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Ramanujan the Man. A brief account of his llfe, career, and remarkable mathematical

contributions is given to describe the gifted talent of Srinivasa RamanuJan. As an

example of his creativity in mathematics, some of his work on the theory of partition

of numbers has been presented with its application to statistical mechanics.
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I. INTRODUCTION

Srinivasa Ramanan is universally considered as one of the mathematical geniuses

of all time. He was born in India a hundred years ago on December 22 of that year.

His remarkable contributions to pure mathematics placed him in the rank of Gauss,

Galois, Abel, Euler, Fermat, Jacobi, Riemann and other similar stature. His

contributions to the theory of numbers are generally considered unique. During his

life-time, Ramanujan became a living legend and a versatile creative intellect. His

name will be encountered in the history of mathematics as long as humanity will study

mathematics.

Ramanujan was born on December 22, 1887 in Brahmin Hindu family at Erode near

Kumbakonam, a small town in South India. His father was a clerk in a cloth-merchant’s

office in Kumbakonam, and used to maintain his family with a small income. His mother

was a devoted housewife and had a strong religious belief. However, there was no

family history of mathematical or scientific genius.

At the age of seven, young Ramanujan was sent to the high school of Knbakonam

and remained there until he was sixteen. He was soon found to be a brilliant student

and his outstanding ability had begun to reveal itself before he was ten. By the time

Ramanujan was twelve or thirteen, he was truely recognized as one of the most

outstanding young students. He remained brilliant throughout his life and his talent

and interest were singularly directed toward mathematics. Like Albert Einstein,

Ramanujan became entranced by an elementary text book entitled A Synopsis of

Elementary Results in Pure and Applied Mathematics by George Shoobridge Cart. No

doubt that this book has had a profound influence on him and his familiarity with it
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marked the true startlng-polnt of his mathematical discovery. In 1903, RamanuJan
passed the Matriculation Examination of the University of Madras and Joined the

Goverenment College at Kumbakonam in 1904 with the Subrahmanyan Scholarship which is

usually awarded to students for proficiency in Mathematics and English. At the

College he used to spend most of his time studying mathematics. His consequent

neglect of his other subjects resulted in his failure to get promotion to the senior

class. Consequently, he lost his scholarship. He was so disappointed that he dropped

out from the college. In 1906, he entered Pachalyappa’s College in Madras and

appeared as a private student for the F.A. Examination in December 1907 and

unfortunately again failed. He was very disappointed but continued his independent

study and research in pure mathematics.

During the summer of 1909, RamanuJan married Janakl and it became necessary for

him to find some permanent job. Being unemployed for about six years, he accepted a

small job in 1912 at the Madras Port Trust as clerk. He has now a steady job, and he

found he had enough time to do his own research in mathematics. He had already

published his first paper in the Journal of the Indian Mathematical Society in the

December issue of volume 3, 1911. During the next year, RamanuJan published two more

paers in volume 4 (1912) of the same Journal.

At the advice of his teacher and friend, Seshu Aiyar, RamanuJan wrote a letter on

January 13, 1913 to famous British mathematician G.H. Hardy, then Fellow of Trinity

College, Cambridge. Enclosed also in this letter was a set of mathematical results

incuding one hundred and twenty theorems. After receiving this material, Hardy

discussed it with J.E. Littlewood with regard to RamanuJan’s mathematical talent. At

the beginning Hardy was reluctant, but impressed by RamanuJan’s results on continued

fractions. Finally, Hardy decided to bring RamanuJan to Cambridge in order to pursue

some Joint research on mathematics. RamanuJan was pleased to receive an invitation

from Hardy to work with him at Cambridge. But the lack of his mother’s permission

combined with his strong Hindu religion prejudices forced him to decline Hardy’s

offer. As a result of his further correspondence with Hardy, RamanuJan’s talent was

brought to the attention of the University of Madras. The University made a prompt

decision to grant a special scholarship to RamanuJan for a period of two years. On

May I, 1913, the 25 year old RamanuJan formerly resigned from the Madras Port Trust

Office and Jolned the University of Madras as a research scholar with a small

scholarship. He remained in that position until his departure for Cambridge on March

17, 1914.

