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Let 𝐿
2𝑛
stand for the sunlet graph which is a graph that consists of a cycle and an edge terminating in a vertex of degree one attached

to each vertex of cycle 𝐶
𝑛
. The necessary condition for the equipartite graph 𝐾

𝑛
+ 𝐼 ∗ 𝐾

𝑚
to be decomposed into 𝐿

2𝑛
for 𝑛 ≥ 2 is

that the order of 𝐿
2𝑛
must divide 𝑛2𝑚2/2, the order of 𝐾

𝑛
+ 𝐼 ∗ 𝐾

𝑚
. In this work, we show that this condition is sufficient for the

decomposition. The proofs are constructive using graph theory techniques.

1. Introduction

Let 𝐶
𝑟
, 𝐾
𝑛
, 𝐾
𝑚
denote cycle of length 𝑟, complete graph on

𝑛 vertices, and complement of complete graph on𝑚 vertices.
For 𝑛 even,𝐾

𝑛
+𝐼 denotes the multigraph obtained by adding

the edges of a 1-factor to 𝐾
𝑛
, thus duplicating 𝑛/2 edges. The

total number of edges in 𝐾
𝑛
+ 𝐼 is 𝑛2/2. The lexicographic

product, 𝐺 ∗ 𝐻, of graphs 𝐺 and𝐻, is the graph obtained by
replacing every vertex of 𝐺 by a copy of𝐻 and every edge of
𝐺 by the complete bipartite graph 𝐾

|𝐻|,|𝐻|
.

For a graph𝐻, an𝐻-decomposition of a graph𝐺,𝐻 | 𝐺, is
a set of subgraphs of𝐺, each isomorphic to𝐻, whose edge set
partitions the edge set of 𝐺. Note that for any graph 𝐺 and𝐻
and any positive integer𝑚, if𝐻 | 𝐺 then (𝐻∗𝐾

𝑚
) | (𝐺∗𝐾

𝑚
).

Let 𝐺 be a graph of order 𝑛 and𝐻 any graph. The corona
(crown) of𝐺with𝐻, denoted by𝐺⊙𝐻, is the graph obtained
by taking one copy of 𝐺 and 𝑛 copies of𝐻 and joining the 𝑖th
vertex of 𝐺 with an edge to every vertex in the 𝑖th copy of𝐻.
A special corona graph is𝐶

𝑛
⊙𝐾
1
, that is, a cycle with pendant

points which has 2𝑛 vertices. This is called sunlet graph and
denoted by 𝐿

𝑞
, 𝑞 = 2𝑛.

Obvious necessary condition for the existence of a 𝑘-cycle
decomposition of a simple connected graph 𝐺 is that 𝐺 has
at least 𝑘 vertices (or trivially, just one vertex), the degree of
every vertex in 𝐺 is even, and the total number of edges in 𝐺
is a multiple of the cycle length 𝑘.These conditions have been

shown to be sufficient in the case that𝐺 is the complete graph
𝐾
𝑛
, the complete graph minus a 1-factor𝐾

𝑛
− 𝐼 [1, 2], and the

complete graph plus a 1-factor𝐾
𝑛
+ 𝐼 [3].

The study of cycle decomposition of𝐾
𝑛
∗𝐾
𝑚
was initiated

by Hoffman et al. [4].The necessary and sufficient conditions
for the existence of a 𝐶

𝑝
-decomposition of 𝐾

𝑛
∗ 𝐾
𝑚
, where

𝑝 ≥ 5 (𝑝 is prime) that (i)𝑚(𝑛 − 1) is even and (ii) 𝑝 divides
𝑛(𝑛−1)𝑚

2, were obtained byManikandan and Paulraja [5, 6].
Similarly, when 𝑝 ≥ 3 is a prime, the necessary and sufficient
conditions for the existence of a 𝐶

2𝑝
-decomposition of 𝐾

𝑛
∗

𝐾
𝑚
were given by Smith [7]. For a prime number 𝑝 ≥ 3,

Smith [8] showed that𝐶
3𝑝
-decomposition of𝐾

𝑛
∗𝐾
𝑚
exists if

the obvious necessary conditions are satisfied. In [9], Anitha
and Lekshmi proved that the complete graph 𝐾

