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It is well known that every cycle of a graph must intersect every cut in an even number of edges. For planar graphs, Ford and
Fulkerson proved that, for any edge e, there exists a cycle containing e that intersects every minimal cut containing e in exactly
two edges. The main result of this paper generalizes this result to any nonplanar graph G provided G does not have a 𝐾

3,3 minor
containing the given edge e. Ford and Fulkerson used their result to provide an efficient algorithm for solving the maximum-flow
problem on planar graphs. As a corollary to the main result of this paper, it is shown that the Ford-Fulkerson algorithm naturally
extends to this more general class of graphs.

1. Introduction

This paper examines the structure of paths and cuts in a graph
relative to a fixed edge. In particular, let𝐺 be a graph, and let 𝑒
be an edge of𝐺. Define an 𝑒-path of𝐺 to be a path𝑃 such that
𝑃 ∪ {𝑒} is a cycle of 𝐺. Define an 𝑒-cut of 𝐺 to be a cut of 𝐺
that contains 𝑒 (in this paper, paths and cycles do not have
repeated nodes and are equated with their edge sets. Also,
cuts are minimal; i.e., no cut properly contains another.) Ford
and Fulkerson [1] showed that if 𝐺 is planar, then there exists
an 𝑒-path that intersects every 𝑒-cut in exactly one edge. This
Ford-Fulkerson property does not hold for graphs in general.
Specifically, take𝐺 = 𝐾

3,3
.Then, for any edge 𝑒 of𝐺 and any 𝑒-

path 𝑃, one can always find an 𝑒-cut that intersects 𝑃 in more
than one edge. The Ford-Fulkerson property, however, is not
confined solely to planar graphs; in particular, if𝐺 = 𝐾

5
, then

it is easy to find an 𝑒-path, for any choice of 𝑒, that intersects
every 𝑒-cut in exactly one edge.

One of the main goals of this paper is to extend the Ford-
Fulkerson result to a larger class of graphs. Motivated by the
𝐾
3,3

example above, it is shown that if 𝐾
3,3

is excluded in
the proper way, then this goal can be achieved. Below is the
main result of the paper.Throughout the paper, 𝑛 denotes the
number of nodes of a graph, and𝑚 the number of edges.

Theorem 1. Let𝐺 be a graph, and let 𝑒 be an edge of𝐺. If𝐺\ 𝑒
is connected, and 𝐺 does not have a 𝐾

3,3
minor containing 𝑒,

then there exists an 𝑒-path of 𝐺 that intersects every 𝑒-cut of 𝐺
in exactly one edge. Moreover, such an 𝑒-path can be found in
𝑂(𝑚) time.

Theorem 1 is then used to provide a very simple 𝑂(𝑛2)-
time algorithm for the maximum-flow problem for graphs
in this class. This is within a logarithmic factor of the fastest
maximum-flow algorithm, namely, the recent algorithm due
to Orlin [2].

The remainder of the paper is outlined as follows. The
next section introduces a graph decomposition, which serves
as a key ingredient for the proof of Theorem 1. Section 3
contains the proof of Theorem 1, and Section 4 applies
Theorem 1 to the maximum-flow problem.

2. Graph Decomposition

This section describes a connectivity-based decomposition
for graphs that do not have a 𝐾

3,3
minor containing a fixed

edge. This decomposition was introduced in Wagner [3]. For
the sake of completeness, the key results are presented and
proved here.

The notion of connectivity used here is that of Tutte [4].
A 𝑘-separation, for a positive integer 𝑘, of a connected graph
𝐺 is a partition {𝐸

1
, 𝐸
2
} of the edge set of 𝐺 such that |𝐸

1
| ≥
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𝑘 ≤ |𝐸
2
| and the edge-induced subgraphs 𝐺[𝐸

1
] and 𝐺[𝐸

2
]

have at most 𝑘 nodes in common. A connected graph 𝐺 is 𝑘-
connected, for 𝑘 ≥ 2, if it does not have a 𝑘󸀠-separation for any
𝑘
󸀠
< 𝑘. A 𝑘-separation {𝐸

1
, 𝐸
2
} of a 𝑘-connected graph 𝐺 is

an internal 𝑘-separation if |𝐸
1
| ≥ 𝑘 + 1 ≤ |𝐸

2
|.

The next theorem is a well-known result of Wagner [5].

Theorem 2. Let 𝐺 be a 3-connected graph. Then, 𝐺 does not
have a 𝐾

3,3
minor if and only if 𝐺 is planar or isomorphic to

𝐾
5
.

It is sometimes more convenient to work with subdivi-
sions rather thanminors. A graph𝐻 is a subdivision of a graph
𝐾 if it can be obtained from𝐾 by a sequence of the following
operation: replace an edge 𝑥𝑦 by edges 𝑥𝑧 and𝑦𝑧, where 𝑧 is a
new node. If a graph𝐺 has a subgraph𝐻 that is a subdivision
of a graph 𝐾, then 𝐺 is said to have a K subdivision. It is well
known and easy to prove that a 3-connected graph has a𝐾

3,3

subdivision if and only if it has a𝐾
3,3

minor.
If a graph𝐻 is a subdivision of a graph𝐾, and 𝑥 and 𝑦 are

nonadjacent nodes of 𝐾, then 𝑥 and 𝑦 are independent in𝐻.
The next lemma is due to Širáň [6].

Lemma 3. Let 𝐺 be a 3-connected graph, and let 𝑒 = 𝑥𝑦 be an
edge of 𝐺. If 𝑒 is not contained in any𝐾

3,3
minor of 𝐺, then for

any 𝐾
3,3

subdivision𝐻 of 𝐺, 𝑥 and 𝑦 are independent degree-
three nodes of𝐻.

In this paper, 2- and 3-separations play a crucial role, as
do the related notions of 2- and 3-sums. First, consider a 2-
separation {𝐸

1
, 𝐸
2
} of a 2-connected graph 𝐺. Let {𝑝, 𝑞} :=

𝑉(𝐺[𝐸
1
]) ∩ 𝑉(𝐺[𝐸

2
]), and let {𝑡} be a set disjoint from 𝐸(𝐺).

For 𝑖 ∈ {1, 2}, define 𝐺
𝑖
to be the graph obtained from 𝐺[𝐸

𝑖
]

by adding 𝑡 as an edge joining 𝑝 and 𝑞. Then, {𝐺
1
, 𝐺
2
} is a

2-sum decomposition of the graph 𝐺, and 𝑡 is the connecting
edge.

