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ABSTRACT. In this paper we invesligate the solvability of a non-local
problem tor a linear elliptic equation, which is also known as the boundary
value problem with the Bitsadze-Samarskii condition. We prove the

existence and uniqueness of a classical solution to this problem. In the

R
final parlt of this paper we propose an L -approach which gives a rise to
weak soululions in a weighted Sobolev space. The crucial point in proving
the existence of weak solutions is a suitable modification of the

Bitsadze--Samarskii condition.
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1. INTHODUCTION. In recent years several authors have studied the
solvability of non-local problems for elliptic and parabolic equations
[1-9]. The importance of non-local problems appears to have been first
noted in the literature by Bitsadze-Samarskii. The problem studied in
these papers constitutesa direct generalization of the classical boundary
value problems. The most significant feature of nonlocal problems is that
the boundary condition relates values of a solution on the boundary to its
values on some part of the interior of the region. This type of the
boundary value problem is often referred to as the boundary value problem
with the Bitsadze-Samarskii condition [7],[8]. The problem (2.1),(2.2)
discussed in this article arises from the mathematical description of some
processes in a plasma (see paper [6] for full account of physical aspects

of non-local problems).
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The paper is organized as follows. In Section 2 we give the
uniqueness and existence theorem of the classical solutions of the problem
(2.1), (2.2, Our method is based on the maximum principle developed in
papers {1} and [5]. Section 3 contains a discussion of the solvability of
the non tocal problem for harmonic functions in a disc in H2. The results
of this section slightly improve the explicit formulae derived by Bitsadze
fsee (1] ond [2]) for harmonic functions associated with some non-local

problem. In a general case of a linear elliptic equation we reduce the

problem 2.1),:2.2) 1o the solvability of the integral equation of the

t

second kind. The ftinal sections 4 and 5 are devoted to the study of the
non-locul problem for a linear elliptic equation with a parameter, whose
principal part is in a divergence form. This allows us to remove some
restrictions on the coefficient p appearing in the boundary condtion (2.2).

On the other hand this also suggests further extensions of the solvability
~ 9
of the problem (2.1),{2.2) in a weighted Sobolev space W1'°(Q). We adopt

o 2
here the L°-approach to the Dirichlet problem with L“-boundary data from

[13] and {10].

2. UNIQUENESS AND A PRIOR1 ESTIMATE.

We consider a linear equation of the elliptic type

n
aij(x\ Djju + ji] bi(x)Diu + c(x)u = f(x) (2.1)

in Q, where Q is a bounded domain in Rn. The purpose of this paper is to

investigate the following non-local problem: given continuous functions h

and B defined on the boundary 0Q of Q find a solution u e CZ(Q) n c(Q)

satisfying the boundary condition
ulx) - g(x) u(@(x)) = h(x) on 2Q, (2.2)
where ¢ is a given continuous mapping of 4Q into Q.

Throughout this section we make the following assumption
(A The coefficients of the operator L are bounded in Q and there

exists a constant ¥ > 0 such that

o n
g™ ¢ §= a; (%) €8

1,

1

for all x ¢ Q and ¢ e Rn.

Moreover we assume that Q satisfies an interior sphere condition at

each point of 2Q (see [11], p. 33-35).
The uniqueness of the problem (2.1),(2.2) is a consequence of the

strong maximum principle.

FROPOSITION 1. Let |B(x)]| < 1 on 3Q and c(x) ¢ 0 in Q@ and suppose that
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e1ther

(a! -1 ¢ p(xo} < 1 at some point Xg € aQ
or

(b cix]) < 0 at some point X, e Q.

Then the problem (2.1),(2.2) has at most one solution in CZ(Q) n c(Q).