𝑛
and the

complete bipartite graph𝐾
𝑛,𝑛

for 𝑛 even have decompositions
into sunlet graph 𝐿

𝑛
. Similarly, in [10], it was shown that the

complete equipartite graph𝐾
𝑛
∗𝐾
𝑚
has a decomposition into

sunlet graph of length 2𝑝, for a prime 𝑝.
We extend these results by considering the decomposition

of 𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑚
into sunlet graphs and prove the following

result.
Let 𝑚 ≥ 2, 𝑛 > 2, and 𝑞 ≥ 6 be even integers. The graph

𝐾
𝑛
+ 𝐼∗𝐾

𝑚
can be decomposed into sunlet graph of length 𝑞

if and only if 𝑞 divides 𝑛2𝑚2/2, the number of edges in 𝐾
𝑛
+

𝐼 ∗ 𝐾
𝑚
.
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2. Proof of the Result

To prove the result, we need the following.

Lemma 1 (see [10]). For 𝑟 ≥ 3, 𝐿
2𝑟
decomposes 𝐶

𝑟
∗ 𝐾
2
.

Lemma 2. For any integer 𝑟 > 2 and a positive even integer𝑚,
the graph 𝐶

𝑟
∗ 𝐾
𝑚
has a decomposition into sunlet graph 𝐿

𝑞
,

for 𝑞 = 𝑟𝑚.

Proof

Case 1 (𝑟 is even). First observe that 𝐶
𝑟
∗ 𝐾
2
can be

decomposed into 2 sunlet graphs with 2𝑟 vertices. Now, set
𝑚 = 2𝑡 and decompose𝐶

𝑟
∗𝐾
𝑡
into cycles𝐶

𝑟𝑡
. To decompose

𝐶
𝑟
∗𝐾
𝑡
into 𝑡-cycles𝐶

𝑟𝑡
, denote vertices in 𝑖th part of𝐶

𝑟
∗𝐾
𝑡

by 𝑥
𝑖,𝑗
for 𝑗 = 1, . . . , 𝑡, 𝑖 = 1, 2, . . . , 𝑟 and create 𝑡 base cycles

𝑥
1,𝑗
𝑥
2,𝑗
𝑥
3,𝑗
⋅ ⋅ ⋅ 𝑥
𝑟−1,𝑗

𝑥
𝑟,𝑗
. Next, combine these base cycles into

one cycle 𝐶
𝑟𝑡
by replacing each edge 𝑥

1,𝑗
𝑥
2,𝑗

with 𝑥
1,𝑗
𝑥
2,𝑗+1

.
To create the remaining cycles 𝐶

𝑟𝑡
, we apply mappings 𝜙

𝑠
for

𝑠 = 0, 1, . . . , 𝑡 − 1 defined on the vertices as follows.

Subcase 1.1 (𝑖 odd). Consider

𝜙
𝑠
(𝑥
𝑖,𝑗
) = 𝑥
𝑖,𝑗
. (1)

This is the desired decomposition into cycles 𝐶
𝑟𝑡
.

Subcase 1.2 (𝑖 even). Consider

𝜙
𝑠
(𝑥
𝑖,𝑗
) = 𝑥
𝑖,𝑗+𝑠
. (2)

This is the desired decomposition into cycles 𝐶
𝑟𝑡
.

Now take each cycle 𝐶
𝑟𝑡
, and make it back into 𝐶

𝑟𝑡
∗ 𝐾
2
.

Each 𝐶
𝑟𝑡
∗ 𝐾
2
decomposes into 2 sunlet graphs 𝐿

2𝑟𝑡
(by

Lemma 1), and we have 𝐶
𝑟
∗ 𝐾
𝑚
decomposing into sunlet

graphs with length 𝑟𝑚 for 𝑟 even. Note that
𝐶
𝑟
∗ 𝐾
2𝑡
= (𝐶
𝑟
∗ 𝐾
𝑡
) ∗ 𝐾
2
. (3)

Case 2 (𝑟 is odd)