During the years 1903-1914, Ramanuj an devoted himself almost entirely to

mathematical research and recorded his results in his own notebooks. Before his

arrival in Cambridge, RamanuJan had five research papers to his name, all of which

appeared in the Journal of the Indian Mathematical Society. He discovered and/or

rediscovered a large number of most elegant and beautiful fornmlas. Thes results were

concerned with Bernoulli’s and Euler’s numbers, hypergeometric series, functional

equation for the Riemann zeta function, definite integrals, continued fractions and

distribution of primes. During his stay in Cambridge from 1914 to 1919, RamanuJan
worked ontinually together with Hardy and Littlewood on many problems and results
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conjectured by himself. His close association with two great mathematicians enabled

him not only to learn mathematics with rigorous proofs but also to create new

mathematics. Ramanujan was never disappointed or intimidated even when some of his

results, proofs or conjectures were erroneous or even false. Absolutely no doubt, he

simply enjoyed mathematics and deeply loved mathematical formulas and theorems. It

was in Cambridge where his genius burst into full flower and he attained great

eminence as a gifted mathematician of the world. Of his thirty-two papers, seven were

written in collaboration with Hardy. Most of these papers on various subjects took

shape during the super-productive period of 1914-1919. These subjects include the

theory of partitions of numbers, the Rogers-Ramanujan identities, hyper-geometrlc

functions, continued fractions, theory of representation of numbers as sums of

squares, Ramanujan’s Y-function, elliptic functions and q-serles.

In May 1917, Hardy wrote a letter to the University of Madras informing that

Ramanujan was infected with an incurable disease, possibly tuberculosis. In order to

get a better medical treatment, it was necessary for him to stay in England for some

time more. In spite of his illness, Ramanujan continued his mathematical research

even when he was in bed. It was not until fall of 1918 that Ramanujan showed any

definite sign of improvement. On February 28, 1918, he was elected a Fellow of the

Royal Society at the early age of thirty. He was the first Indian on whom the highest

honor was conferred at the first proposal. Niel Bohr was the only other eminent

scientist so elected as the Fellow of the Royal Society. On October 13, 1918, he was

also elected a Fellow of the Trinity College, Cambridge University with a fellowhslp

of 250 a year for the next six years. In his announcement of his election with the

award, Hardy forwarded a letter to the Registrar of Madras University by saying, "He
will return to India with a scientific standing and reputation such as no Indian has

enjoyed before, and I am confident that India will regard him as the treasure he

is." He also asked the University to make a permanent arrangement for him in a way

which could leave him free for research. The University of Madras promptly responded

to Hardy’s request by granting an award of 250 a year for five years from April I,

1919 without any duties or assignments. In addition, the University also agreed to

pay all of his travel expenses from England to India. In the meantime, RamanuJan’s
health showed some signs of improvement. So it was decided to send him back home as

it deemed safe for him to travel. Accordingly, he left England on February 27, 1919

and then arrived at Bombay on March 17, 1919. His return home was a very pleasant

news for his family, but everybody was very concerned to see his mental and physical

conditions as his body had become thin and emaciated. Everyone hoped that his return

to his homeland, to his wife and parents and to his friends may have some positive

impact on his recovery from illness. Despite his loss of weight and energy, RamanuJan
continued his mathematical research even when he was in bed.

In spite of his health gradually deteriorating, RamanuJan spent about nine months

in different places including his home town of Kumbakonam, Madras and a village of

Kodumudi on the bank of the river Kaveri. The best medical care and treatment

availalbe at that time were arranged for him. Unfortunately, everything was

nsuccesful. He died on April 29, 1920 at the age of 32 at Chetput, a suburb of Madras,

surrounded by his wife, parents, brothers, friends and admirers.
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In his last letter to Hardy on January 12, 1920, three months before his death,

RamanuJan wrote: "I discovered very interesting functions recently I call ’Mock’

O-functlons. Unlike ’False’0-functlons (studied by Professor Rogers in his interesting

paper) they enter into mathematics as beautifully as the ordlnaryO-functions. I am

sending you with this letter some examples." Like his first letter of January 1913,

Ramanujan’s last letter was also loaded with many interesting ideas and results

concerning q-serles, elliptic and modular functions. In order to pay tribute to

Srlnlvasa Ramanujan, G.N. Watson selected the contents of RamanuJan’s last letter to

