
Internat. J. Math. & Math. Sci.
Vol. i0, No. 3 (1987) 535-544

535

ON PERMUTATION POLYNOMIALS OVER FINITE FIELDS

R.A. MOLLIN and C. SMALL

Department of Mathematics and Statistics
University of Calgary

Calgary, Alberta, Canada, T2N IN4

Department of Mathematics and Statistics
Queen’s University

Kingston, Ontario, Canada K7L 3N6

(Received July 31, 1986 and in revised form October 3, 1986)

ABSTRACT. A polynomial f over a finite field F is called a permutat,on

poIFnomial if the mapping F F defined by f is one-to-one. In this paper we

consider the problem of characterizing permutation polynomials; that is, we seek

conditions on the coefficients of a polynomial which are necessary and sufficient

for it to represent a permutation. We also give some results bearing on a

conjecture of Carlitz which says essentially that for any even integer m, the

cardinality of finite fields admitting permutation polynomials of degree m is

bounded.
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I. INTROION.

A polynomial f(x) GF(q) [x], where GF(q) is a finite field with q

elements, is called a permtatlon polynomial if the mapping defined by f is

one-to-one; i.e. the f(a) where a GF(q) are a permutation of the a’s. It is

well known (eg. see [I]) that any mapping GF(q) GF(q) is given by a unique

polynomial of degree less than q. A natural question to ask (albeit difficult to
d

i
answer) is" given a polynomial f(x) y- a. x what are necessary and sufficient

1
i=0

conditions on the coefficients a0,al, a
d

for f to be a permutation? (We may

assume d q since f has a unique such representation). Despite an extensive

literature on permutation polynomials (e.g. see [I] for an extensive list of

references), there is surprisingly little which deals with the classification

problem as posed above. However some very special cases are known. For example the

cases d < 2 are trivial since polynomials of degree 0 (respectively I) are

never (respectively always) permutation polynomials; whereas in the quadratic case

ax
2f(x) + bx + c (a 0), f is a permutation polynomial on GF(q) if and only

if b 0 and char GF(’q) 2. The latter is a trivial consequence of one of the
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results in this paper (see Corollary 2.3 below).

There has also been such a characterization of the so-called Dickson

polynomials i.e., those polynomials of the form

gk(x,a) Z (k/(k-.)) (-a) where 0 a GF(q) and k E N, the
j:O J

ntural nber. For such a description the reder is referred to , pp. 355-357,

where it is proved that. gk(x,a) is a permutation of GF(q) if and only if

2
g.c.d. (k,q I) I.

Some other- specialized results toward our characterization problem have also

been established. For" example S.R. Cavior [2] investigated octics of the form
8 t

f(x) x + ax with <_ t < 7 mid t odd. Carlitz [3], in an attempt to

generalize Dickson’s result. [4] that the quartic f(x) x
4 + 3x is a permutation

polynomial For" GF(7) but not GF(7n) for n I, shows that if q 2m + and
m+

a E GF(q) is suitably chosen then f(x) x + x is a permutation polynomial on

GF(q) but not on GF(q with r I. As a final example, S. Chowla [5]
5

ax
3

considered polynomials of the form g(x) x + + bx2 + cx, and proved that

g(x) is a permutation of GF(p), where p is a sufficiently large prime with
2

p -= +/- 2 (mod 5), if and only if b 0 and 5c -= a (mod p).

In this paper we completely settle the characterization problem for at least

one class of polynomials" viz., cyclotomic polynomials (x). We prove that (x)
m m

is a permutation polynomial on GF(q) if and only if either m 2, or both q

and m are powers of 2.

Dickson (e.g. see [6] or [7]) classified all permutation polynomials of degree

less than 6 over GF[q]. In fact, Dickson (eg. see [I] p. 349] where it is called

Hermite’s condition since Dickson [6], [7] attributed the prime field case to

Hermite) gave necessary and sufficient conditions for a pol)qaomial to be a

permutation polynomial. However the characterization is not explicit in the sense

outlined above, and Dickson’s theorem is not easy to use in the sense that is

extremely difficult to extract results from the theorem which give concrete criteria

in terms of the polynomial’s coefficients. One of the major tasks of this paper is

to provide necessary and sufficient conditions, in terms of the coefficients, for

certain polynomials to be permutations. For example we are able to determine at a

glance precisely when f(x) ex + bxJ + c GF(q) is a permutation polynomial in

terms of a, b and c.

