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Let G be weighted graphs, as the graphs where the edge weights are positive definite matrices. The Laplacian eigenvalues of a graph
are the eigenvalues of Laplacian matrix of a graph G. We obtain two upper bounds for the largest Laplacian eigenvalue of weighted
graphs and we compare these bounds with previously known bounds.

1. Introduction

Let 𝐺 = (𝑉, 𝐸) be simple graphs, as graphs which have no
loops or parallel edges such that 𝑉 is a finite set of vertices
and 𝐸 is a set of edges.

A weighted graph is a graph each edge of which has been
assigned to a square matrix called the weight of the edge. All
the weightmatrices are assumed to be of same order and to be
positive matrix. In this paper, by “weighted graph” we mean
“a weighted graph with each of its edges bearing a positive
definite matrix as weight,” unless otherwise stated.

The notations to be used in paper are given in the
following.

Let 𝐺 be a weighted graph on 𝑛 vertices. Denote by 𝑤
𝑖,𝑗

the positive definite weight matrix of order 𝑝 of the edge 𝑖𝑗,
and assume that 𝑤

𝑖𝑗
= 𝑤

𝑗𝑖
. We write 𝑖 ∼ 𝑗 if vertices 𝑖 and 𝑗

are adjacent. Let 𝑤
𝑖
= ∑

𝑗:𝑗∼𝑖
𝑤
𝑖𝑗
. be the weight matrix of the

vertex 𝑖.
The Laplacian matrix of a graph 𝐺 is defined as 𝐿(𝐺) =

(𝑙
𝑖𝑗
), where

𝑙
𝑖,𝑗
=

{{

{{

{

𝑤
𝑖
; if 𝑖 = 𝑗,

−𝑤
𝑖𝑗
; if 𝑖 ∼ 𝑗,

0; otherwise.
(1)

The zero denotes the 𝑝 × 𝑝 zero matrix. Hence 𝐿(𝐺) is
squarematrix of order 𝑛𝑝. Let𝜆

1
denote the largest eigenvalue

of 𝐿(𝐺). In this paper we also use to avoid the confusion that
𝜌
1
(𝑤
𝑖𝑗
) is the spectral radius of 𝑤

𝑖𝑗
matrix. If 𝑉 is the disjoint

union of two nonempty sets 𝑉
1
and 𝑉

2
such that every vertex

𝑖 in 𝑉
1
has the same 𝜌

1
(𝑤
𝑖
) and every vertex 𝑗 in 𝑉

2
has the

same 𝜌
1
(𝑤
𝑗
), then 𝐺 is called a weight-semiregular graph. If

𝜌
1
(𝑤
𝑖
) = 𝜌

1
(𝑤
𝑗
) in weight semiregular graph, then𝐺 is called

a weighted-regular graph.
Upper and lower bounds for the largest Laplacian eigen-

value for unweighted graphs have been investigated to a great
extent in the literature. Also there are some studies about
the bounds for the largest Laplacian eigenvalue of weighted
graphs [1–3]. The main result of this paper, contained in
Section 2, gives two upper bounds on the largest Laplacian
for weighted graphs, where the edge weights are positive
definite matrices. These upper bounds are attained by the
same methods in [1–3]. We also compare the upper bounds
with the known upper bounds in [1–3]. We also characterize
graphs which achieve the upper bound. The results clearly
generalize some known results for weighted and unweighted
graphs.