Now, let {𝐸
1
, 𝐸
2
} be an internal 3-separation of a 3-

connected graph 𝐺. Let {𝑥, 𝑦, 𝑧} := 𝑉(𝐺[𝐸
1
]) ∩ 𝑉(𝐺[𝐸

2
]),

and let 𝑆 be the set of edges of 𝐺 that have both end nodes in
{𝑥, 𝑦, 𝑧}. Let𝑅 be a set disjoint from𝐸(𝐺) such that |𝑅∪𝑆| = 3.
For 𝑖 ∈ {1, 2}, construct a graph 𝐺

𝑖
from 𝐺[𝐸

𝑖
∪ 𝑆] by adding

the members of 𝑅 in such a way that 𝑇 := 𝑅∪𝑆 is a triangle of
𝐺
𝑖
and such that each edge of 𝑅 has the same ends in 𝐺

1
as it

does in 𝐺
2
. Then, {𝐺

1
, 𝐺
2
} is a 3-sum decomposition of 𝐺, and

𝑇 is the connecting triangle.
It is well known that if {𝐺

1
, 𝐺
2
} is a 𝑘-sum decomposition

of a 𝑘-connected graph 𝐺, for 𝑘 ∈ {2, 3} then both 𝐺
1
and 𝐺

2

are 𝑘-connected and are isomorphic to proper minors of 𝐺.
Two special kinds of internal 3-separations are needed.

Both are defined for a given 3-connected graph 𝐺 relative to
a fixed edge 𝑒.

First, let {𝐸
1
, 𝐸
2
} be a internal 3-separation of 𝐺. If both

ends of 𝑒 are in 𝑉(𝐺[𝐸
1
]) ∩ 𝑉(𝐺[𝐸

2
]), then the 3-separation

{𝐸
1
, 𝐸
2
} is said to be straddled by 𝑒. Observe that in this case,

𝑒 is in the connecting triangle of the corresponding 3-sum
decomposition.The notion of a straddling edge can be found
in the work of Tseng and Truemper [7]. It is also related to
the concept of “contractibility,” which traces back to the work
of Tutte [8].Specifically, an edge of a 3-connected graph is

contractible if its contraction results in a 3-connected graph.
It is easy to see that an edge is not contractible if and only if
it straddles an internal 3-separation.

The second special internal 3-separation is as follows. Let
{𝐸
1
, 𝐸
2
} be an internal 3-separation of 𝐺, and suppose 𝐸

1

has exactly seven edges, say 𝑒, 𝑓
1
, . . . , 𝑓

6
. Suppose further that

{𝑒, 𝑓
1
, 𝑓
2
}, {𝑒, 𝑓

3
, 𝑓
4
}, and {𝑒, 𝑓

5
, 𝑓
6
} are triangles of𝐺 such that

no two of {𝑓
1
, . . . , 𝑓

6
} are parallel. Then, 𝐺[𝐸

1
] is a crown,

and {𝐸
1
, 𝐸
2
} is a crown 3-separation of 𝐺 with respect to

𝑒. Observe that the crown 𝐺[𝐸
1
] has three nodes of degree

two, which, by the 3-connectivity of 𝐺, constitute the set
𝑉(𝐺[𝐸

1
]) ∩ 𝑉(𝐺[𝐸

2
]). It also has two nodes of degree four,

which are the ends of 𝑒.
Let {𝐸

1
, 𝐸
2
} be a crown 3-separation of𝐺with respect to 𝑒,

and let {𝐺
1
, 𝐺
2
} be the corresponding 3-sum decomposition.

If 𝐺
2
is planar, then 𝐺 is said to be crown-planar with respect

to 𝑒. Crown-planar graphs show up in the decomposition
established in Theorem 5. In the context of Theorem 5,
crown-planar graphs can alternatively be described as being
obtained from a 3-connected planar graph by duplicating a
degree-three node 𝑥, where the fixed edge 𝑒 joins 𝑥 to its twin.

Let 𝐺 be a graph, and𝐻 a subgraph of 𝐺. Let 𝑃 be a path
of 𝐺, the end nodes of which are nodes of𝐻 and the internal
nodes of which are not nodes of𝐻.Then, the subgraph𝐻∪𝑃
of𝐺 is said to be obtained from𝐻 by adjoining 𝑃, and 𝑃 is an
adjoinable path of 𝐺 with respect to𝐻.

Let 𝐺 be a graph, and 𝑒 an edge of 𝐺. Let 𝐻 be a 𝐾
3,3

subdivision of 𝐺, and suppose that 𝑒 joins two independent
degree-three nodes of𝐻. Since𝐾

3,3
has nine edges, the graph

𝐻 consists of nine paths, each of which is a subdivision of an
edge of 𝐾

3,3
. The six such paths that share an end with 𝑒 are

called the principal paths of𝐻with respect to 𝑒; the remaining
three paths are the support paths of 𝐻. The 𝐾

3,3
subdivision

𝐻 of 𝐺 is good (resp., bad) with respect to 𝑒 if all six (resp., at
most five) of the principal paths with respect to 𝑒 consist of a
single edge.

Lemma 4. Let 𝐺 be a 3-connected graph, and let 𝑒 be an edge
of 𝐺. Then, either (i) 𝐺 has a 𝐾

3,3
minor that contains 𝑒, (ii) 𝐺

has an internal 3-separation that is straddled by 𝑒, or (iii) every
𝐾
3,3

subdivision of 𝐺 is good with respect to 𝑒.

Proof. Let 𝑒 = 𝑥𝑦. Suppose that neither (i) nor (iii) holds. If𝐺
is planar or isomorphic to𝐾

5
, then (iii) holds vacuously, and

so,Theorem 2 implies that𝐺 has a𝐾
3,3

minor, and thus a𝐾
3,3

subdivision. By Lemma 3, 𝑥 and 𝑦 are independent degree-
three nodes in every 𝐾

3,3
subdivision of 𝐺. Since (iii) does

not hold, there exists a𝐾
3,3

subdivision of 𝐺, say𝐻, in which
some principal path with respect to 𝑒, say𝑄

1
, has at least two

edges. Let 𝑢 denote the end node of 𝑄
1
not in {𝑥, 𝑦}. Let 𝑄

2

denote the other principal path that has 𝑢 as an end node,
and let 𝑆

1
denote the support path that has 𝑢 as an end node.