There is a relative scarcity of permutation polynomials as may be seen by the

fact that they are necessarily polynomials with exactly one root. However this
obvious necessary condition is far from sufficient as the example

3(x) x2 + x + over GF(3) illustrates. Another reason for the scarcity of

permutation polynomials may be seen by the fact that, of the qq mappings

GF(q) GF(q), only q! of them are permutations. The fact that lim q!/gq 0
q

means therefore that permutations get increasingly scarce in large fields, and this

points to the difficulty in our characterization problem.

A second major goal of this paper (the first being progress in the

characterization problem) is to make advances in establishing Carlitz’s conjecture,
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namely that for a given even integer m, q may be chosen sufficiently large such

that there are no permutation polynomials of degree m on GF(q). Hayes [8]

established the conjecture when the characteristic of the field does not divide m.

However he used the deep Lang-Weil Theorem [9] which is closely cohnected to the

Rieman, hy-,thesls for curves over finite fields (eg. see [I, p. 331] for an

exqlanation of the connection). Our tec[uniques and .thod of proof in this paper

are less complicated. We establish that, subject to the absolute irreducibility

over GF(q) of a certain polynomial, no permutation polynaials of any given even

degree exist on GF(q) for sufficiently large q. Of course there are infinitely

many permutation polynomials of a given odd degree on infinitely many GF(q) as

will be seen by our characterization of such polynomials as f(x) :mx + bxJ + c

in term of a, b and c (see %2). The latter generalizes the work of

Niederreiter and Robinson I0].

We note that Carlitz’s conjecture follows from one of our main results

provlded that any one of several conditions (which we will outline) can be shown to

hold.

It should be noted that in both Dickson’s 1896 thesis [4] and his 1901

monograph ], the motivation for studying permutation polynomials is their

connection with finite simple groups. The linear groups over finite fields F

(that is, the subgroups of the full linear group of all invertible linear

transformations over F) were already well known (at least in the prime-field case)

ms a rich source of simple groups. Indeed, while this may have delayed the

liberation of groups from their representations as groups of substitutions and

matrix groups, it was doubtless the route by which, primarily thanks to Dickson,

finite fields entered mathematics in a serious way, except of course for the prime

fields, which had arrived on the scene centuries earlier via number theory. Dickson

wanted to know which polynomials represented permutations because he wanted to study

linear groups (which are after all groups of permutations) by computations with

generators for them. The context, in both [4] and [6], is always the applications

to the linear groups, and his methods did lead him to previously unknown classes of

simple groups (see [4], part II, 17, as well as pert II of [6]).

Finally, the reader is referred to the well-written compendium by Lidl and

Niederreiter 1, Chapter 7 for an outline of basic results on permutation

polynomials, and to Schmidt [II] for some results on equations over finite fields

which we will need in %3.

2. THE CHARACTERIZATION PROBLEM.

We begin by observing that the composition of two polynomials is a permutation

polynomial if and only if each constituent is one. This leads to the following

useful fact.
n m.

LE 2.1. Let f(x) E c.x
i GF(q) where m m m

i n n-I
i=l

n
and c. 0. Suppose e g.c.d. {mi}. Then f(x) is a permutation polynomial

i:l l<i.<n
n m./e

1
on GF(q) if and only if g.c.d. (e,q I) I and E c.x is a permutation

1
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polynomial.

This observation generalizes [I0, Lemma 5, p. 210]. The proof is immediate
efrom the fact that the monomial x is a permutation polynnial of GF(q) if and

only if g.c.d. (e,q- I) I, (see [I, Theorem 7.8 (ii), p. 351]).

The following result characterizes a certain class of polynomials as

permutation polynomials in terms of their coefficients.

THEOREM 2.2. Suppose that k and j are positive integers such that
k

q k .j >_ and g.c.d. (k j,q I) I. Then ax + bxo + c with a 0 is

a permutation of GF(q) if and only if g.c.d. (k,q I) and b 0.
kPROOF. ax + bx0 + c is a permutation pol,omial if and only if

k IbxJ -lb. kx + a- is a permutation polynomial. Let a -a If a 0 then x is

a permutation polynomial if and only if g.c.d. (k,q I) I. Assume that # 0
k

axJand f(x) x is a permutation polynomial on GF(q). Since

)k-jg.c.d. (k j,q I) then u GF(q say u y with y 0.