2. The Known Upper Bounds for the Largest
Laplacian Eigenvalue of Weighted Graphs

In this section, we present the upper bounds for the largest
Laplacian eigenvalue of weighted graphs and very useful
lemmas to prove theorems.
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Theorem 1 (Horn and Johnson [4]). Let 𝐴 ∈ 𝑀
𝑛
be Hermi-

tian, and let the eigenvalues of 𝐴 be ordered such that 𝜆
𝑛
≤

𝜆
𝑛−1
≤ ⋅ ⋅ ⋅ ≤ 𝜆

1
. Then,

𝜆
𝑛
𝑥
𝑇
𝑥 ≤ 𝑥

𝑇
𝐴𝑥 ≤ 𝜆

1
𝑥
𝑇
𝑥 (2)

𝜆max = 𝜆1 = max
𝑥 ̸= 0

𝑥
𝑇
𝐴𝑥

𝑥𝑇𝑥
= max
𝑥
𝑇
𝑥=1

𝑥
𝑇
𝐴𝑥

𝜆min = 𝜆𝑛 = min
𝑥 ̸= 0

𝑥
𝑇
𝐴𝑥

𝑥𝑇𝑥
= min
𝑥
𝑇
𝑥=1

𝑥
𝑇
𝐴𝑥

(3)

for all 𝑥 ∈ C𝑛.

Lemma 2 (Horn and Johnson [4]). Let 𝐵 be a Hermitian 𝑛×𝑛
matrix with eigenvalues 𝜆

1
≥ 𝜆

2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑛
; then for any

𝑥 ∈ 𝑅
𝑛
(𝑥 ̸= 0), 𝑦 ∈ 𝑅𝑛 (𝑦 ̸= 0),

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇
𝐵𝑦
󵄨󵄨󵄨󵄨󵄨
≤ 𝜆

1
√𝑥

𝑇
𝑥√𝑦

𝑇
𝑦. (4)

Equality holds if and only if 𝑥 is an eigenvector of𝐵 correspond-
ing to 𝜆

1
and 𝑦 = 𝛼𝑥 for some 𝛼 ∈ 𝑅.

Lemma 3 (see [1]). Let 𝐺 be a (𝜌
1
(𝑤
𝑖
), 𝜌

1
(𝑤
𝑗
))-semiregular

bipartite graph of order 𝑛 such that the first 𝑙 vertices of the
same largest eigenvalue 𝜌

1
(𝑤
𝑖
) and the remaining 𝑚 vertices

of the same largest eigenvalue 𝜌
1
(𝑤
𝑗
). Also let 𝑥 be a common

eigenvector of 𝑤
𝑖𝑗

corresponding to the largest eigenvalue
𝜌
1
(𝑤
𝑖𝑗
) for all 𝑖, 𝑗, where𝑤

𝑖
= ∑

𝑘∈𝑁𝑖
𝑤
𝑖𝑘
for all 𝑖. Then 𝜌

1
(𝑤
𝑖
) +

𝜌
1
(𝑤
𝑗
) is the largest eigenvalue of 𝐿(𝐺) and the corresponding

eigenvector is

(𝜌
1
(𝑤
𝑖
)𝑥
𝑇
, . . . , 𝜌

1
(𝑤
𝑖
)𝑥
𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑙

, −𝜌
1
(𝑤
𝑗
)𝑥
𝑇
, . . . , −𝜌

1
(𝑤
𝑗
)𝑥
𝑇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

).

(5)

Theorem 4 (see [1]). Let G be a simple connected weighted
graph. Then

𝜆
1
≤ max

𝑖∼𝑗

{

{

{

𝜌
1
(∑

𝑘:𝑘∼𝑖

𝑤
𝑖𝑘
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)
}

}

}

, (6)

where𝑤
𝑖𝑗
is the positive definite weight matrix of order p of the

edge 𝑖𝑗. Moreover equality holds in (6) if and only if
(i) 𝐺 is a weight-semiregular bipartite graph,
(ii) 𝑤

𝑖𝑗
have a common eigenvector corresponding to the

largest eigenvalue 𝜌
1
(𝑤
𝑖𝑗
) for all 𝑖, 𝑗.