Subcase 2.1 (𝑚 ≡ 2 (mod 4)). Set 𝑚 = 2𝑡. First create 𝑡
cycles 𝐶

(𝑟−1)𝑡
in 𝐶
𝑟−1
∗ 𝐾
𝑡
as in Case 1. Then, take complete

tripartite graph 𝐾
𝑡,𝑡,𝑡

with partite sets 𝑋
𝑖
= {𝑥
𝑖,𝑗
} for 𝑖 =

1, 𝑟−1, 𝑟 and 𝑗 = 1, . . . , 𝑡 anddecompose it into triangles using
well-known construction via Latin square, that is, construct
𝑡 × 𝑡 Latin square and consider each element in the form
(𝑎, 𝑏, 𝑐) where 𝑎 denotes the row, 𝑏 denotes the column,
and 𝑐 denotes the entry with 1 ≤ 𝑎, 𝑏, 𝑐 ≤ 𝑡. Each cycle
is of the form 𝑥

(1,𝑎)
, 𝑥
(𝑟−1,𝑏)

, 𝑥
(𝑟,𝑐)

. Then, for every triangle
𝑥
1,𝑎
𝑥
𝑟−1,𝑏

𝑥
𝑟,𝑐
, replace the edge 𝑥

1,𝑎
𝑥
𝑟−1,𝑏

in each𝐶
(𝑟−1)𝑡

, by the
edges 𝑥

𝑟−1,𝑏
𝑥
𝑟,𝑐

and 𝑥
𝑟,𝑐
𝑥
1,𝑎

to obtain cycles 𝐶
𝑟𝑡
. Therefore,

𝐶
𝑟𝑡
| 𝐶
𝑟
∗𝐾
𝑡
. Now take each cycle 𝐶

𝑟𝑡
, make it into 𝐶

𝑟𝑡
∗𝐾
2
,

and by Lemma 1, 𝐶
𝑟𝑡
∗ 𝐾
2
has a decomposition into sunlet

graphs 𝐿
2𝑟𝑡
= 𝐿
𝑞
.

Subcase 2.2 (𝑚 ≡ 0 (mod 4)). Set 𝑚 = 2𝑡. The graph 𝐶
𝑟
∗ 𝐾
𝑡

decomposes into Hamilton cycle 𝐶
𝑟𝑡
by [11]. Next, make each

cycle 𝐶
𝑟𝑡
into 𝐶

𝑟𝑡
∗𝐾
2
. Each graph 𝐶

𝑟𝑡
∗𝐾
2
decomposes into

sunlet graph 𝐿
2𝑟𝑡

by Lemma 1.

Theorem 3. Let 𝑟, 𝑚 be positive integers satisfying 𝑟,𝑚 ≡

0 (mod 4), then 𝐿
𝑟
decomposes 𝐶

𝑟
∗ 𝐾
𝑚
.

Proof. Let the partite sets (layers) of the 𝑟-partite graph 𝐶
𝑟
∗

𝐾
𝑚
be 𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑟
. Set 𝑚 = 2𝑡. Obtain a new graph from

𝐶
𝑟
∗ 𝐾
𝑚
as follows.

Identify the subsets of vertices {𝑥
𝑖,𝑗
}, for 1 ≤ 𝑖 ≤ 𝑟 and

1 ≤ 𝑗 ≤ 𝑚/2 into new vertices 𝑥1
𝑖
, and identify the subset of

vertices {𝑥
𝑖,𝑗
} for 1 ≤ 𝑖 ≤ 𝑟 and 𝑚/2 + 1 ≤ 𝑗 ≤ 𝑚 into new

vertices 𝑥2
𝑖
and two of these vertices 𝑥𝑘

𝑖
, where 𝑘 = 1, 2, are

adjacent if and only if the corresponding subsets of vertices
in 𝐶
𝑟
∗ 𝐾
𝑚
induce 𝐾

𝑡,𝑡
. The resulting graph is isomorphic to

𝐶
𝑟
∗𝐾
2
. Next, decompose 𝐶

𝑟
∗𝐾
2
into cycles 𝐶

𝑟/2
as follows:

𝑥
𝑘,1
𝑥
𝑘+1,1

, . . . , 𝑥
𝑑,1
𝑥
𝑑−1,2

, . . . , 𝑥
𝑘+1,2

, 𝑥
𝑘,1

𝑘 = 1,
𝑟

4
+ 1,

𝑟

2
+ 1,

3𝑟

4
+ 1, . . . , 𝑟 −

𝑟

4
+ 1, 𝑑 =

𝑟

4
+ 𝑘,

(4)

where 𝑘, 𝑑 are calculated modulo 𝑟.
To construct the remaining cycles, apply mapping 𝜙

defined on the vertices.