Denote the other end node of 𝑆
1
by 𝑧. Consistent with the

above, assume 𝐻 and 𝑄
1
are chosen so that the number of

edges in 𝑆
1
is as small as possible.

Claim. If an adjoinable path of 𝐺 with respect to 𝐻 has one
end that is an internal node of either𝑄

1
or𝑄
2
, then the other

end of the path is a node of 𝑉(𝑄
1
∪ 𝑄
2
∪ 𝑆
1
).
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Proof of Claim. If the other end of the path is not in 𝑉(𝑄
1
∪

𝑄
2
∪ 𝑆
1
), then it is easy to check that adjoining the path to

𝐻 results in a graph that has a 𝐾
3,3

minor that contains 𝑒, a
contradiction. End of Claim.

Observe that {𝑄
1
∪ 𝑄
2
∪ {𝑒}, 𝐸(𝐻) − (𝑄

1
∪ 𝑄
2
∪ {𝑒})} is

an internal 3-separation of𝐻 straddled by 𝑒. Thus, either (ii)
holds or there exists an adjoinable path 𝑅

1
of 𝐺, one end of

which, say 𝑟
1
, is a internal node of𝑄

1
(say) and the other end

ofwhich, say 𝑡
1
, is not in𝑉(𝑄

1
∪𝑄
2
). By theClaim, 𝑡

1
is a node

of 𝑆
1
; if it is an internal node of 𝑆

1
, then a contradiction to the

choice of 𝐻 is obtained by adjoining 𝑅
1
to 𝐻 and deleting

the internal nodes of the 𝑢𝑟
1
-subpath of subpath of𝑄

1
. Thus,

𝑡
1
= 𝑧.
Observe that {𝑄

1
∪ 𝑄
2
∪ 𝑆
1
, 𝐸(𝐻) − (𝑄

1
∪ 𝑄
2
∪ 𝑆
1
)} is

an internal 3-separation of𝐻 straddled by 𝑒. Thus, either (ii)
holds or there exists an adjoinable path 𝑅

2
of 𝐺 with respect

to 𝐻, one end of which, say 𝑟
2
, is in 𝑉(𝑄

1
∪ 𝑄
2
∪ 𝑆
1
), the

other end of which, say 𝑡
2
, is not in 𝑉(𝑄

1
∪ 𝑄
2
∪ 𝑆
1
), and

neither end of which is in {𝑥, 𝑦, 𝑧}. By the Claim, 𝑟
2
is a node

of 𝑆
1
and 𝑡
2
is a node of 𝑃, where 𝑃 is one of the principal

or support paths of 𝐻 not in {𝑄
1
, 𝑄
2
, 𝑆
1
}. Moreover, 𝑟

2
must

equal 𝑢, for otherwise a contradiction to the choice of 𝐻 is
obtained by adjoining𝑅

2
to𝐻 and deleting the internal nodes

of the 𝑧𝑡
2
-subpath of 𝑃. By the Claim, 𝑅

1
and 𝑅

2
are node

disjoint. Now,𝐻∪𝑅
1
∪ 𝑅
2
has a𝐾

3,3
minor that contains 𝑒, a

contradiction.

Theorem 5 below is the main result of the section.

Theorem 5. Let𝐺 be a 3-connected graph, and let 𝑒 be an edge
of𝐺. Then, either (i)𝐺 is planar, (ii)𝐺 is isomorphic to𝐾

5
, (iii)

𝐺 has a 𝐾
3,3

minor that contains 𝑒, (iv) 𝐺 has an internal 3-
separation that is straddled by 𝑒, or (v) 𝐺 is crown-planar with
respect to 𝑒.

Proof. Lemma 4 and Theorem 2 together imply that either
one of (i)–(iv) holds, or every 𝐾

3,3
subdivision of 𝐺 is good

with respect to 𝑒. Assume that none of (i)–(iv) hold and let
𝐻 denote a 𝐾

3,3
subdivision of 𝐺 that is good with respect

to 𝑒. Let 𝑒 = 𝑥𝑦, and let 𝑧 denote the common end node
of the three support paths of 𝐻. Let 𝑢, V, and 𝑤 denote the
remaining degree-three nodes of𝐻. Let 𝑆

1
, 𝑆
2
, and 𝑆

3
denote

the three support paths of 𝐻 with respect to 𝑒, and without
loss of generality, assume that the ends of 𝑆

1
are 𝑢 and 𝑧.

Observe that {{𝑆
1
, 𝑢𝑥, 𝑢𝑦, 𝑒}, 𝐸(𝐻) − {𝑆

1
, 𝑢𝑥, 𝑢𝑦, 𝑒}} is an

internal 3-separation of𝐻 straddled by 𝑒. Since (iv) does not
hold, there exists an adjoinable path 𝑅

1
of 𝐺 with respect to

𝐻, one end of which is in 𝑉(𝑆
1
), the other end of which is in

𝑉(𝑆
2
) (say), and neither end of which is equal to 𝑧. Similarly,

there exists an adjoinable path 𝑅
2
of 𝐺 with respect to𝐻, one

end of which is𝑉(𝑆
3
), the other end of which is in𝑉(𝑆

1
) (say),

and neither end of which is equal to 𝑧.
Observe that {{𝑒, 𝑢𝑥, 𝑢𝑦, V𝑥, V𝑦,𝑤𝑥, 𝑤𝑦}, 𝑆

1
∪𝑆
2
∪𝑆
3
∪𝑅
1
∪

𝑅
2
} is a crown 3-separation with respect to 𝑒 of𝐻 ∪ 𝑅

1
∪ 𝑅
2
.