Theorem 5 (see [2]). Let G be a simple connected weighted
graph. Then

𝜆
1

≤ max
𝑖∼𝑗

{{{{{

{{{{{

{

√
√
√
√

√

∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
) ( ∑

𝑟:𝑟∼𝑖

𝜌
1
(𝑤
𝑖𝑟
) + ∑

𝑠:𝑠∼𝑘

𝜌
1
(𝑤
𝑘𝑠
))

+ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)( ∑

𝑟:𝑟∼𝑗

𝜌
1
(𝑤
𝑗𝑟
) + ∑

𝑠:𝑠∼𝑘

𝜌
1
(𝑤
𝑘𝑠
))

}}}}}

}}}}}

}

,

(7)

where𝑤
𝑖𝑗
is the positive definite weight matrix of order p of the

edge 𝑖𝑗. Moreover equality holds in (7) if and only if

(i) 𝐺 is a bipartite semiregular graph;

(ii) 𝑤
𝑖𝑗
have a common eigenvector corresponding to the

largest eigenvalue 𝜌
1
(𝑤
𝑖𝑗
) for all 𝑖, 𝑗.

Corollary 6 (see [2]). Let 𝐺 be a simple connected weighted
graph where each edge weight 𝑤

𝑖𝑗
is a positive number. Then

𝜆
1
≤ max

𝑖

{√2𝑤
𝑖
(𝑤
𝑖
+ 𝑤

𝑖
)} , (8)

where 𝑤
𝑖
= (∑

𝑘:𝑘∼𝑖
𝑤
𝑖𝑘
𝑤
𝑘
)/𝑤

𝑖
and 𝑤

𝑖
is the weight of vertex 𝑖.

Moreover equality holds if and only if 𝐺 is a bipartite regular
graph.

Corollary 7 (see [2]). Let 𝐺 be a simple connected weighted
graph where each edge weight 𝑤

𝑖𝑗
is a positive number. Then

𝜆
1
≤ max

𝑖∼𝑗

{√𝑤
𝑖
(𝑤
𝑖
+ 𝑤

𝑖
) + 𝑤

𝑗
(𝑤
𝑗
+ 𝑤

𝑗
)} , (9)

where 𝑤
𝑖
= (∑

𝑘:𝑘∼𝑖
𝑤
𝑖𝑘
𝑤
𝑘
)/𝑤

𝑖
and 𝑤

𝑖
is the weight of vertex

𝑖. Moreover equality holds if and only if 𝐺 is a bipartite
semiregular graph.

Theorem 8 (see [2]). Let G be a simple connected weighted
graph. Then

𝜆
1

≤ max
𝑖∼𝑗

{{{

{{{

{

𝜌
1
(𝑤
𝑖
) + 𝜌

1
(𝑤
𝑗
) + √(𝜌

1
(𝑤
𝑖
) − 𝜌

1
(𝑤
𝑗
))
2

+ 4𝛾
𝑖
𝛾
𝑗

2

}}}

}}}

}

,

(10)

where 𝛾
𝑖
= (∑

𝑘:𝑘∼𝑖
𝜌
1
(𝑤
𝑖𝑘
)𝜌
1
(𝑤
𝑘
))/𝜌

1
(𝑤
𝑖
) and 𝑤

𝑖𝑗
is the posi-

tive definite weight matrix of order p of the edge 𝑖𝑗. Moreover
equality holds in (10) if and only if

(i) 𝐺 is a weighted-regular graph or 𝐺 is a weight-semi-
regular bipartite graph;

(ii) 𝑤
𝑖𝑗
have a common eigenvector corresponding to the

largest eigenvalue 𝜌
1
(𝑤
𝑖𝑗
) for all 𝑖, 𝑗.

