i,j:l

j .v b.f) Dju.u(p 6)dx + f (c(x) + A) u2(p-6)dx- jr fu(p 5)dx.

Applying llolder’s inequality we easily obtain

sup f u dS C [Dul 2 u
2

006
x- 1 p dx +

0
f dx +

O,6<d

+ f u’ p dx + f dx
0 0

where d and C are positive constants.

Similarly

(4.2)

[Iu[ p + h I u" p dx <_ C
2

u
2

dx + I dx +I
0 0 [ 0

I u
2 dSx] (4.3)

oO

for some (:,, O. It follows from (2.2) that

P + a I u P dx <_ C
3 dx + f f2 dx +

0 0 O

2dSx+ I h dS + f u(()) (4.4)

where (: O. The estimates (4.2) and (4..4) yield that

p dx + sup I dS
X-0 0 O<<d ao

C
4

u" dS I dx + I dS + I u((x)) 2 dS
x

(4.5)x
0 dO

x
,O

some C
4 > O. Since is a cl-mapping with the positive Jacobian it isfor

obvious hat

dO
f u( { x. )2 dSx C5 (dO)$ u

2
dSx < c6 [0 Dul2 d + I u

2 dx}, (4.6)

where C5 0 and C
6 > 0 are constants and O@ is a domain containing @(dO)

with dist(,o(})50. Consequently by virtue of the Caccioppoli inequality
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we have

00 x- [0 0
(4.7)

for some C
7 O. We now observe that

I u" dx 5- I u2 p dx + d sup I u2 d S
0 Ul O O<6<d dO x’

where d] i!!f p(x). Choosing d sufficiently small and k sufficiently
0
d

large we easily derive the desired estimate from (4.5),(4.S),(4.7) and

(4.8).

[ep,_-atlng the argument of Theorem 2 we deduce the following

TI1EOREM ,1. There exists a positive constant A such that for every
0

c2the problem (4.1),(2.2) admits a unique solution in () C().

5. WEAl( SOLUTIONS.

The energy estimate from Section 4 shows that one can expect solutions

of the problem (4.1),(2.2) in a weighted Sobolev space defined by

wl"(o> {u Wl’oc (o); llDu(x) 2 2r(x) dx + I u(x) dx }

and equtl,l,e’d with the norm

2 )2I [{0u(x) r(x) + u(x dx.

We r,,-al] briefly that a function u is said to be a weak (generalized)

W1,2solution of (4.1) if u e loc(O) and it satisifies

n n
I Z a.. D.uD.v + Z b.D.u.v + (c+A)uv]dx I f v dx (5.1)

for each v e W]’2(0) with compact support in O.

To proceed further we need some terminology. It follows from the

regularity of the botmdary dO that there exists a number 6 such that for
0

6 e (0,o) the domain 0
6

(defined in Section 4) with the boundary dO
6

possesses the following property: to each x e 0 there exists a uniqueo
point x6(xo, e dO6 such that xs(Xo), Xo 6v(xo), where v(xo) ls the

outward normal to dO at xO. The above relation gives a one-to-one mapping

of class C I, of dO onto
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It is known that elements of the space 1’2(0), in general, do not

have trc:es on lhe boundary O0 (see [12]). llowever, by Theorem 4 in [13],

if u e ";0) is a solution of (4.1) then there exists a function

e L2(oO) such that

lim I [u(x6) (x)]" dS O.
60 aQ

x

Thc.r-I’,re, as in the paper [1], we adopt the following L"-approach

the l,r,l., ,.m I.,’l. ), (’2.2).

1,2 O) of (4 I) is a solution ofLet h e L(OO). A weak solution u Wloc(
the non-local problem with the boundary condition (2.2) if

]im I [u(x8) (x) u((x)) h(x)]2 dS O.
50 oO

x
i5.2)

W1,2It f,,ll,w. from Theorem in []3] that if u lot(O) is a solution of

the problem (,1.1),(2.’2) (with the boundary condition (2.2) understood in

the sens of (5.2) then u e ’(O). We mention also that u((x)) is

1,2(0understood n the sense of trace, which is well defined since u e Wloc
(see 1-1 ], ,’h,i,. G.

We now ar’" in a position to establish the existence result in l,2
of tlc proll,,m (4.1), :2.2).

THEOREM 5 Let |, e L(6Q) Then there exists a positive constant ^ such

1,2that for" the problem (4 1) 2 2) in (Q) admits a unique
o loc

solution.

PROOF b’t h be a sequence in cl(oo) such that lim I (hm-h)
2- dS O.

m m- OO
x

Let le a constant from Theorem 4 and assume that ^ A For each
0 0

m _> Thcor,.m 4 guarantees the existence of the unique solution

C2u e ((J) 0 C(O) of the problem (4.1),(2.2) with h h Moreover we have
ii! m
for ea,’h u

2 f2 hm2IDUm 12l rdx + I u dx C(l dx + f dSx)I
O 0 O

where C 0 is a constant independent of m. Since the sequence u is

bounded in 1,2(, there exists a subsequence, which we relabel as u
m

convering ealy in I,2() to a function u. By Theorem 4.11 in [15],

’wl’2(O) is compac’tJy embedded in L2(Q) and therefore we may assume that u
m
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12converg,:. i u in (0). It is obvious that u is a weak solution of (4.1).
By ’rheore,. .I in [13] u has a trace e L-(OO) in the sense of

L2- con,-, g,.nc,, that is

Jim I [u (x) (x)] 2
dS O.

oO x

To complete the proof we show that (x) fl(x) u((x)) + h(x) a.e. on 0.

Let C]O). It is easy to show (x) p(x) is a legitimate test function

in (5.1) a,] inlegrating l,y parts we obtain

n

40 i,j=l

I1

aij DiP Ijp dS I D (a {) u dx +
0 i,j:l i ij Dip

n

o i=l O O

5.3)

Similarly

n
[ [hm(x) + p(X)Um({(x))] Z aij Dip I}jp dSx F(um). (5.4)
:,0 i, j

ApI,lyng the estimate (4.6) and the obvious analogue of the energy

estimate t, u u we obtain
P q

r [u (<x)) u f(x))] dS C[ I IDu Du 12 dx
,’O P q x

O P q

Ilu Uqi
2 dx]

C
j.

2

C I [hp- hq[" dSx,
O0

where k inf p,x’), and C 0 is a constant independent of p and q. Hence

by the ,mtinuity of weak solutions on 0 we may assume that

L
2

u (@(x))u((x)) as m in (aO). Combining this with the fact that

F(u 1;u) as m we deduce from (5.3) and (5.4) that
m

(x) fl(x)u((x)) + h(x) a.e. on O0 and this completes the proof.

REMARK 2. It is worth noting that the non-local problem of the type

(4.1),(2.2) has been studied in [9] for the higher order elliptic

equations. The corresponding boundary datum h in [9] belongs to the space

H(bO). Since H(80) is a proper subspace L’(aO), Theorem 5 cannot be

deduced from the results of the paper [9].
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