Thus, either 𝐺 has a crown 3-separation with respect to 𝑒 or
there exists an adjoinable path 𝑅

3
of 𝐺 with respect to 𝐻 ∪

𝑅
1
∪ 𝑅
2
, one end of which is in {𝑥, 𝑦} and the other end of

which, call it 𝑡, is in 𝑉(𝑆
1
∪ 𝑆
2
∪ 𝑆
3
∪ 𝑅
1
∪ 𝑅
2
). If 𝑡 ̸= 𝑧, then

observe that𝐻∪𝑅
1
∪𝑅
3
∪𝑅
3
contains a bad𝐾

3,3
subdivision

with respect to 𝑒, a contradiction (note, if 𝑡 ∈ {𝑢, V, 𝑤}, then
by the 3-connectivity of 𝐺, 𝑅

3
has at least two edges). Thus,

𝑡 = 𝑧. It can now be checked that𝐻 ∪ 𝑅
1
∪ 𝑅
2
∪ 𝑅
3
contains

a 𝐾
3,3

minor containing 𝑒, a contradiction.
Finally, it needs to be shown that if 𝐺 has a crown 3-

separation with respect to 𝑒, and none of (i)–(iv) hold, then𝐺
is crown-planar with respect to 𝑒. To see this, let {𝐺

1
, 𝐺
2
} be

the 3-sum decomposition of 𝐺 corresponding to the crown
3-separation with respect to 𝑒, where 𝑒 ∈ 𝐸(𝐺

1
). Then, it

suffices to show that 𝐺
2
is planar. If this is not the case,

then by Theorem 2, 𝐺
2
is either isomorphic to 𝐾

5
or has a

𝐾
3,3

subdivision. In either case, it is straightforward to see
that 𝐺 has a 𝐾

3,3
subdivision for which 𝑒 does not join two

independent nodes, contradicting Lemma 3.

The next result is from Wagner [3]. It shows that if 𝐺
is a simple 2-connected graph having an edge 𝑒 that is not
contained in a 𝐾

3,3
minor, then the number of edges of 𝐺 is

bounded 5𝑛 − 12. The proof is a straightforward induction
using 2- and 3-sumdecompositions, togetherwithTheorem 5
and the well-known fact that any planar graph has at most
3𝑛 − 6 edges.

Lemma 6. Let𝐺 be a simple 2-connected graph having at least
three nodes. If, for some edge 𝑒, 𝐺 does not have a 𝐾

3,3
minor

containing 𝑒, then 𝐺 has at most 5𝑛 − 12 edges.

3. Admissible Paths

This section presents a proof of Theorem 1. This section
begins with two lemmas that relate an 𝑒-cut of a graph to that
of a member of a 𝑘-sum decomposition of the graph.

Lemma7. Let𝐺 be a 2-connected graph, and let 𝑒 be an edge of
𝐺. Suppose that {𝐸

1
, 𝐸
2
} is a 2-separation of 𝐺 with 𝑒 ∈ 𝐸

1
. Let

{𝐺
1
, 𝐺
2
} be the corresponding 2-sum decomposition, and let 𝑡

denote the connecting edge. Let𝐷 be an 𝑒-cut of𝐺. Then, either
𝐷 or𝐷−𝐸

2
∪ {𝑡} is an 𝑒-cut of 𝐺

1
. Moreover, in the latter case,

𝐷 − 𝐸
1
∪ {𝑡} is a 𝑡-cut of 𝐺

2
.

Proof. Let 𝑝 and 𝑞 denote the nodes common to 𝐺[𝐸
1
]

and 𝐺[𝐸
2
]. Let {𝑋, 𝑌} denote the node partition of 𝑉(𝐺)

corresponding to the 𝑒-cut𝐷 of 𝐺.
First, it is shown that 𝐷 ∩ 𝐸

2
̸= 0 if and only if 𝑝 ∈ 𝑋

(say) and 𝑞 ∈ 𝑌. To this end, suppose that 𝑝 ∈ 𝑋 and 𝑞 ∈ 𝑌.
Observe, there exists a 𝑝𝑞-path in 𝐺[𝐸

2
], and any such path

must contain an edge from𝐷.Thus,𝐷∩𝐸
2
̸= 0. Now, suppose

that 𝐷 ∩ 𝐸
2
̸= 0, and let 𝑓 ∈ 𝐷 ∩ 𝐸

2
. Since {𝑒, 𝑓} ⊆ 𝐷, there

exists two paths, say𝑃 and𝑄, each of which joins an end node
of 𝑓 to an end node of 𝑒 and such that 𝑉(𝑃) ⊆ 𝑋 (say) and
𝑉(𝑄) ⊆ 𝑌. Since 𝑒 ∈ 𝐸

1
and 𝑓 ∈ 𝐸

2
, 𝑃 must go through 𝑝

(say) and 𝑄 through 𝑞. Thus, 𝑝 ∈ 𝑋 and 𝑞 ∈ 𝑌.
Now, define𝑋

1
:= 𝑋∩𝑉(𝐺

1
) and 𝑌

1
:= 𝑌 ∩𝑉(𝐺

1
). Then,

𝑋
1
and 𝑌

1
are both nonempty since they each contain an end

of 𝑒. Also, they are disjoint and their union equals 𝑉(𝐺
1
). By

the previous paragraph, it can be seen that the set of edges
of 𝐺
1
that have exactly one end in 𝑋

1
is 𝐷 (if {𝑝, 𝑞} ⊆ 𝑋

1

(say)) or 𝐷 − 𝐸
2
∪ {𝑡} (if 𝑝 ∈ 𝑋

1
(say) and 𝑞 ∈ 𝑌

1
). Thus, the

conclusion that either𝐷 or𝐷−𝐸
2
∪{𝑡} is an 𝑒-cut of𝐺

1
follows
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provided the subgraphs𝐺
1
[𝑋
1
] and𝐺

1
[𝑌
1
] are connected. To

this end, let 𝑢 and V be nodes of𝑋
1
, and let 𝑅 be a 𝑢V-path in

𝐺[𝑋]. If 𝑅 ⊆ 𝐸
1
, then 𝑅 is a path of 𝐺

1
[𝑋
1
]. Suppose that

this is not the case. Then, {𝑝, 𝑞} ⊆ 𝑉(𝑅). Moreover, the edges
of 𝑅 ∩ 𝐸

2
constitute a 𝑝𝑞-subpath 𝑆 of 𝑅. Thus, replacing, in

𝑅, the subpath 𝑆 by the edge 𝑡 yields a 𝑢V-path in 𝐺
1
. Thus,

𝐺
1
[𝑋
1
] is connected. Similarly, 𝐺

1
[𝑌
1
] is connected.