PROOF. 1t 1s sufficient to show that if f(x) = 0 on Q and h(x) = 0 on 3Q
then u = 0 is the only solution of the problem (2.1),(2.2). It is clear
that under each of the assumptions (a) or (b) any constant solution must be
identically equal to 0. If u f 0 then u must be a non—-constant solution

and by the strong maximum principle ([11]), Theorem 3.5) we may assume that

u -t = max u(x) 2 0 with ®y € Q.
- Q
1f p'<,) = 0 we get a contradiction. Therefore it remains to consider

two cases

(i} 0 < B(x,) ¢1 and (ii) -1 ¢ p(xz) < 0.

"

In the first case u(¢(x0)) > u(x,), which is impossible since
“ “~

¢(x2) e Q. 1n the second case (ii) we have

and by the strong maximum principle u takes on a negative minimum at

X, € dQ, that is

3

u(x3) = min u(x) < 0
Q

and we may assume that p(x3) < 0 since otherwise we get a contradiction.

Hence
u(x3)
u(¢(x3)) =__ " >o0.
p(xB)

Now we distinguish two cases either
u(xz) < lu(x3)| or u(xz) > Iu(x3)|.

We show that both cases lead to a contradiction. Indeed, in the first case

we have
ulxy) < fulxg) | = B0xg) [ |ulxg)) | < Juld(xg)) | = u(dixy)),

which is impossible. In the second case we have
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futs )] - atxy,) = Bixg) u(ixg)) ¢ Jutd(x,)) |-

Since both values u(x,) and u(¢(xq)) are negative u attains its negative
9 -~

minimum at $'x,) € Q and we arrive at a contradiction.
2

[nspection of the proof of Proposition 1 shows that the ftollowing

version of the maximum principle holds true.

PROPOSITION 2. Suppose that «o(x) ¢ 0 in Q and 0 ¢ g(x) < 1 on aQ.
Let Lu ¢ 0 (> 0) in Q, and u(x) - A(x) u(d(x)) » 0 (¢ 0) on Q.

Then u(x) > 0 (¢ 0) on Q.
As an immediale counsequence we deduce an a priori estimate
THEOREM 1. Suppose that c(x) ¢ - d in Q and 0 ¢ B(x) ¢ a where
d > 0 and 0 ¢ « ¢ 1 are constants. If u is a solution of the problem

(2.1),(2.2), then

Jufx)] < é sup|f(x)| + i%— sup|h(x)| for all x e Q.
Q ¢ a

PROOF. Let us define
_ 1 i 1
v(x) = u(x) - 3 sup'f(x)' - == suplh(x)l ,
d l-a
Q aQ
then we have

C

Lv = f - 3 sup|f(x)| - . suplh(x)| > f + sup]f(x)] >0
d7 1= “5a Q

in Q and

v(x) - p(x) v($(x)) = h(x) - % sgp[f(x)| - i%& sgglh(x)‘ +

+ f%gl sup|h(x)| + éﬁll sup|f(x)| ¢
aQ Q

i a _
¢ (1 - g+ s’ sgg|h(x)| =0

on 3Q. Hence by Proposition 2
u(x) ¢ % sup|f(x)] + T}& sup |h(x) |
Q aQ
on Q. Similarly we can establish the inequality
.\ 1 1
u(x) 3 - 3 sup|f(x)]| - 122 sup |h(x) |
Q aQ

on Q, considering the auxiliary function
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1 1
Wi way b sup|fix)] ¢ =- sup|h(x) .
d Q I I l-a aol

REMARK L. If ¢ = 0 or Q and g(x) = | on 4Q, then any two solutions of the

problem (2.1},(2.2) differ by a constant.

