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ABSTRACT. In this paper, a theorem on common fixed points for a family of mappings
defined on convex metric spaces is presented. This theorem is a generalization of
the well known fixed point theorem proved by Assad and Kirk. As an application a

common fixed point theorem in metric spaces with a convex structure is obtained.
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1. INTRODUCTION.

Some fixed point theorems and theorems on coincidence points in convex metric
spaces or spaces with a convex structure in the sense of Takahashi [1] are obtained
by many authors [1-8].

In this paper we shall give a generalization of Theorem 1 from [9] in the case
of a convex metric space and as an application we shall obtain a theorem on
coincidence points in metric spaces with a convex structure.

First, we shall give two definitions and a proposition which we shall use in the
sequel [2].

DEFINITION 1. A metrnic space (M,d) 4s& convex if for each x,ye M with
x #y 4there exists z€ M, x # z # y, such that

d(x,z) + d(z,y) = d(x,y).

DEFINITION 2. let (M,d) be a metric space. The mapping W which maps
M xMx [0,1] 4nto M 4s called a convex structure if for all x,y,ue M and
te [0,1]:

d(u,W(x,y,t)) = td(u,x) + (1 - t)d(u,y) .

This definition is similar to the definition of metric spaces of hyperbolic
type. The class of metric spaces of hyperbolic type includes all normed linear
spaces, as well as all spaces with hyperbolic metric. Some further results on the
fixed point theory in such spaces are obtained by W.A. Kirk [5] and K.Goebel and

W.A. Kirk [10. It is known that every metric space with a convex structure belongs
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to the class of convex metric spaces. The following result is well known [2].
PROPOSITION. Let K be a closed subset of a complete and convex metrnic space
M. 1§ xe K and y £ K, then there exists a point z ¢ 3K such that:

d(x,z) + d(z,y) = d(x,y).

Let us recall that a pair of mappings (A,S) is weakly commutative, where (M,d)
is a metric space, KC M and A,S : K—M, if:

Ax,Sx € K => d(ASx,SAx) = d(Sx,Ax) [11].

2. TWO COINCIDENCE THEOREMS.

First, we shall prove a generalization of Theorem 1 from [9] in the case of
convex metric spaces. This theorem is also a generalization of a fixed point theorem
proved by Assad and Kirk in [2], if the mapping ¢ 1is single valued.

THEOREM 1. Llet (M,d) be a complete, convex metric space, K a nonempty closed
subset of M, S and T continuous mappings from M into M 4o that 3K C SKN TK,
for every i € N Aj i K> M continuous mapping such that AKN KC SK NTK, (Ai.,S)
and (4,7 weakly commutative pairs and there exists q € [0,1) 80 that for every
x,y € K and every 1,5 € N (1 # j):

d(Aix,Ajy) s q d(sx,Ty) .

1§ for every 1€ N and x € K:

Tx€8K->Aix€K and Sx € 3K->Aix€1(

then there exists =z € K 50 that:
z =Tz = Sz = Az, gon every 1 € N

and 4§ Tv = Sv = Av, for every 1 € N then Tz = Tv.

PROOF. Let p € 3K and P, € K so that p = Tpo. Such P, exists since
dKC TK. Further, Tpo €3K implies that for every 1 € N, Aipoﬁ K and so we have
that Ajp € AK N K CSK. Let P, € K be such that Sp, = Alpoe K and
pi = Ap» pé = Ap,. If pée K then from Azpl€ AzKﬂ KC TK it follows that
there exists P, € K so that Tp2 = Azpl. Suppose now that p;_ ¢ K. Then from the
Proposition it follows that there exists q € 9K so that:

d(SPI,TpZ) + d(sz,Azpl) = d(Sp;,A,p,) where q = Tp,.

Such element P, € K exists since 3K C TK. 1In this way we obtain two sequences
{pyl; ey and {pi}; ¢y so that for every ne N p e K, p] and the

ntl A1'A+ll"’n
following implications hold:

W péne K => pén = TpZn'

P' ¢ K=5>Tp ¢ 3K and
2n 2n

48Py 12 TPoy) + ATy 58y Pon 1) = d(SPy,_1sAs Pon )



COINCIDENCE THEOREMS IN CONVEX METRIC SPACES 455

(ii) K

' = = M =
Pontl € K =7 Ponyy = SPopy -

' =
Pont1 ¢ K => 5Py, € K and
ATy »SPonpy) + 8Py oAy 1Poy) = A(TR 8y 11Pyy)

Let:

-]
]

1 =
{pZn € {pnln € N}, Pyy = TPy,» D€ N} ,

-]
I

= {pZn € {pnln € N}, pén # Tp,y» 0 € N},

Q = {Pypyy € {pplm € Nhupy ) = SPyyys m €D,
Q = {pypyy € (o In €W}, py .\ #5Sp, . \» n €N} .