Hardy along with Ramanujan’s five pages of notes on the Mock Theta functions for his

1935 presidential address to the London Mathematical Society. In his presidential

address entitled "The Final Problem: An Account of the Mock Theta Functions", Watson

(1936) discussed Ramanujan’s results and his own subseqent work with some detail. His

concluding remarks included: "Ramanujan’s discovery of the Mock Theta functions makes

it obvious that his skill and ingenuity did not desert him at the oncoming of his

untimely end. As much as his earlier work, the mock theta functions are an

achievement sufficient to cause his name to be held in lasting remembrance. To his

students such discoveries will be a source of delight Clearly, RamanuJan’s
contributions to elliptic and modular functions had also served as the basis of the

subsequent developments of these areas in the twentieth century.

2. RAMANUJAN-HARDY’S THEORY OF PARTITIONS

As an example of RamanuJ an’ s creativity and outstanding contribution to

mathematics, we briefly describe some of his work on the theory of partitions of

numbers and its subsequent applications to statistical mechanics. Indeed, the theory

of partitions is one of the monumental examples of success of the Hardy-RamanuJan

partnership. Ramanujan shared his interest with Hardy in the unrestricted partition

function or simply the partition function p(n). This is a function of a positive

integer n which is a representation of n as a sum of strictly positive integers.

Thus p(1) I, p(2) 2, p(3) 3, p(4) 5, p(5) 7 and p(6) II. We define p(0)

I. Thus the map n p(n) defines the partition function. More explicitly, the

unrestricted partitions of a number 6 are given as 6=I+I+I+I+I+I= 2+2+2= 2+2+I+I

2+I+I+I+I=3+3-- 3+2+I= 3+I+I+I= 4+2= 4+I+I= 5+I. Hence p(6) II. There are three

partitions of 6 into distinct integers: 6 5+1 4+2. There are four partitions of

6 into odd parts: 5+1 3+3 3+I+I+I I+I+I+I+I+I. The number 6 has only one

partition into distinct odd parts: 5+I. We also note that there are 4 partitions of 6

into utmost 2 integers, and there are four partitions of slx into integers which do

not exceed 2. And there are 3 partitions of six into 2 integers and there are equally

3 partitions of 6 into integers with 2 as the largest.

It follows from the above examples that the value of the partition function p(n)

depends on both the size and nature of parts of n. These examples also lead to the

concept of restricted and unrestricted partitions of an integer. The restrictions may

sometimes be so stringent that some numbers have no partitions at all. For example,

I0 cannot be partitioned into three distinct odd parts.

There is a simple geometric representation of partitions which is usually shown
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by using a display of lattice points (dots) called a Ferret graph. For example, the

partition of 20 given by 7+4+4+3+I+I can be represented by 20 dots arranged in five

rows as follows:

Reading this graph vertically, we get another partition of 20 which is

6+4+4+3+I+I+I. Two such partitions are called conjugate. Observe that the

part in either of these partitions is equal to the number of parts in the other. This

leads to a simple but interesting theorem which states that the number of partitions

of n into m parts is equal to the number of partitions of n into parts with m as the

largest part. Several theorems can be proved by simple combinatorial arguments

involving graphs.

Above examples with the geometrical representation indicate that partitions have

inherent symmetry. In quantum mechanics, such geometric representations of partitions

are known as Youn Tableaux which was introduced by Young for his study of symmetric

groups. They were also found to have an important role in the analysis of the

symmetries of many-electron systems.

The above discussions also illustrate some important and useful role of the

partition function from mathematical, geometrical and physical points of view. In

additive questions of the above kind it is appropriate to consider a power series

generating function of p(n) defined by

F(x) . p(n)x Ixl <
n=O

(2.1)

From this elementary idea of generating function, Euler formulated the analytical

theory of partitions by proving a simple but a remarkable result:

F(x)-- (l-xm) . p(n)xn, Ix{ <
m n=o

(2.2)

where p(o)

If 0 < x < and an integer m > and

m -I
F (x) -- (I -xk) + Z p(n) xn, Ixl <

k=l n=0
(2.3)

then it can be proved that

Pm(n) <_ p(n), Pm(n) p(n), 0 <_ n <_ m, (2.4ab)

and
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lim Pm(n) p(n)

m/

Furthermore

(2.5)

lim F (x) F(x) (2.6)
m

m

Euler’s result (2.2) gives a generating function for the unrestricted partition

of an integer n without any restriction on the number of parts or their properties

such as size, parity, etc. Hence the generating function for the partition of n into

parts with various restriction on the nature of the parts can be found without any

difficulty.