Subcase 1.1 (𝑖 odd in each cycle). Consider

𝜙 (𝑥
𝑖,𝑗
) = 𝑥
𝑖,𝑗+1

. (5)

This is the desired decomposition of 𝐶
𝑟
∗𝐾
2
into cycles 𝐶

𝑟/2
.

Subcase 1.2 (𝑖 even in each cycle). Consider

𝜙 (𝑥
𝑖,𝑗
) = 𝑥
𝑖,𝑗
. (6)

This is the desired decomposition of 𝐶
𝑟
∗𝐾
2
into cycles 𝐶

𝑟/2
.

By lifting back these cycles 𝐶
𝑟/2

of𝐶
𝑟
∗𝐾
2
to𝐶
𝑟
∗𝐾
2𝑡
, we

get edge-disjoint subgraphs isomorphic to 𝐶
𝑟/2
∗ 𝐾
𝑡
. Obtain

a new graph again from 𝐶
𝑟/2
∗ 𝐾
𝑡
as follows.

For each 𝑗, 1 ≤ 𝑗 ≤ 𝑡/2, identify the subsets of vertices
{𝑥
𝑖,2𝑗−1

, 𝑥
𝑖,2𝑗
}, where 1 ≤ 𝑖 ≤ 𝑟/2 into new vertices 𝑥𝑗

𝑖
,

and two of these vertices 𝑥𝑗
𝑖
are adjacent if and only if the

corresponding subsets of vertices in𝐶
𝑟/2
∗𝐾
𝑡
induce𝐾

2,2
.The

resulting graph is isomorphic to𝐶
𝑟/2
∗𝐾
𝑡/2
.Then, decompose

𝐶
𝑟/2
∗𝐾
𝑡/2

into cycles𝐶
𝑟/2
. Each𝐶

𝑟/2
∗𝐾
𝑡/2

decomposes into
cycles 𝐶

𝑟/2
by [12]. By lifting back these cycles 𝐶

𝑟/2
of 𝐶
𝑟/2
∗

𝐾
𝑡/2

to𝐶
𝑟/2
∗𝐾
𝑡
, we get edge-disjoint subgraph isomorphic to

𝐶
𝑟/2
∗𝐾
2
. Finally, each𝐶

𝑟/2
∗𝐾
2
decomposes into two sunlet

graphs 𝐿
𝑟
(by Lemma 1), and we have 𝐶

𝑟
∗ 𝐾
𝑚
decomposing

into sunlet graphs 𝐿
𝑟
as required.

Theorem 4 (see [12]). The cycle 𝐶
𝑚
decomposes 𝐶

𝑘
∗ 𝐾
𝑚
for

every even𝑚 > 3.

Theorem 5 (see [12]). If 𝑚 and 𝑘 ≥ 3 are odd integers, then
𝐶
𝑚
decomposes 𝐶

𝑘
∗ 𝐾
𝑚
.



International Journal of Combinatorics 3

Theorem 6. The sunlet graph 𝐿
𝑚
decomposes 𝐶

𝑟
∗ 𝐾
𝑚
if and

only if either one of the following conditions is satisfied.

(1) 𝑟 is a positive odd integer, and 𝑚 is a positive even
integer.

(2) 𝑟, 𝑚 are positive even integers with𝑚 ≡ 0 (mod 4).