3. EXISTENCE OF CLASSICAL SOLUTIONS.
We commence by considering a particular case of the non-local problem
(2.1),(2.2) which consists of finding a harmonic function u on B(0,1) and

satisfying the boundary condition
utz - pu(¢(z)) = h(z) on 3B(0,1), (3.1)

where B(0,1) is an open disc in R2 of radius 1 centred at 0, B is a
constant in the interval [-1,1] and h is a continuous function on 3B(0,1).
The mapping ¢ is given by ¢(z) = ¢*(52) with 0 < 8 < 1, where ¢* is a
univalent analytic function on B(0,1) such that ]¢*(z)| ¢ 1 in B(0,1) and

¢*(0) = 0. Py virtue of Schwarz’s lemma we have
[¢*(z)| < |z| for all z ¢ B(0,1). (3.2)

The function ¢ maps disc B(0,1) conformally and univalently onto certain
set contained in B{0,1). Letting ¢0(z) = z and ¢k(z) = ¢(¢k_1(2)) for

k = 1,2,... we have

(2)]| < 65|z| in B(0,1), (3.3)
' 29

for k = 1,2,... . Since u and u(¢(z)) are harmonic functions we have the

following representation formula

1

u(z) -- pu(¢(z)) = Re _1 i

1
- Llnvat =rz) (3.4
T aB(0,1) [ Zt]

Suppose first that -1 ¢ g < 1. Iterating (3.4) we get

n
uz) = A" u(g () + 2 AR (). (3.5)
k=1

It follows from (3.3) that

1 t+¢h(2) ()d
F( = |Re === T G A vy h(t th <
[F@, 2] = [Re gog b1 TRE " !
1+5 " is
Cgmia) o IneT)|ds

for n - 1,2,... and consequently letting n -« « in (3.5) we obtain

105
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p"_lF(¢n_1(z))

0o
uiz) =

n=1

uniformly on h?6TIT.

Let us now consider the case g = -1. It follows from (3.4) that
2u(0) = ke 2o g D g (3.6)
T 8B(0,1)

and the functional equation (3.4) can be written in the form

1 1 1 1

u(z) + u($(z)) - 2u(0) = Re =7 I == - 57 - 57(h(t) dt
¢ mi 3B(0,1) [t z 2t 2t]
1 h(t)

= Re =7 I 7y==5 dt -z = Re[¢(z)-z].
mi 9B(0,1) t(t-z) §
Iterating the last equation we obtain
2n-1 .
u(z) = uldy () + = (-7 Re[§($;(2)) §;(2)] (3.7)
2 =0

and

2n-2 .
u(z) = 2u(0) - U(¢2n_l(z)) + z (-1)Y Re[§(¢j(z)) ¢j(z)].(3.8)
J=0

It is easy to see that

for all n = 1,2,... and z ¢ B(0,1). Since |¢j(z)| < &) in B(0,1) the

=

series I ('1)J He[¢(¢j(z))¢j(z)] converges uniformly on B(0,1). Letting
J=0
n 4o in (3.7) and (3.8) we obtain the same limit in both cases

® .
AN 0 -1Y . .
u( u(0) + jfo (-1 Rel§($;(2)) $;(2)]
and invoking (3.6) we get that
1 ® Jj
u(z) = Re 7=- I ===~ dt + Z (-1)Y Re[d(d.(2))d.(2)].
4m B0, 1) =0 (4209

Finally let g = 1, then

u(z) - u(¢(z)) = Re 1

1 1
- I =2 - 5p|h(t) dt.
1 .B(0,1) [t z Zt]

By Remark 1 any two solutions differ by a constant. If z = 0, then
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£(8) 4
JdB(0,1)

0 - ul(0) - u(¢r0)) = Re ii

which gives a necessary and sufficient condition for the solvability of the

problem (3.1). Hence
u(z) - u($(z)) = Re[§(z)z].
Iterating this functional equation we obtain

n-1
u(z) = u(¢ (2)) + z Re($($;(2)) ¢;(2)].
J:

Letting n -+ « we obtain

u(z) = u(0) + A Rel§(¢;(2)) ¢;(2)].

To determine a solution in a unique way we may impose an additional

condition u(0) = C, where C > 0 is a given constant. The case g = 1 was

considered by Bitsadze in [1] and [2] under the assumption that h is Holder
continuous on 4Q.
In a general case we reduce the problem (2.1),(2.2) to the Fredholm

integral equation of the second kind.