For example, the generating function for the partition of n into distinct

(unequal) integral parts is

F(x) (l+x) (l+x2) (l+x3) H (l+xm)
m--I

This result can be rewritten as

(2.7)

F(x)
4 6

-x
2

-x -x
2 3

-x -x -x

II (1-x2m-l)
(l-x) (l-x2) (l-x3)...m--I (2.8)

Obviously, the right hand side is the generating function for the partition of n

into odd integral parts. Thus it follows from (2.7) and (2.8) that the number of

partitions of n into unequal parts is equal to the number of its partitions into odd

parts. This is indeed a remarkable result.

Another beautiful result follows from Euler’s theorem and has the form

(1-x2) (l-x4) (l-x6) l+xl+ x3+ x6+ xl0+
(l-x) (l-x3) (l-x5)

(2.9)

n
The powers of x are the familiar triangular numbers, An - n(n+l) that can be

represented geometrically as the number of equidistant points in triangles of

different sizes. These points form a triangular lattice. As a generalization of this

idea, the square numbers are defined by the number of points in square lattices of

increasing size, that is, I, 4, 9, 16, 25

We next consider the partition function generated by the product

(l-xm) which is the reciprocal of the generating function of the unrestricted
m=l
partition function p(n) given by (2.2). This product has the representation

(l-xm) I+ [ Pe(n) Po(n)}xn . (-I) nxm(n)
m--I n=l n=

(2.10)

where Pe(n) is the partition of n into an even number of distinct parts, and

Po(n) is the partition of an odd number of distinct parts, and the integers

m(n) (3n2- n) are called the Euler pentagonal numbers which can be represented

geometrcally by the number of equidistant points in a pentagon of increasing size.
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These points form a pentagonal lattice. Also, it follows from (2.2) and (2.10) by

actual computation that

F(x)

(I xm)
m

2 12 15+l-x-x + x5+ x x x
(2.11)

In view of the fact that the generating functions for the partition of numbers

involve infinite products which play an important role in the theory of elliptic and

associated functions (Dutta and Debnath, 1965).

Ramanujan made some significant contributions to the theory of partitions. He

was not only the first but the only mathematicians who successfully proved several

remarkable congruence properties of p(n). Some of his congruences are

p(5m + 4) 0 (mod 5) (2.12)

p(7m + 5) 0 (mod 7) (2.13)

p(llm + 5) --0 (mod II) (2.14)

All these results are included in his famous conjecture: If p--5,7 or II and

24n- --0 (mod pa), > I, then

p(n) 0 (rood pa) (2.15)

This was a very astonishing conjecture and has led to a good deal of theoretical

research and numerical computation on congruence of p(n) using H. Gupta’s table

(1980) of values of p(n) for n < 300. However, S. Chowla found that this conjecture

is not true for n-- 243. For this n, 24n-I 5831 =- (mod 73 but

p(243) 133978259344888 0 (mod 72

0 (mod 73 (2.16ab)

Subsequently, D.H. Lehmer (1936) became deeply involved in the proof of the conjecture

and also in the computation of p(n) for large n. G.N. Watson (1938) proved

RamanuJan’s conjecture for powers of 7. Finally, A.O.L. Atkin (1967) settled the

problem by proving the conjecture for powers of II. RamanuJan’s conjecture can now be

stated as an important theorem: If 24n-I 0 (mod dr5
a

7
b llC), then

pCn) 0 (rood d) (2.17)

In connection with his famous discovery of several congruence properties,

RamanuJan also studied two remarkable partition identities:

5

[ pC5m + 4) x
m 5

(x5)"
6

m=0 (R)(x)
(2.18)
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m

=0

where (x) (l-xn)
n

3 7
7 7

7
’(x ((x)

’4 + 49x (2.19)
(x (x)

8

(2.20)

The functions on the right side of (2.18) (2.19) have power series expansions with

integer coefficients, Ramanujan’s congruences (2.12) (2.13) follow from these

identities. Subsequently, these identities have created a tremendous interest among

many researchers including H.B.C. Darling, L.J. Mordell, H. Rademacher and H.S.