Now, suppose that𝐷−𝐸
2
∪ {𝑡} is an 𝑒-cut of 𝐺

1
. Showing

that𝐷−𝐸
1
∪{𝑡} is a 𝑡-cut of𝐺

2
is done in a manner similar to

the above. Specifically, define 𝑋
2
:= 𝑋 ∩ 𝑉(𝐺

2
) and 𝑌

2
:=

𝑌 ∩ 𝑉(𝐺
2
). Then, 𝑋

2
and 𝑌

2
are nonempty since 𝑝 ∈ 𝑋

2

and 𝑞 ∈ 𝑌
2
. Also, they are disjoint and their union equals

𝑉(𝐺
2
). Moreover, the set of edges of 𝐺

2
that have exactly one

end in 𝑋
2
is precisely𝐷 − 𝐸

1
∪ {𝑡}. Thus, the conclusion that

𝐷 − 𝐸
1
∪ {𝑡} is a 𝑡-cut of 𝐺

2
follows provided the subgraphs

𝐺
2
[𝑋
2
] and 𝐺

2
[𝑌
2
] are connected. To this end, let 𝑢 and V be

nodes of 𝑋
2
, and let 𝑅 be a 𝑢V-path in 𝐺[𝑋]. Since 𝑞 ∈ 𝑌

2
,

𝑞 ∉ 𝑉(𝑅). Therefore, 𝑅 ⊆ 𝐸
2
. Thus, 𝐺

2
[𝑋
2
] is connected.

Similarly, 𝐺
2
[𝑌
2
] is connected.

Lemma8. Let𝐺 be a 3-connected graph, and let 𝑒 be an edge of
𝐺. Suppose that {𝐸

1
, 𝐸
2
} is a 3-separation of𝐺 that is straddled

by 𝑒. Let {𝐺
1
, 𝐺
2
} be the corresponding 3-sum decomposition,

and let 𝑇 denote the connecting triangle. Let 𝐷 be an 𝑒-cut of
𝐺. Then, 𝐷 − 𝐸

2
∪ {𝑡, 𝑒} is an 𝑒-cut of 𝐺

1
for some 𝑡 ∈ 𝑇 −

{𝑒}.

Proof. Let𝑥,𝑦, and 𝑧 denote the nodes common to𝐺[𝐸
1
] and

𝐺[𝐸
2
]. Let 𝑇 := {𝑒, 𝑡, 𝑡󸀠} with 𝑒 = 𝑥𝑦 and 𝑡 = 𝑦𝑧. Let {𝑋, 𝑌}

denote the node partition of𝑉(𝐺) corresponding to the 𝑒-cut
𝐷 of𝐺. Without loss of generality, assume {𝑥, 𝑧} ⊆ 𝑋 and 𝑦 ∈
𝑌. Let𝑋

1
:= 𝑋∩𝑉(𝐺

1
) and𝑌

1
:= 𝑌∩𝑉(𝐺

1
).Then,𝑋

1
and𝑌
1

are both nonempty since they each contain an end of 𝑒. Also,
they are disjoint and their union equals𝑉(𝐺

1
). Moreover, the

set of edges of 𝐺
1
that have exactly one end in𝑋

1
is precisely

𝐷−𝐸
2
∪{𝑡, 𝑒}. The result now follows provided the subgraphs

𝐺
1
[𝑋
1
] and 𝐺

1
[𝑌
1
] are connected. To this end, let 𝑢 and V be

nodes of 𝑋
1
, and let 𝑅 be a 𝑢V-path in 𝐺[𝑋]. If 𝑅 ⊆ 𝐸

1
, then

𝑅 is a path of 𝐺
1
[𝑋
1
]. Suppose that this is not the case. Then,

{𝑥, 𝑧} ⊆ 𝑉(𝑅). Moreover, the edges of𝑅∩𝐸
2
constitute an 𝑥𝑧-

subpath 𝑆 of𝑃.Thus, replacing, in𝑅, the subpath 𝑆 by the edge
𝑡
󸀠 yields a 𝑢V-path in 𝐺

1
. Thus 𝐺[𝑋

1
] is connected. Similarly,

𝐺[𝑌
1
] is connected.

Let 𝐺 be a graph, and let 𝑒 be an edge of 𝐺. An 𝑒-path
of 𝐺 is called admissible if it intersects every 𝑒-cut in exactly
one edge. The above two lemmas are now used to show how
admissible paths relate to 𝑘-sums.

Lemma9. Let𝐺 be a 2-connected graph, and let 𝑒 be an edge of
𝐺. Suppose that 𝐺 has a 2-separation {𝐸

1
, 𝐸
2
} with 𝑒 ∈ 𝐸

1
. Let

{𝐺
1
, 𝐺
2
} be the corresponding 2-sum, and let 𝑡 be the connecting

edge. Suppose that 𝑃
1
is an admissible 𝑒-path of 𝐺

1
, and 𝑃

2
is

an admissible 𝑡-path of 𝐺
2
. If 𝑡 ∉ 𝑃

1
, 𝑃
1
is an admissible 𝑒-path

of 𝐺, and if 𝑡 ∈ 𝑃
1
, then 𝑃

1
− {𝑡} ∪ 𝑃

2
is an admissible 𝑒-path of

𝐺.

Proof. Let 𝐷 be an 𝑒-cut of 𝐺. By Lemma 7, either 𝐷 or 𝐷 −
𝐸
2
∪ {𝑡} is an 𝑒-cut of 𝐺

1
.

First, consider the case that 𝐷 is an 𝑒-cut of 𝐺
1
. Since 𝐷

is an 𝑒-cut of both 𝐺 and 𝐺
1
, it must be that 𝐷 ⊆ 𝐸

1
. In

particular, 𝑡 ∉ 𝐷. Since 𝑃
1
is an admissible 𝑒-path of 𝐺

1
, it

follows that |𝐷 ∩ (𝑃
1
− {𝑡})| = 1. Thus, if 𝑡 ∉ 𝑃

1
, then 𝑃

1
is an

admissible 𝑒-path of 𝐺, and if 𝑡 ∈ 𝑃
1
, then 𝑃

1
− {𝑡} ∪ 𝑃

2
is an

admissible 𝑒-path of 𝐺.
Now, assume that𝐷−𝐸

2
∪{𝑡} is an 𝑒-cut of𝐺

1
. Since 𝑃

1
is

an admissible 𝑒-path of 𝐺
1
, |(𝐷 −𝐸

2
∪ {𝑡}) ∩ 𝑃

1
| = 1. If 𝑡 ∉ 𝑃

1
,

then𝑃
1
⊆ 𝐸
1
, fromwhich it follows |𝐷∩𝑃

1
| = 1, implying that

𝑃
1
is an admissible 𝑒-path of 𝐺. Thus, assume 𝑡 ∈ 𝑃

1
. Since

𝑃
1
is an admissible 𝑒-path of 𝐺

1
, (𝐷 − 𝐸

2
∪ {𝑡}) ∩ 𝑃

1
= {𝑡}.