Corollary 9 (see [2]). Let 𝐺 be a simple connected weighted
graph where each edge weight 𝑤

𝑖𝑗
is a positive number. Then

𝜆
1
≤ max

𝑖

{𝑤
𝑖
+ 𝑤

𝑖
} , (11)

where 𝑤
𝑖
= (∑

𝑘:𝑘∼𝑖
𝑤
𝑖𝑘
𝑤
𝑘
)/𝑤

𝑖
and 𝑤

𝑖
is the weight of vertex

𝑖. Moreover equality holds if and only if 𝐺 is a bipartite
semiregular graph or 𝐺 is a bipartite regular graph.
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Theorem 10 (see [3]). Let G be a simple connected weighted
graph. Then

𝜆1

≤ max
𝑖

{{{

{{{

{

√

𝜌
2

1
(𝑤𝑖) + ∑

𝑘:𝑘∼𝑖

𝜌
2

1
(𝑤𝑖𝑘) + ∑

𝑘:𝑘∼𝑖

𝜌1 (𝑤𝑖𝑤𝑖𝑘 + 𝑤𝑖𝑘𝑤𝑘)

+ ∑

1≤𝑖,𝑡≤𝑛

∑

𝑠∈𝑁𝑖∩𝑁𝑡

𝜌1 (𝑤𝑖𝑠𝑤𝑠𝑡)

}}}

}}}

}

,

(12)

where𝑤
𝑖𝑘
is the positive definite weight matrix of order 𝑝 of the

edge 𝑖𝑘 and 𝑁
𝑖
∩ 𝑁

𝑘
is the set of common neighbours of 𝑖 and

𝑘. Moreover equality holds in (12) if and only if

(i) 𝐺 is a weight-semiregular bipartite graph;

(ii) 𝑤
𝑖𝑘
have a common eigenvector corresponding to the

largest eigenvalue 𝜌
1
(𝑤
𝑖𝑘
) for all 𝑖, 𝑘.

Corollary 11 (see [3]). Let 𝐺 be a simple connected weighted
graph where each edge weight 𝑤

𝑖𝑗
is a positive number. Then

𝜆
1
≤ max

𝑖

{{{

{{{

{

√

𝑤
2

𝑖
+ ∑

𝑘:𝑘∼𝑖

𝑤
2

𝑖𝑘
+ ∑

𝑘:𝑘∼𝑖

(𝑤
𝑖
𝑤
𝑖𝑘
+ 𝑤

𝑘
𝑤
𝑖𝑘
)

+ ∑
1≤𝑖,𝑡≤𝑛

∑
𝑠∈𝑁𝑖∩𝑁𝑡

𝑤
𝑖𝑠
𝑤
𝑠𝑡

}}}

}}}

}

. (13)

Moreover equality holds if and only if 𝐺 is a bipartite semireg-
ular graph.

3. Two Upper Bounds on the Largest Laplacian
Eigenvalue of Weighted Graphs

In this section we present two upper bounds for the largest
eigenvalue of weighted graphs and compare the bounds with
some examples.

Theorem 12. Let G be a simple connected weighted graph.
Then

𝜆
1
≤ max

𝑖∼𝑗

{{{{{{{

{{{{{{{

{

𝜌
1
(𝑤
𝑖
) + 𝜌

1
(𝑤
𝑗
) + √(𝜌

1
(𝑤
𝑖
) − 𝜌

1
(𝑤
𝑗
))
2

+ 4( ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))( ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))

2

}}}}}}}

}}}}}}}

}

, (14)

where𝑤
𝑖𝑗
is the positive definite weight matrix of order p of the

edge 𝑖𝑗. Moreover equality holds in (14) if and only if

(i) 𝐺 is a weighted-regular graph or 𝐺 is a weight-
semiregular bipartite graph;

(ii) 𝑤
𝑖𝑗
have a common eigenvector corresponding to the

largest eigenvalue 𝜌
1
(𝑤
𝑖𝑗
) for all 𝑖, 𝑗.