Zuckermann. They proved RamanuJan’ s identities by using the theory of modular

functions. Proofs without modular functions were given by D. KruyswlJk (1950) and

later by O. Kolberg. The method of Kolberg gave not only the RamanuJan identities but

many new ones.

Actual computation reveals that the partition function p(n) grows very rapidly

with n. D.H. Lehmer (1936) computed p(n) for n 14,031 to verify a conjecture of

Ramanujan which asserts that p(14,031) 0 (mod 114). This assertion was found to be

correct. This leads to the question of asymptotic representation of p(n) for large

n. ,During the early part of the 20th century, Hardy and RamanuJan made significant

progress in the determination of an asymptotic formula for p(n). Using elementary

arguments, they first showed

log p(n)

_
,--, + 0 (n) as n (2.21)

Then, with the aid of a Tauberlan Theorem, Hardy and RamanuJan (1918) proved that

2
p(n) exp [II [--) as n (2.22)

4n/3

This is one of the most remarkable results in the theory of numbers. Equally

remarkable was Hardy and RamanuJan’s proofs of (2.22). One proof is based on the

elementary recurrence relation

o(k) o(n-k), p(o) (2.23)

where o(k) is the sum of the divisors of k. The asymptotic approximation of

o(n) led to this result (2.22).

RamanuJan and Hardy’s second proof was based upon the Cauchy integral formula in

complex analysis. In order to outline the proof, we replace real x by a complex z in

(2.2) to obtain the Taylor series representation of F(z) and hence the coefficient

p(n) of the resulting series can be expressed by the Cauchy integral formula

p(n)
F(n) (o) _/__I [ F_)dz (2.24)

n! 2i C z

where F(z) is analytic inside the unit disk Izl in the complex z-plane, C is a

suitable closed contour enclosing the origin and lying entirely within the unit

disk. It turns out that the unit clrcle is a natural boundary for F(z).

We choose C as a circle with the origin as center and radius r (0 < r < I) in the
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complex z-plane. We make a change of variable z= exp (2iT) in (2.2) so that

27 iT _e2iTm)F(e (I
m

(iT] -1
exP,12 [n(T)] (2.25)

where q(T) is the Dedekind n- function which is an analytic function of T for

Im (T) > 0.

We now rewrite (2.24) in terms of n(T) in the form

-2i T

p(n) e n dT

r n(T) Im (T) > 0 (2.26)

where F is the line segment of length unity, parallel to the real axis, from
2- + ie to + ie, e > 0 and n We also assume C to be such thatn 24

F is its image under the transformation z exp(2wiT).

The function n(T) has a simple pole at T=0. RamanuJan and Hardy proved

rigorously that the main contribution to the integral for p(n) given by (2.26) comes

from the polar singularity at T--0 as n . Thus the asymptotic value of p(n) is

given by

p(n) K:n
4

2 exp (lnK) + 0 (el ), n+ (R), (2.27)

n n

where K

When is replaced by n, then (2.27) becomes identical with (2.22).n

Finally, H. Rademacher (1937) further improved and fully completed the evaluation

of the integral for p(n) by proving an exact formula. He noted that q(T) has also

singular at every point T , (p,q) on a segment of the real axis of length

unity. He then evaluated contributions to integral (2.26) at its all singular points

of the form T
p

and obtained the exact formula
q

p(n) ---/--I Z q A (n) d Kn]
2 q=l

q [n slnh--- n >_ I, (2.28)

where

A (n) exp(-2ip/q), exp[is(p,q)], (p,q) I, (2.29abc)q p--q P, q P, q

and s(p,q) is the Dedekind sum.