THEOREM 2. Suppose that the assumptions of Proposition 1 hold and that

Ll "

DY.a..,(i,j =1,...,n), D. b, (i =1,...,n) and c are Holder continuous on
1J 1 11

Q. Then the problem (2.1),(2.2) admits a unique solution u in Cz(O) n c(Q).

PROOF. We try to find a solution in the form

w = f 0 SERY vy as - f Glxy) £(y) dy, (3.9)
aQ ¥ Y a

where v ¢ C{0Q) is to be determined, G is the Green function for the
operator [ and gg" denotes the conormal derivative. The boundary condition

y
(2.2) leads to the Fredholm integral equation of the second kind.

vixy = 1 opte) S vy as = heo) ¢
aQ y
+ [ B(x) G(§(x),y) f(y) dy. (3.10)
Q
Since ¢(0Q; < Q the kernel p(x) dG(¢(x),y) is continuous function on

dQ x 9Q. Uy Proposition 1 the homogeneous equation corresponding to (3.10)

has only trivial solution. Hence by the Fredholm alternative there exists
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9
a unique solution v e L™{oQ) which by the continuity of the kernel belongs

to C(eQ'. Consequently the formula (3.9) gives a solulion to the problem

(2.1),(2.2).

4. ENERGY FSTIMATE.

In this section we consider the elliptic equation in the form

n n
Mu + = - .(a, . .
u + Au z Dl(alJ(x) DJu) + z

bi(x) Diu + c(x)u +
i,j=1 i=1

+ au = f(x) in Q,

with the boundary condition (2.2).

(4.1)

Throughout this section we assume that B is a continuous function on

2Q and ¢:90 -+ Q is a Cl~mapping with the positive Jacobian. Further we

assume that a.., D
ij

Q and that Q is a bounded domain with the boundary of class Cz.

LA, .,
i%1j i

b. (i,j = 1,...,n) c and f are Holder continuous on

The objective of this section is to show that the problem (4.1),(2.2)

has a unique solution for large values of the parameter A.

For small 6 > 0 we define 06 = QN {x; min [x-yl > &}).
y € 3Q

According to Lemma 14.16 in [11] (p. 355), the distance

9 _
r(x) = dist(x,3Q) belongs to C"(O—Q5 ) if 60 is sufficiently small.
o

Denote

by p(x) the extension of the function r(x) into Q satisfying the following

properties
36
- o _
pix) = rix) for x e Q - 06 , p e CUQ), plx) > “49 in 06 ,
o o

s)for &6 ¢ /0,5n) and finally 3Q = {x;p(x) = 0}.

111 rizt I opix) ¢ " r(x) in Q for some constant vl> 0, 006 = {x; p(x) =

THEOREM 3. There exist positive constants Ao’ C and d such that if u is a

2 _
solution 1n €“(Q) N €(Q) of the problem (4.1),(2.2) for A > Ao then

I|Du(x)|2 r(x)dx + fu(x)zr(x)dx + sup [ u(x)2 de <
a Q 0¢<s¢d 3Q

cot ruemtas + £ £ axn).
2Q ) Q

Proof. We follow the proof of Theorem 5 in [13]. Multiplying (4.1)

by
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Ju(x) (p(x)-86) on 06
0 on Q - 06

vix) =

and integrating by parts we obtain

1 n 2 1 2
. 7 z a, . (x) D.pDpu dS=-53 [ Z D.(a.,(x) D.p)u"dx+
2 606 i, -1 ij i J X 2 05 i,j=1 it ij J

n
v J 2 b (x) Du-u(p 8)dx + [ (c(x) + A) uz(p~6)dx - f fu(p 8)dx.
ai-1 !t J % s

Applying Holder’s inequality we easily obtain

9
sup I u° ds_ < €, f[Du|2 pdx + [ u? dx +
0.5¢d 006 : Q Q

s Afut pdx+ f £2 ax|, (4.2)
Q Q

where d and C] are positive constants.