Therefore f(x) xj(xk-j a) xj(xk-j yk-j), so f(y) 0 f(0), a

contradiction. Q.E.D.

COROLLARY 2.3. ax2 + bx + c (a 0) is a permutation polynomial on GF(q)

if and only if b 0 and the characteristic of GF(q) is 2.

The following advances Cavior 2 ].

COROLLARY 2.4. Suppose q- I is not divisible by 3, 5 or 7. Then
8

ax
tx + for t odd and t < 8, is a permutation polynomial on GF(q) if and

only if a 0 and GF(q) has characteristic 2.

PRDOF. g.c.d. (8- t,q- I) by hypothesis. Therefore Theorem 2.2

applies and forces a 0 and g.c.d. (8,q I) I; i.e., q must be even.

@.E.D.
Note that the restriction q modulo 3, 5, or 7 is necessary for

Corollary 2.4 to hold since it is known for example that x
8 + 4x permutes GF(29),

3 5
and x

8 + ax permutes GF(II). Moreover it is open as to whether x
8 + x

permutes GF(13n) or GF(7n) for odd n. For details see Cavior [2].

In the next section we will make headway on the question left at the end of

Cavior’s paper, and conjectured to be true by Carlitz, namely that for a given k

there exists a bound N
k such that if q N

k
there is no permutation polynomial

of degree 2k on GF(q), in particular for k 4 as above.

We note furthermore that if we z-emove the condition g.c.d. (k- ,q- I)

from the hypothesis of Theorem 2.2 then, as noted above, we must search for new

criteria for f(x) to be a permutation of GF(q). One simple observation is that
k

ax
jf(x) x a 0, cannot be a permutation polynomial unless a fails to be. a

(k j)th power in GF(q)" for if a @k-j for some ] m GF(q) then

f(0) f() 0. However this is not a sufficient condition" 3 is not a cube in
4GF(13), yet f(x) x 3x is not a permutation of GF(13) since

f(5) f(-3) I.

Furthermore, Dickson [4, p. 77] (see also [I]), proved that a polynomial of

degree m over GF(q) cannot permute GF(q) if q (mod m). Therefore one

immediately gets from this discussion"
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THEOREM 2.5. Let f(x) ax
k + bxj + c be a polynomial over GF(q) with

-I tha # 0 eund -ha is a {k j) power in GF(q). Then f permutes GF(q) if

nd only if b 0 in GF(q) and g.c.d. (k,q i) I.

The clear necessity for -ha-I to fail to be a (k j)th power is further

demonstrated by the following example" x
4 + 3x permutes GF(7) although 3 $ 0

in GF(7) and g.c.d. (4,6) 2 I.

An immediate corollary of Theorem 2.5 is"

COROLLARY 2.6 If f is as in Theorem 2.5 and -ha-I is a dth power in

GF(q) where d g.c.d. (q l,k j) then f permutes GF(q) if and only if

b 0 and g.c.d. (k,q 1) 1.

Theorem 2.2 is somewhat unsatisfying in that the condition

g.c.d. (k j,q I) does not allow us to touch the case where q is odd and

k j is even. The following result relaxes the g.c.d, condition (replacing it

with other conditions) thereby allowing us to make headway in such cases where j

divides k.

THEOREM 27. Let f(x) ax
k + bx

j + c where j divides k; a, b,
c GF(q) with a $ 0; g.c.d. ((k/j) 1 q I) d, and g.c.d. (j,q I) I.

d
thSuppose -ba-l-I is a power in GF(q), where @ z

(k/j)-I + z
(k/j)-2 +

+ for some z GF(q), z $ I. Then f permutes GF(q) if and only if

b 0 and g.c.d. (k,q I) I.

F. f(x) permutes GF(q) if and only if xk axj permutes GF(q)

were a -ha-I. If b 0 then f permutes GF(q) if and only if

g.c.d. (k,q 1) 1. If b $ 0 (equivalently a $ 0) then by Le,a 2.1 we have

that xk axj permutes GF(q) if and only if x
k/j

ax permutes GF(q). Let

dth -I Yk’-I for somek’ k/j Since x-I
is a power in GF(q) we have t@
k’-I

y E GF(q). Thus a y . Now let x yz where x y since z I. Then
k’-I k’-2 k’-I k’-I k’-I k’-2 k’-I

x + x y + + y y (z + z + + z + 1) y a.
k’ k’ k’ k’

Thus x y a(x y) and so y ay : x sx with x $ y, a

contradiction. Q.E.D.