Therefore, (𝐷 ∩ 𝐸
1
) ∩ (𝑃
1
− {𝑡}) = 0. Since 𝑃

2
is an admissible

𝑡-path of 𝐺, by Lemma 7, |(𝐷 − 𝐸
1
∪ {𝑡}) ∩ 𝑃

2
| = 1. It follows

that |(𝐷 ∩ 𝑃
1
− {𝑡}) ∩ 𝑃

2
| = 1, implying that 𝑃

1
− {𝑡} ∩ 𝑃

2
is an

admissible 𝑒-path of 𝐺.

Lemma 10. Let𝐺 be a 3-connected graph, and let 𝑒 be an edge
of 𝐺. Suppose that 𝐺 has an internal 3-separation straddled by
𝑒. Let {𝐺

1
, 𝐺
2
} be the corresponding 3-sum, and let 𝑇 be the

connecting triangle. Let 𝑃 be an admissible 𝑒-path of 𝐺
1
that is

edge disjoint from 𝑇−{𝑒}. Then, 𝑃 is an admissible 𝑒-path of𝐺.

Proof. Since𝑃 is edge disjoint from𝑇−{𝑒},𝑃 is a path of𝐺. Let
𝐷 be an 𝑒-cut of𝐺. By Lemma 8,𝐷−𝐸

2
∪{𝑡, 𝑒} is an 𝑒-cut of𝐺

1

for some 𝑡 ∈ 𝑇−{𝑒}. By assumption, |(𝐷−𝐸
2
∪{𝑡, 𝑒})∩𝑃| = 1,

which implies |𝐷 ∩ 𝑃| = 1, as required.

Below is the re-statement of Theorem 1 in terms of
admissible paths.

Theorem 11. Let 𝐺 be a graph, and let 𝑒 be an edge of 𝐺. If
𝐺\𝑒 is connected, and𝐺 does not have a𝐾

3,3
minor containing

𝑒, then 𝐺 has an admissible 𝑒-path. Moreover, such an 𝑒-path
can be found in 𝑂(𝑚) time in general and in 𝑂(𝑛) time if 𝐺 is
2-connected and simple.

Proof. The proof is by a series of reductions.
(I)Reduction to the Simple 2-Connected Case. Since𝐺\𝑒 is

connected, every 𝑒-path of 𝐺 is contained in the same block
of 𝐺 as 𝑒. Therefore, the search for an admissible 𝑒-path of
𝐺 can be restricted to this block. Computing the blocks of
𝐺 and identifying the one containing 𝑒 can be done in 𝑂(𝑚)
time; see Tarjan [9]. Also, since any 𝑒-path uses at most one
edge from any parallel class, any parallel edges can be deleted,
which requires 𝑂(𝑚) time. Now, by Lemma 6,𝑚 is 𝑂(𝑛).

(II) Reduction to the 3-Connected Case. The next step
is to show that the admissible-path problem on 𝐺 can be
reduced in linear time to solve a sequence of admissible-path
problems, where each problem in the sequence is defined on
a graph that is 3-connected and does not contain a𝐾

3,3
minor

using a specified edge, and such that the total size of this
sequence is linear in the size of 𝐺.

(IIa) Admissible Paths and 2-Sum Decompositions. The
first step in defining this sequence is to examine the relation-
ship between an instance of the admissible-path problem and
a 2-sum decomposition in the underlying graph. So, suppose
that 𝐺 is not 3-connected, and let {𝐸

1
, 𝐸
2
} be a 2-separation

of 𝐺 with 𝑒 ∈ 𝐸
1
. Let {𝐺

1
, 𝐺
2
} be the corresponding 2-sum

decomposition, and let 𝑡 = 𝑝𝑞 be the connecting edge. It is
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straightforward to verify that 𝐺
1
(resp., 𝐺

2
) is 2-connected

and does not have a 𝐾
3,3

minor containing 𝑒 (resp., 𝑡). By
Lemma 9, if 𝑃

1
is an admissible 𝑒-path of 𝐺

1
, and 𝑃

2
is an

admissible 𝑡-path of 𝐺
2
, then an admissible 𝑒-path 𝑃 of 𝐺 is

equal to either 𝑃
1
, if 𝑡 ∉ 𝑃

1
, and 𝑃

1
− {𝑡} ∪ 𝑃

2
, otherwise.

(IIb)TheReduction Procedure. To turn the above relation-
ship between admissible paths and 2-sumdecomposition into
a computationally efficient algorithm requires two straight-
forward ideas. First, one chooses the 2-sum decomposition
judiciously, and second one applies this judicious choice
recursively. Tutte [4] and Hopcroft and Tarjan [10] showed
that one can always find a 2-separation {𝐸

1
, 𝐸
2
} of𝐺 such that

𝑒 ∈ 𝐸
1
, and in the resulting 2-sum decomposition {𝐺

1
, 𝐺
2
},

𝐺
2
is either 3-connected, a cycle on three or more edges, or a

bond (i.e., the planar dual of a cycle) on three or more edges.
Applying this choice of 2-sum decomposition recursively
reduces the admissible-path problemon𝐺 to solve a sequence
of admissible-path problems on a collection of graphs, say
{𝐻
1
, . . . , 𝐻

𝑗
}, every member of which is either 3-connected, a

cycle, or a bond. Moreover, Hopcroft and Tarjan [10] showed
that the sequence of 2-separations necessary to generate
{𝐻
1
, . . . , 𝐻

𝑗
} can be found in 𝑂(𝑛) time and that the size of

the collection, that is, ∑𝑗
𝑖=1
|𝑉(𝐻
𝑖
)|, is 𝑂(𝑛). Observe that an

admissible path on a cycle or bond can be trivially found in
linear time (in the size of the cycle or bond). Thus, in 𝑂(𝑛)
time, the admissible-path problem on 𝐺 can be reduced to
solve a sequence of admissible-path problems, each of which
is on a graph that is 3-connected and does not have a 𝐾

3,3

minor using a specified edge. Moreover, the total size of the
graphs in the sequence is 𝑂(𝑛). Thus, it suffices to prove the
theorem assuming 𝐺 is 3-connected.