Proof. (1) Set 𝑚 = 2𝑡, where 𝑡 is a positive integer. Let
the partite sets (layers) of the 𝑟-partite graph 𝐶

𝑟
∗ 𝐾
𝑚
be

𝑈
1
, 𝑈
2
, . . . , 𝑈

𝑟
. For each 𝑗, where 1 ≤ 𝑗 ≤ 𝑡, identify the

subsets of vertices {𝑥
𝑖,2𝑗−1

, 𝑥
𝑖,2𝑗
}, for 1 ≤ 𝑖 ≤ 𝑟 into new

vertices 𝑥𝑗
𝑖
, and two of these vertices 𝑥𝑗

𝑖
are adjacent if and

only if the corresponding subsets of vertices in𝐶
𝑟
∗𝐾
𝑚
induce

𝐾
2,2
. The resulting graph is isomorphic to 𝐶

𝑟
∗ 𝐾
𝑡
. Then,

decompose𝐶
𝑟
∗𝐾
𝑡
into cycles𝐶

𝑡
, where 𝑡 is a positive integer.

Now, 𝐶
𝑡
| 𝐶
𝑟
∗ 𝐾
𝑡
byTheorems 4 and 5.

By lifting back these 𝑡-cycles of𝐶
𝑟
∗𝐾
𝑡
to𝐶
𝑟
∗𝐾
2𝑡
, we get

edge-disjoint subgraphs isomorphic to 𝐶
𝑡
∗ 𝐾
2
. Each copy

of 𝐶
𝑡
∗ 𝐾
2
decomposes into sunlet graphs of length 2𝑡 (by

Lemma 1), and we have 𝐶
𝑟
∗ 𝐾
𝑚
decomposing into sunlet

graphs of length𝑚 as required.
(2) Set 𝑚 = 2𝑡, where 𝑡 is an even integer since 𝑚 ≡

0 (mod 4).
Obtain a new graph 𝐶

𝑟
∗ 𝐾
𝑡
from the graph 𝐶

𝑟
∗ 𝐾
𝑚
as

in Case 1. By Theorem 4, 𝐶
𝑡
| 𝐶
𝑟
∗ 𝐾
𝑡
. By lifting back these

𝑡-cycles of𝐶
𝑟
∗𝐾
𝑡
to𝐶
𝑟
∗𝐾
2𝑡
, we get edge-disjoint subgraphs

isomorphic to 𝐶
𝑡
∗ 𝐾
2
. Each copy of 𝐶

𝑡
∗ 𝐾
2
decomposes

into sunlet graph of length 2𝑡 (by Lemma 1). Therefore, 𝐿
𝑚
|

𝐶
𝑟
∗ 𝐾
𝑚
as required.

Remark 7. In [10], it was shown that

𝐿
2𝑟
∗ 𝐾
𝑙
can be decomposed into 𝑙2 copies of 𝐿

2𝑟
. (7)

This, coupled with Lemma 1, gives the following.

Theorem 8 (see [10]). The graph 𝐶
𝑟
∗ 𝐾
2𝑙
decomposes into

sunlet graphs 𝐿
2𝑟
for any positive integer 𝑙.

Lemma 9 (see [3]). Let 𝑛 ≥ 4 be an even integer. Then,𝐾
𝑛
+ 𝐼

is 𝐶
𝑛
-decomposable.

Lemma 10 (see [3]). Let𝑚 and 𝑛 be integers with𝑚 odd, 𝑛 ≡
2 (mod 4), 3 ≤ 𝑚 ≤ 𝑛 < 2𝑚, and 𝑛2 ≡ 0 (mod 2𝑚). Then,
𝐾
𝑛
+ 𝐼 is 𝐶

𝑚
-decomposable.

Lemma 11 (see [3]). Let 𝑚 and 𝑛 be integers with 𝑚 odd, 𝑛 ≡
0 (mod 4), 3 ≤ 𝑚 ≤ 𝑛 < 2𝑚, and 𝑛2 ≡ 0 (mod 2𝑚). Then,
𝐾
𝑛
+ 𝐼 is 𝐶

𝑚
-decomposable.

We can now prove the major result.

Theorem 12. For any even integers 𝑚 ≥ 2, 𝑛 > 2, and 𝑞 ≥
6, the sunlet graph 𝐿

𝑞
decomposes 𝐾

𝑛
+ 𝐼 ∗ 𝐾

𝑚
if and only if

𝑛
2
𝑚
2
/2 ≡ 0 (mod 𝑞).