Let us prove that there exists 2z € K such that:

z = 1lim Tp = 1lim Sp .
oo 2n oo 2n+1

= n!

Suppose that Py, € Pl' Then TpZn ¢ 0K and so A2n+1P2n Pon+l € K which implies
' = .
that Pon+l Sp2n+1 and so Poo+l € Qo' So we have the following possibilities:

(p2n’p2n+1) € PonO; (pZn’p2n+1)€ Poqu; (pZn’p2n+l) EPleo

a) (p2n’p2n+1) € Pon0°
Then
= <
4Ty sSPyn1) = d(Bp Py 12Aon41Pon) = @ d(SPy_5TRy ).

b) (p2n’p2n+l) € Pon1°

Then:
d(Tp2n’Sp2n+l) = d(Tl:’Zn’AZn+1pZﬂ) - d(Sp2n+1’A2n+ll:'2n) = d(TPZn’AZrﬁll:.Zn)

= d(AyPon_12Agn41Pon) = 1 4(SPy, 15TRy) -

©) (PyysPonyy) € B xQ, => d(Tp, 58Py ;) < a4 d(Tpy, 555P,, ).
In this case we have:

< <
d(TpysSPypyy) = d(TPy 58y Py 1) + d(Ay Pon 125Pony) =

A

d(TPysBonPon-y) + 4o Py 12800 41Poy) S

d(Tpyy B Pon-y) + 4 d(Spy_5TPy) =

17

48Py, 12 TPy + d(TpypsAy Py 1) = d(SPy, B9 Pon ) -

A

Since Py, € P1 we have that Pon-1 € QO and so SpZn—l = A2n-1p2n-2° Further

(pZn-l’pZn) € Qoxpo = d(SpZn-l’TPZn) 24 d(TPZn-Z’SPZn—l)’

(Pyn-1°Poy) € Q¥P, => d(Spy, 15TPyy) S a4 d(Tpy, »55P,, 5)s
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(pZn-l’PZn) € Qoxpl = d(SPZn—l’TPZn) <4q d(Tp2n-2’3p2n-1)
If r = max{d(sz,Sp3),d(Tp25p1)} then we can easily prove that:

n-1 n
a cr oand d(Sp,..,5Tpy, o) S 40T

17

d(TPZn’SPZn+1)

for every n e N.

This implies that for every n € N:

r(qn-l + qn) .

(7

4(Tpyn > TPpny)

Hence, the sequence {Tp2n}n€N is a Cauchy sequence and since M 1is complete and

K 1s closed it follows that there exists z e K so that z = 1lim Tp, = 1lim Sp .
2n 2n+l1
n>«o n-)“

We shall prove that Tz = Sz = Amz, for every m € N. It is obvious that there

exists a sequence {n, } in N such that Tp, , for every k € N

k keN
or Sp, . =A, _p _o» for every k € N. Suppose that Tp =A, L p _q» for
2nk 1 an 1 an 2 an an an 1

every k € N. Then for every k € N we have:

= A P _
X 2nk an 1

d(STp ,Amz) = d(SA for every m € N. Hence:

an

d(STp2n ,Amz) < d(SsA
k

Py, _1sA 2z)
an 2nk1 m

1) + d(A

Pon 1289, SPy, - Sp,, _10A 2) =
2nk 2nk1 an an an anl m

= d(A, p, _,sSp, _,) +q d(TSp, _.,Sz) (m # 2n )
an an 1 an 1 an 1 k
and when k + @ we obtain that:
d(Sz,Amz) £ q d(Tz,Sz), for every m € N. (2.1)