Proof. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be an eigenvector corre-

sponding to the largest eigenvalue 𝜆
1
of 𝐿(𝐺).We assume that

𝑥
𝑖
is the vector component of𝑋 such that

𝑥
𝑇

𝑖
𝑥
𝑖
= max
𝑘∈𝑉

{𝑥
𝑇

𝑘
𝑥
𝑘
} . (15)

Since𝑋 is nonzero, so is 𝑥
𝑖
. Let

𝑥
𝑇

𝑗
𝑥
𝑗
= max
𝑘:𝑘∼𝑖

{𝑥
𝑇

𝑘
𝑥
𝑘
} (16)

be. The (𝑖, 𝑗)th element of 𝐿(𝐺) is

{{

{{

{

𝑤
𝑖
; if 𝑖 = 𝑗

−𝑤
𝑖,𝑗
; if 𝑖 ∼ 𝑗

0; otherwise.
(17)

We have

𝐿 (𝐺)𝑋 = 𝜆1𝑋. (18)

From the 𝑖th equation of (18), we have

(𝜆
1
𝐼
𝑝,𝑝
− 𝑤

𝑖
) 𝑥
𝑖
= − ∑

𝑘:𝑘∼𝑖

𝑤
𝑖𝑘
𝑥
𝑘
, (19)

that is,

𝑥
𝑇

𝑖
(𝜆
1
𝐼
𝑝,𝑝
− 𝑤

𝑖
) 𝑥
𝑖
= − ∑

𝑘:𝑘∼𝑖

𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘 (20)

≤ ∑

𝑘:𝑘∼𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨 (21)

≤ ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑘
𝑥
𝑘

by (4)

(22)

≤ ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑗
𝑥
𝑗

by (16) .

(23)

From (23) we have

(𝜆
1
− 𝜌

1
(𝑤
𝑖
)) 𝑥

𝑇

𝑖
𝑥
𝑖
≤ 𝑥

𝑇

𝑖
(𝜆
1
𝐼
𝑝,𝑝
− 𝑤

𝑖
) 𝑥
𝑖

by (2)

≤ ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑗
𝑥
𝑗
,

(24)
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that is,

(𝜆
1
− 𝜌

1
(𝑤
𝑖
)) 𝑥

𝑇

𝑖
𝑥
𝑖
≤ ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑗
𝑥
𝑗
. (25)

From the 𝑗th equation of (18), we get

(𝜆
1
𝐼
𝑝,𝑝
− 𝑤

𝑗
) 𝑥
𝑗
= − ∑

𝑘:𝑘∼𝑗

𝑤
𝑗𝑘
𝑥
𝑘
, (26)

that is,

𝑥
𝑇

𝑗
(𝜆
1
𝐼
𝑝,𝑝
− 𝑤

𝑖
) 𝑥
𝑗
= − ∑

𝑘:𝑘∼𝑗

𝑥
𝑇

𝑗
𝑤
𝑗𝑘
𝑥
𝑘 (27)

≤ ∑

𝑘:𝑘∼𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑗
𝑤
𝑗𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨 (28)

≤ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)√𝑥

𝑇

𝑗
𝑥
𝑗
√𝑥

𝑇

𝑘
𝑥
𝑘

by (4)

(29)

≤ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑗
𝑥
𝑗

by (15) .

(30)

Similarly, from (30) we get

(𝜆
1
− 𝜌

1
(𝑤
𝑗
)) 𝑥

𝑇

𝑗
𝑥
𝑗
≤ 𝑥

𝑇

𝑗
(𝜆
1
𝐼
𝑝,𝑝
− 𝑤

𝑗
) 𝑥
𝑗

by (2)

≤ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑗
𝑥
𝑗
,

(31)

that is,

(𝜆
1
− 𝜌

1
(𝑤𝑗)) 𝑥

𝑇

𝑗
𝑥
𝑗
≤ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑘
𝑥
𝑘
. (32)

So, from (25) and (32) we have

(𝜆
1
− 𝜌

1
(𝑤
𝑗
)) (𝜆

1
− 𝜌

1
(𝑤
𝑖
)) 𝑥

𝑇

𝑗
𝑥
𝑗
𝑥
𝑇

𝑖
𝑥
𝑖

≤ (∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)) ⋅ ( ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))𝑥

𝑇

𝑗
𝑥
𝑗
𝑥
𝑇

𝑖
𝑥
𝑖
.