Proof. The necessity of the condition is obvious, and so we
need only to prove its sufficiency. We split the problem into
the following two cases.

Case 1 (𝑞 | 𝑛)

Subcase 1.1 (𝑛 > 𝑞). Cycle𝐶
𝑛
decomposes𝐾

𝑛
+𝐼 by Lemma 9,

and we have

𝐶
𝑛
∗ 𝐾
𝑚
| 𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑚
. (8)

Each graph𝐶
𝑛
∗𝐾
𝑚
decomposes into sunlet graph 𝐿

𝑞
, where

𝑞 = 𝑛𝑚 by Lemma 2, and we have𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑚
decomposing

into sunlet graph 𝐿
𝑞
, where 𝑞 > 𝑛.

Subcase 1.2 (𝑞 = 𝑛). First, consider 𝑛 ≡ 0 (mod 4).
Cycle 𝐶

𝑞
decomposes 𝐾

𝑞
+ 𝐼 by Lemma 9, and we have

𝐶
𝑞
∗ 𝐾
𝑚
| 𝐾
𝑞
+ 𝐼 ∗ 𝐾

𝑚
. (9)

Now, sunlet graph 𝐿
𝑞
| (𝐶
𝑞
∗ 𝐾
𝑚
) by Theorem 3, and hence

sunlet graph 𝐿
𝑞
decomposes 𝐾

𝑛
+ 𝐼 ∗ 𝐾

𝑚
.

Also, consider 𝑛 ≡ 2 (mod 4).
Suppose 𝑚 = 2𝑡. Cycle 𝐶

𝑞/2
decomposes 𝐾

𝑞
+ 𝐼 by

Lemma 10, and we have

𝐶
𝑞/2
∗ 𝐾
2𝑡
| 𝐾
𝑞
+ 𝐼 ∗ 𝐾

2𝑡
. (10)

Now, sunlet graph 𝐿
𝑞
decomposes 𝐶

𝑞/2
∗ 𝐾
2𝑡
by Theorem 8,

and we have 𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑚
decomposing into sunlet graph of

length 𝑞.

Case 2 (𝑞 | 𝑚)

Subcase 2.1 (𝑚 ≡ 0 (mod 4)). Suppose 𝑚 = 𝑞, and by
Lemma 9, cycle 𝐶

𝑛
decomposes 𝐾

𝑛
+ 𝐼, and we have

𝐶
𝑛
∗ 𝐾
𝑞
| 𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑞
. (11)

Also, sunlet graph𝐿
𝑞
decomposes each𝐶

𝑛
∗𝐾
𝑞
byTheorem 6,

and we have sunlet graph 𝐿
𝑞
decomposing𝐾

𝑛
+ 𝐼 ∗ 𝐾

𝑚
.

Subcase 2.2 (𝑚 ≡ 2 (mod 4)). Let 𝑚 = 𝑞 and 𝑟 ≤ 𝑛 an odd
integer. Cycle𝐶

𝑟
decomposes𝐾

𝑛
+𝐼, by Lemmas 9, 10, and 11,

and we have

𝐶
𝑟
∗ 𝐾
𝑞
| 𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑞
. (12)

Now, each 𝐶
𝑟
∗ 𝐾
𝑞
decomposes into sunlet graph 𝐿

𝑞
by

Theorem 6, and we have𝐾
𝑛
+𝐼∗𝐾

𝑚
decomposing into sunlet

graph 𝐿
𝑞
as required.

Subcase 2.3 (𝑚 > 𝑞). Set 𝑚 = 𝑤𝑞, where 𝑤 is any positive
integer, then by Subcases 2.1 and 2.2, we have

𝐿
𝑞
∗ 𝐾
𝑤
| (𝐾
𝑛
+ 𝐼 ∗ 𝐾

𝑞
) ∗ 𝐾
𝑤
. (13)

Each graph 𝐿
𝑞
∗ 𝐾
𝑤
decomposes into sunlet graph 𝐿

𝑞
by

Remark 7, and we have𝐾
𝑛
+ 𝐼∗𝐾

𝑚
decomposing into sunlet

graph 𝐿
𝑞
.
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