If T=S the proof of the relation Sz = Tz = Amz is complete.
Let us remark that (2.1) holds also in the case when S,T : K * M. Further, we have:

d(A p, »Tp, ) =d(A p, A, p, _,) Sqd(Tp, ,Sp, _,)
m an an m an an 2nk 1 211k an 1

(m# 2n,) and if k * @ we obtain that 1lim A p = 2. Further, Sz = z since
k kbo M an
<
d(Ampznk,Aansznk_l) < q d(sznk,Ssznk_l) (m # an) implies that d(z,Sz) S q d(z,Sz)

where we use that (A »S) 1is weakly commutative.

an
Thus we obtain:
Tz = T(1im A p, ) = 1lim T(A p ) . (2.2)
e 0 e D2y

Since (Am,:[‘) is a weakly commutative pair of mappings we have that d(T(Ampzn )
k

A (Tp )) s d(Ap »Tp ) which implies that 1lim A (Tp ) = 1lim T(A p ) and
m 2nk m an an ko D an koo m 2nk
so from (2.2) we obtain that:

Tz = 1im A (Tp, ) = A (1im Tp,_ ) = A z .
Joro m an m koo an m



COINCIDENCE THEOREMS IN CONVEX METRIC SPACES 457

Using (2.1) we conclude that:
d(Sz,Amz) = d(Sz,Tz) s q d(Tz,Sz)

and so Sz = Amz = Tz, for every m€ N.
Let u € K be such that Tu = Su = Amu, for every m¢€¢ N. Then

d(Tu,Tz) = d(Amu’Am+12) < q d(Tu,Tz) which implies that Tu = Tz.

REMARK 1. If 2z dis an interior point in K it is enough to suppose that

S,T: K+ M since from lim A p = z it follows that there exists k_ € N such
ko m an (]

that for all k 2 ko’ Amp2nk € K. In this case T(Ampznk) is defined for every
k 2 ko.
We shall give some conditions when we can also suppose that S and T are
defined only on K.
a) d(Tu,Su) s tmd(Su,Amu), for some m € N, where gqt ¢ [0,1) and u belongs to
the boundary of K. Then d(Sz,Amz) s q d(Tz,Sz) = qtm d(Sz,Amz) and so
Sz = Amz = Tz.
b) d(Tu,Amu) = L d(Tu,Su), for some m€ N, where (rm +q) <1 and u belongs to
the boundary of K. Then d(Tz,Sz) £ d(Tz,Amz) + d(Amz,A anspznk"l) +

2 2n, SPon -1052) (@ 7 20)

and if k * * we obtain that d(Tz,Sz) £ d(Tz,Amz) + q d(Sz,Tz) s
(1:m + q)d(Sz,Tz) which implies that Tz = Sz = Amz, for every m€ N.

c) d(Tu,Su) s Sm d(Tu,Amu), for some m € N, where sm(l+q) < 1 and u belongs to
the boundary of K. We have that d(Tz,Amz) s d(Tz,Sz) + d(Sz,Aznksznk_l) +

+ d(A,_ Sp ,8z) £ d(Tz,A z) + q d(Sz,TSp,_ _.,) + d(A
2nk nk—l m an 1

+ d(AanSPan-l’Amz) (m # an) and if k + ® we obtain that:
d(Tz,Amz) < (14q)d(Tz,Sz) < sm(l+q)d(Tz,Amz) .

From this we conclude that Tz = Amz = Sz, for every m € N.

REMARK 2. Suppose that 2z € K 1s such that Tz = Sz = Amz, for every m€ N
and that Tz € K. In this case, we can prove that Tz is a common fixed point for
S, T and Am (me€ N). Let m # n. Then d(AmAmz,Anz) S q d(TAmz,Sz) <
s q[d(TAmz,AmTz) + d(AmTz,Anz)] S q d(Amz,Tz) +q d(AmTz,Anz) =q d(AmTz,Anz) =
=q d(AmAmz,Anz) and so AmTz = Tz, for every m € N. From 'l‘Amz = AmTz and
SAmz = AmSz (m € N) it follows that Tz 1s a fixed point for T, S and Am (m € N).
It is easy to prove the uniqueness of Tz as a coincidence point.

The next Theorem is an existence theorem for a coincidence point in metric
spaces with a convex structure.