Similarly

o 2
J | pdx +aJ u2 p dx ¢ C, I u2 dx + f £ dx + u2 de (4.3)
Q Q Q Q aQ

for some €, > 0. Tt follows from (2.2) that

2 2 2 2
I hul® pdx + A Ju” pdx ¢ Calf u™ dx + J 7 dx +
Q Q Q Q

sorntas g u(¢(x))2dsx], (4.4)
2Q aQ

where P% 0. The estimates (4.2) and (4.4) yield that

o 2
T |ou]” pdx v A J u2 pdx + sup [ u” deg
Q Q 0<5<d 9Q

2 2
¢ cq[; was 4 st dax e pPds T u(g(x) dsx], (4.5)
) ) aQ 20

for some C4 > 0. Since ¢ is a Cl—mapping with the positive Jacobian it is

obvious that

9
[ uhn® s, ¢ c Zas, ¢ cgf £ [pul® ax + 1 ou? dx], (4.6)
aQ

J u
5 x
(aQ) Q Q
¢ b b
where C5 > 0 and C6 > 0 are constants and Q, is a domain containing ¢(aQ)

with dist(0¢,ao)>0. Consequently by virtue of the Caccioppoli inequality
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we have

I u(éx)? ds_ ¢ Cpfru?dx v 1 £ ax 4.7
0Q ) Q

for some C7 > 0. We now observe that

)
rudcgi- sl pdc+d sw 5 oulds,, (4.8)
Q 1 a 0¢6¢d  aQ X
where d1 = inf p(x). Choosing d sufficiently small and A sufficiently
Q
d

large we easily derive the desired estimate from (4.5),(4.6),(4.7) and
(4.8).

Repeating the argument of Theorem 2 we deduce the following

THEOREM 4. There exists a positive constant AO such that for every A > Ao

the problem (4.1),(2.2) admits a uniquc solution in CZ(Q) n c(Q).

5. WEAK SOLUTIONS.
The energy estimate from Section 4 shows that one can expect solutions

of the problem (4.1),(2.2) in a weighted Sobolev space defined by

01,2, _ 1,2 . 12 12 .
W Q) = {ue wloc Q); I]Du(x)] r(x) dx + f u(x)® dx < o}
Q Q

and equipped with the norm
2 2 2
HullSy o = J [buG)|® r(x) + u(x)®) dx.
W’e Q

We recall briefly that a function u is said to be a weak (generalized)

1,2

solution of (4.1) if u e "1$c(°) and it satisifies

n n
I { aij Diuij + .f biDiu~v + (c+A)uv]ldx = f f v dx (5.1)
Q J i=1 a

)
for each v e w]’“(O) with compact support in Q.

To proceed further we need some terminology. It follows from the
regularity of the boundary 3Q that there exists a number 60 such that for
5 e (0,60) the domain Qb (defined in Section 4) with the boundary 605
possesses the following property: to each X, € 3Q there exists a unique

point xs(xn) € 605 such that xG(xo) = X - Bv(xo), where u(xo) is the

o

outward normal to 3Q at Xqg- The above relation gives a one-to-one mapping

of class Cl, of 3Q onto 606.
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It is known that elements of the space wl'z(o), in general, do not
have traces on the boundary 9Q (see [12]). However, by Theorem 4 in [13],

1

S
if ue W'“/Q) is a solution of (4.1) then there exists a function

2]
¢ € 1L°(00) such that

)
lim  J [u(x.) - ¢(x)]” ds_ = 0.
550 o ° *

il
Therefore, as in the paper [13}, we adopt the following L“-approach to

the problem (4.1),(2.2).