(III) Reduction to the Planar Case. Assume that 𝐺 is 3-
connected. By Theorem 5, 𝐺 either is planar, isomorphic to
𝐾
5
, crown-planar with respect to 𝑒 or has an internal 3-

separation straddled by 𝑒. These cases are considered one at a
time. As a first step, it is shown that one can recognize which
case is applicable in 𝑂(𝑛) time. Clearly, recognizing if 𝐺 is
isomorphic to𝐾

5
can be done in constant time. Also, it is well

known that planarity can be recognized in𝑂(𝑛) time; see, for
example, Hopcroft and Tarjan [11]. Determining whether 𝐺
has an internal 3-separation straddled by 𝑒 can be done by
simply first deleting the ends of 𝑒 and then determining if the
resulting graph has a cut vertex; the latter can be done in𝑂(𝑛)
time using algorithm of Tarjan [9]. The only other possibility
for 𝐺 is that it is crown-planar with respect to 𝑒.

(IIIa) The Base Cases. This subcase considers these cases
when 𝐺 is either planar, isomorphic to 𝐾

5
, or crown-planar

with respect to 𝑒. For each of these three cases, it is shown
how to find an admissible path of 𝐺 in 𝑂(𝑛) time.

First, assume that 𝐺 is planar. Then, as observed by Ford
and Fulkerson [1], it is straightforward to find an admissible
𝑒-path of 𝐺. This is done as follows. Embed 𝐺 in the plane,
so that 𝑒 is on the infinite face, and then delete 𝑒. Then, there
exist two 𝑒-paths of 𝐺 the union of which defines the outer
face of𝐺\𝑒. Ford and Fulkerson [1] showed that each of these
paths is an admissible 𝑒-path of 𝐺 (this is also easily seen by
planar duality). Observe that if𝐺\𝑒 is 2-connected, these two
admissible 𝑒-paths are internally node disjoint, a fact that will

be used later. Finding an embedding of a planar graph can be
done in𝑂(𝑛) time [11, 12], and so for planar graphs, it follows
that the two admissible 𝑒-paths can be found in 𝑂(𝑛) time.

Second, consider the case that 𝐺 is isomorphic to𝐾
5
or is

crown-planar with respect to 𝑒. In each of these cases, there
exist two internally node-disjoint 𝑒-paths in𝐺, each of which
contains exactly two edges. Since, in general, every 𝑒-cutmust
intersect every 𝑒-path in an odd number of edges, it must be
that each of these 𝑒-paths is admissible. Thus, finding these
two admissible 𝑒-paths can be done in 𝑂(𝑛) time.

(IIIb) 3-Sum Decompositions. The final step is to analyze
when𝐺 has an internal 3-separation straddled by 𝑒. Consider
the graph 𝐺 \ {𝑥, 𝑦}, where 𝑥 and 𝑦 are the ends of 𝑒. Since
𝐺 has an internal 3-separation, 𝐺 \ {𝑥, 𝑦} has a cut node.
Conversely, each cut node of 𝐺 \ {𝑥, 𝑦} corresponds to an
internal 3-separation of 𝐺 straddled by 𝑒. Now, choose a
block of 𝐺 \ {𝑥, 𝑦} that has exactly one cut node in common
with rest of 𝐺 \ {𝑥, 𝑦}, and let {𝐸

1
, 𝐸
2
} be the corresponding

internal 3-separation of 𝐺. Let {𝐺
1
, 𝐺
2
} be the associated

3-sum decomposition of 𝐺, and let 𝑇 be the connecting
triangle. Then, by the choice the cut node, 𝐺

1
(say) does

not have an internal 3-separation. Thus, by Theorem 5, 𝐺
1

is planar, isomorphic to 𝐾
5
, or crown planar with respect to

𝑒. Moreover, since 𝐺
1
is 3-connected, 𝐺

1
\ 𝑒 is 2-connected.

Thus, by Case (IIIa), 𝐺
1
has two internally node-disjoint

admissible 𝑒-paths. Since these two paths are internally node
disjoint, one of them, call it 𝑃, must be edge disjoint from
𝑇 − {𝑒}. Thus, by Lemma 10, 𝑃 is an admissible 𝑒-path of 𝐺.
Finding the appropriate internal 3-separation easily reduces
to finding the cut nodes of𝐺\{𝑥, 𝑦} and so requires𝑂(𝑛) time
using Tarjan [9]. Once the appropriate internal 3-separation
is identified, finding the admissible path requires 𝑂(𝑛) time
by Case (IIIa).

Theorem 11 can be strengthened as follows: if 𝐺 \ 𝑒 is
2-connected (resp., 2-edge-connected), then there exist two
internally node disjoint (resp., edge-disjoint) admissible 𝑒-
paths. The proof of this requires a bit more work but follows
the same line of reasoning.

Theorem 11 provides a sufficient condition for the exis-
tence of an admissible 𝑒-path. It is, however, not a necessary
condition. For example, take the graph 𝐾

3,3
, and let 𝑒 be any

edge. Now, add a new edge that creates a triangle𝑇 containing
𝑒. Then, 𝑇 − {𝑒} is an 𝑒-path that intersects every 𝑒-cut in
exactly one edge. It would be interesting to determine if one
excludes triangles containing 𝑒, whether the condition is also
necessary.

4. The Ford-Fulkerson Algorithm

Let 𝐺 be a graph, and let 𝑥 and 𝑦 be distinguished nodes of
𝐺. Assume 𝐺 has the edge 𝑒 = 𝑥𝑦, and consider an instance
of the minimum 𝑒-cut problem (equivalently, the maximum-
flow problem) defined on𝐺. Ford and Fulkerson [1] provided
a very simple algorithm for solving this problem provided
that 𝐺 is planar. This section shows that the Ford-Fulkerson
algorithm extends virtually unchanged provided that 𝐺 does
not have a 𝐾

3,3
minor containing 𝑒; the running time of the

algorithm is shown to be 𝑂(𝑛2). This is within a logarithmic
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Algorithm ford-fulkerson;
begin

𝐻 := 𝐺;
𝐷 := {𝑒};
while 𝐷 does not contain an 𝑒-cut of𝐻 do

begin
set 𝑃 to be an admissible 𝑒-path of𝐻;
𝜖 := min{𝑐

𝑓
| 𝑓 ∈ 𝑃};

𝑐
𝑓
:= 𝑐
𝑓
− 𝜖 for 𝑓 ∈ 𝑃;

choose 𝑓 ∈ 𝑃 such that 𝑐
𝑓
= 0 and set𝐻 ← 𝐻 \ 𝑓;

𝐷 ← 𝐷 ∪ {𝑓};
end;

end;

Algorithm 1

factor of the fastest maximum-flow algorithm, namely the
recent (and more complicated) algorithm due Orlin [2]. The
only faster algorithm for graphs in this class is the 𝑂(𝑛)-time
algorithm in Wagner [3].