We note that as a straightforward application the reader may use Theorem 2.7

to characterize polynomials of degree 3. This requires reducing
3

f(x) ax
3 + bx2 + cx + d to the form x x. If a is a square there is no

2 2
problem. When a is not a square one shows it can be written as a x + xy + y

2
with x $ y by finding an element z $ for which z + z + is a non-square.

The result is Corollary 2.9 below.

However Theorem 2.7 may be difficult to apply in general since a rather

technical condition must be satisfied. However when j k 2 we have a simpler

result.

THEORE 2.8. If f(x) ax
k + bxk-2 + c (where a 0 and k > 2)

permutes GF(q) then either q m +I (mod k) or b 0.
k k-2

PRf)OF. As before, f permutes GF(q) if and only if x -ax does,

where a -ha-I We assume the conclusion is false and reach a contradiction

Thus we assne f is a permutation, q + (mod k and a 0. Let

n (q +/- l)/k. It is clear that n q I. Hence, using [i, Lemma 7.3, p. 349]

and the fact that f is a permutation we have r. (xk-oxk-2) n
xGF q
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therefore" 0 Z Z -a x Z (-a) x Now
xGF(q) i=O i=O xGF(q)

kn-2i
by the same lemma from [I] we have x 0 unless kn 2i q I. But

xGF q

this can occur only for i 0 (when nk q- I) or i (when nk q + I).

n
In the former case we get (-) i

Z x E
i:O xGF(q) xGF(q)

contradicting

[I, ibid], and similarly in the remaining case. This completes the proof. Q.E.D.

COROLLARY 2.9. Let GF(q) have characteristic different from 3. Then

ax
3 bx2 3ac andf(x) + + cx + d (a # O) permutes GF(q) if and only if b2

q 2 (mod 3).

PRfX)F. f permutes GF(q) if and only if x(x2 + ba-lx + ca-1) does. Put

(x2 y3y x + b(3a) 1, then .x + ba-lx + ca- + c’y + d’ with
3

c’ (3ac b2)(3a2) -I. Thus f permutes GF(q) if and only if x ax does

b
2

where a (b
2 3ac)(3a2) -1 Observe that a 0 means 3ac. By Theorem

2.8, if a # 0 then f is not a permutation polynomial. If a 0 then f is a

perg,utation polynomial if and only if g.c.d. (q 1,3) I, i.e., q 2 (mod 3).

Q.E.D.

Now we consider the case where the degree of the polynomial is a power of the

characteristic.

PROPOSITION 2.10. Let GF(q) have characteristic p, and let
S

f(x) xp ux with 0 $ a GF(q) and s 0. Then"

(I) f permutes GF(q) if and only if a is not a (pS l)th power in GF(q).

pS(2) If f permutes GF(q) then g.c d. (q I, I) I, 8xl

(3) If is a primitive root in GF(q) then g.c.d. (q l,ps- I) if and

only if f permutes GF(q).

PRfF. If a is a (pS th
power in GF (q), say a @ps-1, then f

has both 0 and @ 0 as roots, hence is not a permutation. Conversely if
S S S
P c2P ac2 then (c c2)P a(c c2), andcI # c2 such that cI ac

a (c c2 )ps-I This proves (I)

If g.c.d. (q l,p
s

I) then a is a (pS l)th power in GF(q)

since aq-I i. This secures (2).

If g.c.d. (q l,p
s

I) g 1 then is a (pS l)th power if and

only if a(q-l)/g I. However a is primitive. Thus, a is not a (pS l)th
power. @. E. D.

We note that an immediate consequence of Proposition 2.10 is [I0, Theorem I0,

p. 209 ].

Finally we close this section with a characterization of cyclotomic

polynomials @ (x) which are permutations.
m

th
2.1 I. The m cyclotomic polynomial (x) is a permutation

m

polynomial on GF(q) if and only if either m 2, or both m and q are powers

of 2.
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2a
2
a-I

POOF If m then (x) x + which is a permutation
m

2a-I 2a-I
polynomial if and only if x is one. If a then x x is always a

permutation polynomial, and for a it is one if and only if

g.c.d. (2,q I) I; i.e., p 2. Conversely if m is not a power of 2 then:

CASE (i)" If m 2pb, p an odd prime, then (I) @ (0); and
m m

CASE (ii) If m is not twice the power of an odd prime then

(-I) (0). Q.E.D.
m m

3. CARLITZ CONJE AND E%N DEGREE PERKrATIONS.

We begin with a characterization of permutatation polynomials in terms of

solutions of certain f(x,y) 0.