9 9
Let h e L“(0Q). A weak solution u e W};Z(Q) of (4.1) is a solution of

the non-local problem with the boundary condition (2.2) if

(9]
3]
~

5
lim [ [u(x ) - g(x) ul(d(x)) - h(x)]“ ds_ = 0. (5.
640 oQ 6 ¢ X

1,2
loc
the problem {1.1),(2.2) {(with the boundary condition (2.2) understood in

It follows from Theorem 1 in [13] that if u e W (Q) is a solution of

~ )
the sense of (5.2) then u e Wl’“(Q). We mention also that u(¢(x)) is
a9
understood 1n the sense of trace, which is well defined since u e W{;:(Q)

(see [11],chap.Gi.

We now are in a position Lo establish the existence result in WI’Z(Q)

of the problem ¢1.1),12.2).

92
THEOREM 5. Let h e L“(6Q). Then there exists a positive constant A such

that for A > Ao the problem (4.1), (2.2) in Wiéi(Q) admits a unique

solution.

PROOF. Let hm be a sequence in CI(OQ) such that lim [ (hm--h)2 de = 0.
mwo 3Q
Let Ay be a constant from Theorem 4 and assume that A > Ao. For each

m » 1 Theorem 4 guarantees the existence of the unique solution

u, € CJ(Q) N C(Q) of the problem (4.1),(2.2) with h = hm' Moreover we have

for each u
m

2 i 2 2 2
J |Du | rdx + f u dx < C(f f"dx + [ h ds ),
Q m o m X

Q aQ
where C . 0 is a constant independent of m. Since the sequence u is
~ bl
bounded in Wl’“(Q), there exists a subsequence, which we relabel as up
converging weakly in Wl'z(O) to a function u. By Theorem 4.11 in [15],

Wl’z(Q) is compactly embedded in LZ(Q) and therefore we may assume that u



112 J.H. CHABROWSKI

N . 2 . .
converges to u in L7(Q). It is obvious that u is a weak solution of (4.1).

By Theorem 1 in [13] u has a trace $ e LZ(OO)
R
L7-convergence, that is

in the sense of

lin [ [u (xp) - ¢(x)]% ds_ = 0.
60 0Q X

To complete the proof we show that ¢(x) = B(x) u(¢(x)) + h(x) a.e. on 9Q.

Let 3 CllO). It is easy to show $(x) p(x) is a legitimate test function
P

in (5.1! and integrating by parts we obtain

n n
I z a..D.phpds =-7/ z D.(a.. D.p &) u dx +
a0 § i,4=1 W r J X Qig=1 * 1 J
n -
e Z b, Duddx + J(ctMDuppdx - J f dupdx =
Qi=1 ' ! 3 Q ¢ Q £
= lu). (5.3)
Similarly
n
{0 {hm(x) + p(x)um(¢(x))] : ?—1 a5 D.p Djp de = F(um). (5.4)
o ,j=

Applying the estimate (4.6) and the obvious analogue of the energy

estimate 1o up - uq we obtain
I Tu (¢’x‘) - u (¢(Y))]2 ds ¢<c[ J lDu - Du |2 dx 4
aq P ) a x T Q r a

¢

2 C 2 2
- dx] < ¢ f{Du_-D dx + C - Ix ¢
3 é'up uql ] < k él up uq| p dx élup uql dx ¢

~ 2
¢ h - h |7 ds
: ()é ' P ]ql x'

~

where k - inf pix) and C > 0 is a constant independent of p and q. Hence

by the «<onlinuity of weak solutions on Q we may assume that

um(¢(x))~u(¢(x)) as m - % in LZ(aQ). Combining this with the fact that
F(um) + IFfu) as m - o we deduce from (5.3) and (5.4) that
¢(x) = p(x)u(¢(x)) + h(x) a.e. on 9Q and this completes the proof.

REMARK 2. It is worth noting that the non-local problem of the type
(4.1),(2.2) has been studied in [9] for the higher order elliptic

equations. The corresponding boundary datum h in (9] belongs to the space

1 L 2
HZ(a3Q). Since H?(3Q) is a proper subspace L“(3Q), Theorem 5 cannot be
deduced from the results of the paper [9].
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