(33)

Hence we get

(𝜆
1
− 𝜌

1
(𝑤
𝑗
)) (𝜆

1
− 𝜌

1
(𝑤
𝑖
))

≤ ( ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)) ⋅ ( ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)) ,

(34)

that is,

𝜆
2

1
− 𝜆

1
(𝜌
1
(𝑤
𝑗
) + 𝜌

1
(𝑤
𝑖
)) + 𝜌

1
(𝑤
𝑖
) 𝜌
1
(𝑤
𝑗
)

− ( ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)) ⋅ ( ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)) ≤ 0,

(35)

that is,

𝜆
1
≤

𝜌
1
(𝑤
𝑖
) + 𝜌

1
(𝑤
𝑗
)

2

+

√(𝜌
1
(𝑤
𝑖
) − 𝜌

1
(𝑤
𝑗
))
2

+ 4( ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))( ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))

2

≤ max
𝑖∼𝑗

{{{{{{{

{{{{{{{

{

𝜌1 (𝑤𝑖)+𝜌1 (𝑤𝑗)

2

+

√(𝜌1 (𝑤𝑖)−𝜌1 (𝑤𝑗))
2

+4( ∑

𝑘:𝑘∼𝑖

𝜌1 (𝑤𝑖𝑘))( ∑

𝑘:𝑘∼𝑗

𝜌1 (𝑤𝑗𝑘))

2

}}}}}}}

}}}}}}}

}

.

(36)

This completes the proof of (14).
Now suppose that equality holds in (14).Then all inequal-

ities in the previous argument must be equalities.
From equality in (23), we get

𝑥
𝑇

𝑖
𝑥
𝑖
= 𝑥

𝑇

𝑘
𝑥
𝑘

for all 𝑘, 𝑘 ∼ 𝑖. (37)

Since 𝑥
𝑖
̸= 0, we get that 𝑥

𝑘
̸= 0 for all 𝑘, 𝑘 ∼ 𝑖. From equa-

lity in (22) andLemma 2,we get that𝑥
𝑖
is an eigenvector of𝑤

𝑖𝑘

for the largest eigenvalue 𝜌
1
(𝑤
𝑖𝑘
). Hence we say that 𝑥

𝑘
= 𝑎𝑥

𝑖

for some 𝑎, for any 𝑘, 𝑘 ∼ 𝑖.
On the other hand, from (37) we get

𝑎
2
𝑥
𝑇

𝑖
𝑥
𝑖
= 𝑥

𝑇

𝑖
𝑥
𝑖
, (38)

that is,

𝑎
2
= 1 as 𝑥𝑇

𝑖
𝑥
𝑖
> 0. (39)

From equality in (21), we have

− ∑

𝑘:𝑘∼𝑖

𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘
= ∑

𝑘:𝑘∼𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨
. (40)

Since 𝑥
𝑘
= 𝑎𝑥

𝑖
, from (40) we get

−∑𝑎

𝑘:𝑘∼𝑖

𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑖
= ∑

𝑘:𝑘∼𝑖

|𝑎|
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨

= ∑

𝑘:𝑘∼𝑖

|𝑎| 𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘

as 𝑥𝑇
𝑖
𝑤
𝑖𝑘
𝑥
𝑘
> 0.