The work of RamanuJan-Hardy’s partition function combined with that of Rademacher

can be regarded as truely remarkable and have stimulated tremendous interests in

subsequent developments in the theory of modular functions. The RamanuJan-Hardy

collaboration on the asymptotic analysis for p(n) is one of the monumental results in

the history of mathematics and is perhaps best described by J.E. Littlewood (1929) in

his review of the collected papers of Srlnlvasa RamanuJan in the Nature.
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3. APPLICATIONS TO STATISTICAL MECHANICS

One of the most remarkable applications of the RamanuJan-Hardy asymptotic formula

for p(n) deals with the problems of statistical mechanics. Several authors including

Auluck and Kotharl (1946), Temperley (1949) and Dutta (1956) discussed the significant

role of partition functions in statistical mechanics. The theory of partitions of

numbers have been found to be very useful for the study of the Bose-Einsteln

condensation of a perfect gas. The central problem is the determination of number of

ways a given amount of energy can be shared out among different possible states of a

thermodynamic assembly. This problem is essentially the same as that of finding the

number of partitions of a number into integers under certain restrictions.

We consider a thermodynamic assembly of N non-lnteractlng identical linear simple

harmonic oscillators. The energy levels associated with an oscillator are

e (m+
m

where m is a non-negatlve integer, h=2 is the Planck constant and

is the angular frequency. If E denotes the energy of the assembly, a number n is

defined by

n(0) E N (3.1)

where n denotes (in units of 00) the energy of the assembly, excluding the residual

energy given by the second term of the right side of (3.1).

We denote ?(E) for the number of distinct wave functions assigned to the

assembly for the energy state E. It is well known that for a Bose-Einsteln assembly

the number of assigned wave functions is the number of ways of distributing n energy

quanta among N identical oscillators without any restriction as to the number of

quanta assigned to the oscillator. For a Fermi-Dirac assembly, the energy quanta

assigned to all oscillators are all different. For the case of a classical Maxwell-

Boltzmann assembly, oscillators are considered as distinguishable from each other, and

the number of wave functions is simply the number of ways of distributing n energy

quanta among N distinguishable oscillators. This is equal to the number of ways of

assigning N elements to n positions, repetitions of any element are permissible.

If Pd(n) denotes the number of partitions of n into exactly d or less than d

parts, then Pd(n)--p(n) for d >_ n where p(n) is the number of partitions of n as a

s of positive integers. On the other hand, qd(n) representSdthe number of

partitions of n into exactly d unequal parts so that Pd(n) qk(n). On the other
k-I

hand, the number of partitions of n into exactly d or less different parts is denoted

by qd(n) and Qd(n) sands for the number of partitions of n into exactly d unequal

parts so that qd(n) [ Qk(n) We also observe the following results:
k--1

Pd(n) qd(n + d) qd(n) d(n +- d(d-1)), (3.2ab)

Pd(n) Qd(n + d(d+l)), Qd(n+d) Qd(n) + Qd_t(n), (3.3ab)

It turns out that

?(E) PN(n) for the Bose-Einsteln assembly, (3.4)
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9(E) QN(n) + QN_I(n) QN(n+N) for the Fermi-Dirac assembly,

N
H
n (N+n-l)9(E) N-T- N!(N-I)!n! for the Maxwell-Boltzmann assembly,

(3.5)

(3.6)

where N! in (3.6) is inserted to make the entropy expression meaningful. It is

important to point out that if N=0(n ), both PN(n) and QN(n+N) tend to N
H

/N!. This

means that for N < < n both the Bose-Einstein statistics and the ermi-Dirac
statistics tend to the classical Maxwell-Boltzmann statistics.

The state function Z for an assembly is defined by

Z . (E e
-E

m (3.7)

-I
where is the temperature measured in energy units. For the Bose-Einstein

assembly of the linear oscillators, the state function Z is given by

Z . PN(n) exp[-(n + N) ]
n=l

kT
where -, and k is the Boltzmann constant. We can rewrite (3.8) as

N -I
ZeN-- (l_er)

r--I

(3.8)

(3.9)

For the Fermi-Dirac assembly, we have

ZeN Z [QN (n) + QN-I(n) exp(-n)
n:

N
exp [- N(N-I) ,] (l-er)-I

r:l

For the classical Maxwell-Boltzmann case, we have

-N
Ze " N= NI_.! I-e-

It is interesting to point out that as N2/ 0

N -I -N N
-r - +e-(r-l)}-III (l-e (l-e II {l+e-r=l

-N_e--!(1

(3.1o)

(3.11)

(3.12)

This means that the classical statistics is the limit of both results (3.9) and

(3.10).