The equivalence of (I) and (2) in what follows is a natural generalization of

[I0, Lemm 4, p. 210], whereas the equivalence of (2) and (3) is the central idea of

Hayes [8].

We will later use this result to make headway towards the Carlitz conjectu’e

mentioned previously.
n

x
iTHEOREM 3 i. Let f(x) Z c. E GF(q)[x] with c 0. Then the

i=l
I n

following are equivalent:

(I) f(x) is a permutation polynomial on GF(q);
n -I n-i xi-I xi-2(2) The equation Z c ciY + + + I] 0 only has solutions

n
i=l

(x0,Y0) GF(q) x GF(q), with either x
0

or Y0 0;

(3) The equation (f(x) f(y) )/(x y) 0 has no solutions

(x0,Y0) E GF(q) x GF(q) with x0 Y0"
PIF. First we prove the equivalence of (I) and (2). If f(x) is not a

permutation polynomial then f(a) f(b) with a b, and we ,y assume without

n
.b

iThus Z c [(ab- I] 0. Now, let x
0

ab aKl Y0 b 0
i=l I

n n
-i i -I n-i iThen i=iCiYoE Ix0 1] O, and hencei=lECn CiYO Ix0 ll/Ix0 1) O.

n -I n-i i-I i-2Conversel.r, suppose that Z Cn cyn [x0 + xn,,, +...+1] O, for xr,
i=l

n n
and y 0. It follows that Z c

-I i

rici
-I i -I -i

i:l
i x0Y0 (Y0 with x0Y0 Y0

i=

This establishes the equivalence of and 2 ), and the equivalence of 2 and 3

is clear. .E.D.
n m.

1THEOREM 3.2. Let f(x) Z c.x with 0 c. GF(q) for i 1 ,n;
i:l

0 m m
2 ran, n I. Put g.c.d. {mi} g and assume

<_ i_<_n

g.c.d. q g 1. Suppose that

x + x + + is absolutely irreduciblef(x,y) Z c c_y
n 1

i:l
n

loss of generality that b 0.



542 R.A. HOLLIN AND C. SMALL

over GF(q), where m.’ mi/g. Then, whenever q 250(m 1)
5 f(x) is not a

1 n

permutation polynomial over GF(q}.

PROOF. By Lemma 2.1, f(x} is a permutation polynomial on GF(q) if and
n m.’

1
only if Z c.x is one. Now let N be the number of zeros of f(x,y) in

i:l
i

GF(q) x GF(q). By [II, Theorem IA, p. 92] we have N ql j(m I)
5/2 1/2

n
q

Now let N
$

be the number of zeros of f(x,y) with x0
or Y0 0. For

n mn’-mi’ 0 Since the m
i

are $ 0 this is ax0 we have Z c
n ciY0 m

i
i=l

polynomial of degree m 1 and there are at most m \’alues for Y0’ If
n n

m "-I m ’-2

Y0 0 we have x0
n + x0

n + + 0, and again there ex’e at ,st

values for x0 In total then we have N
$

2(mn’ I) But clearly

N 2(m I) since N q J(m I)5/2 1/2..... q and by Theorem 3.1 f x cannot
n n

be a permutation polynomial unless N N*. Hence f(x) is not a permutation

polynomial on OF(q). Q.E.D.

Note that as special cases of Theorem 3.2 we recover Theorem 9, Lemm 7 and

Theorem II of [I0].

Now we state one final result which links the results of %2 and %3.

fX)ROLLARY 3.3. Let f(x) ax
k + bx + c (a $ 0) with k not a power of

the characteristic of GF(q), and suppose q 250 (k 1) 5. Then f permutes

GF(q) if and only if b 0 and g.c.d. (k,q- I) I.

PROOF. By I0, Lemma 3, p. 208 f(x,y) of Theorem 3.2 is absolutely

irreducible in this case. Thus by Theorem 3.2 f is not a permutation polynomial

on GF(q) unless b 0. But once we know b 0 then f is a permutation

polynomial if and only if g.c.d. (k,q- I) I, as before. Q.E.D.
5

In fact, the hypothesis q 250 (k I) in Corollary 3.3 can be weakened

to q > (k2 4k + 6)2; see [I0, Theorem 9].
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