Consider the following property for the graph 𝐺.

Property A. For any subset𝑋 of edges with 𝑒 ∈ 𝑋, if𝐺\𝑋 has
an 𝑒-path, then it has an admissible 𝑒-path.

Algorithm 1 is the Ford-Fulkerson algorithm, stated in
terms of solving the minimum 𝑒-cut problem. An instance
of the minimum 𝑒-cut problem is specified by (𝐺, 𝑒, 𝑐), where
𝑐 is a vector of nonnegative edge capacities.

The next theorem shows that the algorithm is correct
provided Property 𝐴 holds. In particular, Theorem 11, then
implies that the algorithm works for any instance (𝐺, 𝑒, 𝑐)
provided 𝐺 does not have a 𝐾

3,3
minor containing 𝑒.

Theorem 12. Assume that 𝐺 satisfies Property A. Then,
Algorithm 1 correctly computes a minimum 𝑒-cut of (𝐺, 𝑒, 𝑢).
In particular, at termination, the set𝐷 contains a unique 𝑒-cut
of 𝐺, and it is a minimum 𝑒-cut of 𝐺.

Proof. Each execution of thewhile loop chooses an admissible
𝑒-path. Since, by assumption,𝐺 satisfies Property𝐴, this step
is well defined. Each execution of the while loop adds exactly
one edge to 𝐷, and therefore eventually, 𝐷 will contain an 𝑒-
cut of 𝐺, and so the algorithm will terminate.

Assume that thewhile loop executes 𝑡 times, and index the
instantiations of𝐻,𝐷,𝑃,𝑓, 𝑐, and 𝜖 by 1, . . . , 𝑡. So,𝐻

𝑡
denotes

the instantiation of𝐻 at termination of the algorithm.
It is first shown that𝐷

𝑡
contains a unique 𝑒-cut of 𝐺. This

is equivalent to showing that𝐻
𝑡
has exactly two components.

Suppose this is not the case; that is, suppose 𝐻
𝑡
has at

least three components. Since 𝐻
𝑡
was obtained from 𝐻

𝑡−1

by deleting exactly one edge, 𝐻
𝑡−1

must have at least two
components. Let 𝑗 denote the least index such that𝐻

𝑗
has at

least two components. Observe that, in 𝐻
𝑗
, the ends of 𝑒 are

in the same component, for otherwise the algorithm would
have terminated at 𝑗 < 𝑡, contradicting the definition of 𝑡.
By definition, 𝐻

𝑗−1
is connected. Since 𝐻

𝑗
is obtained from

𝐻
𝑗−1

by deleting the edge 𝑓
𝑗−1

, this edge must be a cut edge
of 𝐻
𝑗−1

. From the algorithm, 𝑓
𝑗−1

is contained in the 𝑒-path

𝑃
𝑗−1

. But this is impossible since no path, starting and ending
in the same component of a graph, can contain a cut edge of
the graph. This 𝐷

𝑡
contains a unique 𝑒-cut of 𝐺; denote this

𝑒-cut by𝐷∗.
Now, consider (𝐻

2
, 𝑒, 𝑐
2
), that is, the minimum 𝑒-cut

problem that results after one execution of thewhile loop.The
graph𝐻

2
has one less edge than𝐻

1
. Applying Algorithm 1 to

(𝐻
2
, 𝑒, 𝑐
2
)will produce the set𝐷

𝑡
− {𝑓
1
}, which, by induction,

will contain a unique 𝑒-cut of 𝐻
2
that is also a minimum

𝑒-cut of (𝐻
2
, 𝑒, 𝑐
2
); denote this 𝑒-cut by 𝐷∗∗. Observe that

(𝐺, 𝑒, 𝑢) is obtained from (𝐻
2
, 𝑒, 𝑢
2
) first adding the edge 𝑓

1

with a capacity of zero and then adding 𝜖
1
to the capacity of

every edge of 𝑃
1
. Consider these steps individually. Adding

an edge of capacity zero effectively leaves the minimum 𝑒-
cut problem unchanged. In particular, either 𝐷∗∗ ∪ {𝑓

1
}

or 𝐷∗∗ is minimum 𝑒-cut for the resulting minimum 𝑒-cut
problem, depending onwhether the ends of𝑓

1
are in different

components of 𝐻
2
\ 𝐷
∗∗ or not. In either case, the capacity

of the resultant minimum 𝑒-cut is unchanged. The second
step also effectively does not change the minimum 𝑒-cut
problem. In particular, by the algorithm, 𝑃

1
is an admissible

𝑒-path. Therefore, adding 𝜖
1
to each edge of 𝑃

1
adds 𝜖

1
to

the capacity of each 𝑒-cut. Consequently, either 𝐷∗∗ ∪ {𝑓
1
}

or 𝐷∗∗ (again, depending on whether the ends of 𝑓
1
are in

different components of𝐻
2
\𝐷
∗∗ or not) is a minimum 𝑒-cut

of (𝐺, 𝑒, 𝑢). In either case, this minimum 𝑒-cut of (𝐺, 𝑒, 𝑢) is
contained in 𝐷

𝑡
and, thus, by the uniqueness demonstrated

in the previous paragraph, is equal to𝐷∗, as required.

Corollary. If 𝐺 does not have a 𝐾
3,3

minor containing 𝑒, then
the complexity of Algorithm 1 is 𝑂(𝑛2).

Proof. By Theorem 11, finding the first admissible 𝑒-path
requires 𝑂(𝑚) time. Also, note that the initial step in this
first admissible-path computation reduces the graph to a
simple 2-connected graph, and so by Lemma 6, the resulting
number of edges is 𝑂(𝑛). Thus, each subsequent admissible-
path computation requires 𝑂(𝑛) time. Since the algorithm
deletes one edge every iteration, it requires at most 𝑂(𝑛)
iterations. Thus, the algorithm requires 𝑂(𝑛2) time.
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As a final note, Algorithm 1 can be dualized, using planar
path-cut duality, to an algorithm for finding a shortest 𝑒-path
in a graph. This dual version of Algorithm 1 can, in fact, be
shown to be equivalent to Dijkstra’s shortest-path algorithm.
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