The above expressions for the state function Z were used to obtain the result for

the energy E (or n) and the entropy S. Using the expression for S, asymptotic

formulas for the partition functions PN(n) and p(n) as follows:

N-I

PN(n NI__! N
H exp(2N) n
n

27 N
2N

for N < < n (3.13)
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PN (n)
4n3--I exp [7 22 I n exp(-N/6/n)] for N > > n (3.14)

Thus, in the limit, n

PN(n) p(n) exp (7 (3.15)

This is the RamanuJan-Hardy asymptotic formula.

A more general result can be derived in the form

PN(n)
D x tD exp[{( (I- --x )} f _- log (l-e-t)} dt +

e -I o et-I
x2 I/22n [2e(l-e-x) (I }l

x
e -I

where D is given by

x

2(eX-1) (3.16)

x
D f (et-l)-lt dt

o
(3.17)

and x=lN is given by

x
D N xe2} + 0(2) (3.18)n 2
++ 4+ 2 xp 2 2(eX-l) e -I (eX-l)

It is important to point out that this general result for PN(n) reduces to (3.13) as

xffiN 0, and to (3.14) as xfN

On the other hand, Temperley (1949) applied the RamanuJan-Hardy theory of

partitions to discuss results of the Bose-Einsteln condensation theory. He considered

a problem different from that of Auluck and Kothari. His model consists of N

particles obeying Bose-Einstein statistics distributed among infinitely many energy

levels 0, e, 2e, 3, of uniform spacing E in such a way that the total energy

is cE. The partition function PN(E) representing the number of ways of dividing an

integer E (energy) into N or less integral parts has the generating function

3I/(l-x)(l-xz)(1-xz2)(l-xz . Pn (E) xNzE,
N E

(3.19)

Temperley used the RamanuJan-Hardy asymptotic method to compute PN(E) for large N.

His analysis gives

pN(Z) i/ Eexp [7 exp I-
J6E

N > > (3.20)

This result is similar to that of Auluck and Kotharl (1946) who considered the problem

of distribution of a fixed amount of energy between N harmonic oscillators of equal

frequency, and solved it from the statistical mechanics of harmonic oscillators.

Temperley also investigated the Bose-Einsteln perfect gas model which is also

equivalent to a certain problem in the partition of numbers into sums of squares. The
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energy levels available to particles in a cubical box of side-length d are given by

the expresion

h
2

2+ 2 h
2

(p s2+ t -- K(r s t) (3 21)
8md

2
8md

2

where K(r,s,t) (r2+ s2+ t2). Each of these levels may be occupied an integral

number of times or not at all. The problem is to find the asymptotic form for the

number of distinct partition of an integer E, representing the ratio of the total to

the lowest possible energy-separatlon h2/Smd2, into a sum of the numbers where the

order in which the K’s are arranged is neglected, but on the other hand, K’s like

K(1,2,3), K(2,1,3) are distinct from one another, and such K’s have to be treated as

different, even though they are numerically equal. In all cases, the quantitics r,s,t

are positive integers. The upshot of this analysis is the existence of an

intermediate temperature region within which the results of earlier theory are

unreliable. It is also confirmed the existence of the phenomena of condensation into

lowest energy-levels. At the same time, the present investigation gives a transition

departure far below K for a perfect gas of heillum atoms. However, the earlier

theory can provide physically sensible results at very high and at very low

temperatures.

All these above discussions show a clear evidence for the great importance as

well as success of the RamanuJan-Hardy theory of partitions in statistical mechanics.