Let (M,d) be a metric space with convex structure W. If for all
(X,y52,t) € M XM xMXx [0,1):

d(W(x,z,t),W(y,z,t)) S t d(x,y)
then W satisifes condition II [7]. Let x € M and S : M>M. The mapping $
is said to be (w,xo)—convex if for every z € X and every t € (0,1) : W(Sz,xo,t) =

S(W(z,xo,t)). If M is a normed space and W(x,y,t) = tx + (1-t)y(x,y €M, t€ [0,1])

then every homogeneous mapping S : M * M is (W,0)-convex.
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Let o be the Kuratowski measure of noncompactness on M and K a nonempty
subset of M. If A,S : K> M we say that A 1is (o,S)-densifying if for every
BC K such that S(B) and A(B) are bounded the implication:

a(S(B)) £ a(A(B)) => B is compact

holds. 1In the next theorem we suppose that W satisfies condition II.

THEOREM 2. Let (M,d) be a complete metrnic space with a convex stwcture W, K
a nonempy, closed subset og M,x € K and for every x € K and every t € (0,1),
W(x,x ,t) € K. Let, further, s and T be continuous, (W,x_)-convex mappings §rom

M dnto M such that KC SK M TK, §0n every 1 € N, A KoM continuous mapping,

A(K) a bounded set and the following impLications hold for every 1 € N:

Sx€ K => SA,;x = A,Sx; Sx €03K => A

€ .
1 1 X K;

i

Tx € K => TAix = AiTx, Tx € 9K => Aix € K.

1§ there exists i, €N such that Ay i (@,1,) o (a¢,8) or (a,T) densigying
and: °

d(Aix,Ajy) < d(Sx,Ty), for every x,y € K and 1i,j € N(i#j)

then there exists z € K such that z = Tz = Sz = Ai'z, for every 1 € N.
PROOF: Let, for every n€ N, T € (0,1) and 1lim r, = 1.

n->w
For every (i,n) € N x N and every x€ K let:

Ai’nx = W(Aix,xo,rn) .

Then for every n € N, the family {Ai n}ie n° S and T satisfy all the conditions
k]

of Theorem 1, which will be proved.
First, we have that for every 1,j€ N (i # j) and every n € N:

d(a y) = d(w(Aix’xo’rn)’W(Ajy’xo’rn)) s

i,nx’Aj R

H rnd(Aix’AjY) s rnd(Sx,Ty), for every x,yc K.

Further, if Sx € K we have that:

SAi,nx = Sw(Aix,xo,rn) = W(SAix,xo,rn) = W(Aisx,xo,rn) = Ai’nSx

x = A, Tx. Let Sx € K. Then A,x € K and this
i,n i,n i

implies that for every n€ N:

and similarly Tx € K => TA

W(Aix,xo,rn) = A, x€ K, for every 1€ N

i,n

Similarly Tx € oK => Ai X € K, for every (i,n) € N X N.
’

Thus, for every n€ N there exists xn € K so that:

X = an = Txn = Ai,nxn’ for every 1€ N. (2.3)

From (2.3) we obtain that:
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d(xn’Aixn) = d(an,Aixn) = d(Txn’Aixn) = d(Ai nxn’Aixn) =
= d(W(Aixn,xo,rn),A X ) Sr d(A X ,A ) + (l-r )d(A X oXg )

for every (i,n) € N. Since AiK is bounded for every 1 € N it follows that:
lim d(x ,A X ) = lim d(Sx ,A ) = lim d(Tx ,A X ) = 0.
Suppose that there exists io such that Ai is (a,S)-densifying. The proof is
o

similar if A is (u,IM) or (a,T)-densifying.

i,
Since 1im d(Sx_,A, x ) = 0 it follows that for every € > 0 there exists
o n’ iy 'n

no(e)€ N so that:

{Sx [nz n ()l & L(ys€), B = {xnln € N}. (2.4)

eAi B
(<]
Relation (2.4) implies that:

a({anIn 2 no(e)}) 2 a(AioB) + 2¢.

Since a(SB) = u({anln 2 no(e)}) we obtain that:
a(SB) s a(Ai B) + 2e.
o

Because € > 0 1is an arbitrary positive number we obtain that a(SB) < c(Ai B) and

o
since Ai is (a,S)-densifying we obtain that B 1s relatively compact. Suppose
o
that 1lim x_ = z.
ko Ty
Then we obtain that:
d(z,Aiz) = %}E d(x k i k) d(Aiz,Sz) = iig d(ank,Aix k) -

= d(A,z,Tz) = 1im d(Tx_ ,A,x_ ) = 0
1 jraresy n i o,

and so z = Sz = Tz = Aiz,.for every 1€ N.
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