In an essentially statistical approach to thermodynamic problems, Durra (1953,

1956) obtained some general results from which different statistics viz., those of

Bose, Fermi and Gentile, Maxwell-Boltzmann can be derived by using different

partitions of numbers. It is noted that mathematical problems of statisitics of Bose,

Fermi, and Gentile are those of partitions of numbers (energy) into partitions in

which repetition of parts are restricted differently. In partitions corresponding to

Bose statistics any part can be repeated any number of times, that to Gentile

statistics any part can be repeated upto d times where d is a fixed positive integers,

and that to Fermi statistics no part is allowed to repeat, that is, d=l. All these

led to an investigation of a new and different type of partitions of numbers in which

repetition of any part is restricted suitably. Motivated by the need of such

partition functions and its physical applications to statistical physics, Dutta (1956,

1957) Durra and Debnath (1959) studied a new partition of number n into any number of

parts, in which no part is repeated more than d times. Dutta’s partition function is

denoted by dP(n). Dutta himself and in collaboration with De bnath proved algebraic

and congruence properties of dP(n). The generating function of this partition

function is

2n xdn)f(x) --I dP(n) xn* (I+ xn+ x + +
n--I

d+ n(d+l) n
l-xn" E (l-x g p(n) x[[

n n(d+l)
l-x E (l-xn) r. p(n) x

(3.22)

where p(n) is the unrestricted partition function due to Hardy and RamanuJan (1918).
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He proved the following congruence properties for dP(n):

4p (5m+ 4) E 0 (mod 5) (3.23)

6p (7m + 5) --0 (rood 7)

120P (llm + 6) 0 (rood II)

(3.24)

(3.25)

Subsequently, Dutta and Debnath (1957) introduced a new partition function

dP(n|m) representing the number of partition of an integer n into m parts with utmost

d repetitions. They proved the generating function, congruence properties, recurrence

relations and other related properties with examples. Several special cases of this

partition functions are discussed with examples. Dutta obtained a simple algebraic

formula to calculate successively the numerical values of d
p(n)

from the values of

p(n) and so ultimately from Euler’s table. Using a Tauberlan Theorem, Dutta proved an

asymptotic forumla correct up to the exponential order above for d
pn) for large n:

z d
dP(n) exp [{’" n(d----) (3.26)

In particular, for partition of unequal parts (d=l), (3.26) becomes

(3.27)

For unrestricted partitions (d ) (3.26) reduces to

dP(n) exp [/ for n +
(3.28)

These results are in excellent agreement with those of Hardy and RamanuJan (1918) upto

the expotentlal order. The asymptotic result for the unrestricted partition is found

to be very useful for computing the dominant term in the expression for the entropy of

the corresponding thermodynamic system.

Dutta’s partition function is not only more general than that introduced by

earlier authors, but also it is more useful for the study of problems in statistical

physics. Mathematical problems of Gentile statistics deals with the partitions of numbers

(energy) into parts in which repetition of parts are restricted differently. In

partitions corresponding to Bose statistics, any part can be repeated any number of

times (d / (R)). The Fermi statistics deals with the partitions of number into parts in

which no part can repeat (d=l). In partitions corresponding to Gentile statistics,

any part can be repeated up to d times. In other words, Dutta’s partition function

d
p(n)

is found to be useful for an investigation of thermodynamic problems.

As a final example of physical application of RamanuJan-Hardy’s theory of

partitions of numbers, mention may be made of a paper by Bohn and Kalckar (1937)

dealing with calculation of the density of energy levels for a heavy nucleus.
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4. CONCLUDING REMARKS

It is hoped that enough has been discussed to give some definite impression of

Ramanujan’s great character as well as of the range and depth of his contributions to

pure mathematics. Throughout his life, Ramanujan was deeply committed to his family

and friends. He also expressed an unlimited interest in education and deep compassion

for poor students and orphans who needed support for their education. He also

profoundly believed in the dignity and work of human being. RamanuJan’s entire life

was totally dedicated to the pursuit of mathematical truth and dissemination of new

mathematical knowledge. His genius was recognized quite early in his llfe and has

never been in question. Indeed, Hardy in his "A Mathematician’s Apology" wrote: "I

have found it easy to work with others, and have collaborated on a large scale with

two exceptional mathematicians (Ramanujan and Littlewood) and this has enabled me to

add to mathematics a good deal more than I could reasonably have expected." Also, he

said: "All of my best work since then (1911 and 1913) has been bound up with theirs

(Ramanujan and Littlewood), ...". There is no doubt at all about RamanuJan’s profound

and ever-lasting impact on mathematics and mathematical community of the world.

Today, one hundred years after his birth, we pay tribute to this great man, and at the

same time, we can assess and marvel at the magnitude of his outstanding

achievements. By any appraisal, RamanuJan was indeed a noble man and a great

mathematician of all time.
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