(41)

Hence we get

𝑎 = −1 (42)

from equalities in (41). Therefore we have

𝑥
𝑘
= −𝑥

𝑖
for all 𝑘, 𝑘 ∼ 𝑖. (43)
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Similarly from equality in (29), we get that 𝑥
𝑗
is an

eigenvector of 𝑤
𝑗𝑘

for the largest eigenvalue 𝜌
1
(𝑤
𝑗𝑘
). Hence

we say that 𝑥
𝑘
= 𝑏𝑥

𝑗
for some 𝑏, for any 𝑘, 𝑘 ∼ 𝑗. From

equality in (16) we have

𝑥
𝑇

𝑗
𝑥
𝑗
= 𝑥

𝑇

𝑘
𝑥
𝑘

for 𝑘 ∼ 𝑖, (44)

that is,

𝑏
2
𝑥
𝑇

𝑗
𝑥
𝑗
= 𝑥

𝑇

𝑗
𝑥
𝑗
, (45)

that is,

𝑏
2
= 1 as 𝑥𝑇

𝑗
𝑥
𝑗
> 0. (46)

Applying the same methods as previously, we get

𝑏 = −1. (47)

Therefore we have

𝑥
𝑘
= −𝑥

𝑗
for all 𝑘, 𝑘 ∼ 𝑗. (48)

For 𝑖 ∼ 𝑗

𝑥
𝑖
= −𝑥

𝑗
. (49)

Hence we take that 𝑈 = {𝑘 : 𝑥
𝑘
= 𝑥

𝑖
} and𝑊 = {𝑘 : 𝑥

𝑘
=

−𝑥
𝑖
} from (43), (48), and (49). So,𝑁

𝑗
⊂ 𝑈 and𝑁

𝑖
⊂ 𝑊. Also,

𝑈 ̸=𝑊 ̸= 0 since 𝑥
𝑖
̸= 0. Further, for any vertex 𝑠 ∈ 𝑁

𝑁𝑖
there

exists a vertex 𝑟 ∈ 𝑁
𝑖
such that 𝑟 ∼ 𝑗ℓ𝑟 ∼ 𝑠, where 𝑁

𝑁𝑖
is

the neighbor of neighbor set of vertex 𝑖. Therefore 𝑥
𝑟
= −𝑥

𝑖

and 𝑥
𝑠
= 𝑥

𝑖
. So𝑁

𝑁𝑖
⊂ 𝑈. By similar argument we can present

that 𝑁
𝑁𝑗
⊂ 𝑊. Continuing the procedure, it is easy to see,

since 𝐺 is connected, that 𝑉 = 𝑈∪𝑊 and that the subgraphs
induced by 𝑈 and𝑊, respectively, are empty graphs. Hence
𝐺 is bipartite. Moreover, 𝑥

𝑖
is a common eigenvector of 𝑤

𝑖𝑘

and 𝑤
𝑖
for the largest eigenvalue 𝜌

1
(𝑤
𝑖𝑘
) and 𝜌

1
(𝑤
𝑖
).

For 𝑖, 𝑘 ∈ 𝑈

𝜆
1
𝑥
𝑖
= 𝑤

𝑖
𝑥
𝑖
+ ∑

𝑘:𝑘∼𝑖

𝑤
𝑖𝑘
𝑥
𝑖
= 𝑤

𝑘
𝑥
𝑖
+ ∑

𝑘:𝑘∼𝑖

𝑤
𝑖𝑘
𝑥
𝑖
, (50)

that is,

𝑤
𝑖
𝑥
𝑖
= 𝑤

𝑘
𝑥
𝑖
. (51)

Since 𝑥
𝑖
is an eigenvector of 𝑤

𝑖
corresponding to the

largest eigenvalue of 𝜌
1
(𝑤
𝑖
) for all 𝑖, we get

𝜌
1
(𝑤
𝑖
) 𝑥
𝑖
= 𝜌

1
(𝑤
𝑘
) 𝑥
𝑖
, (52)

that is,

(𝜌
1
(𝑤
𝑖
) − 𝜌

1
(𝑤
𝑘
)) 𝑥

𝑖
= 0, (53)

that is,

𝜌
1
(𝑤
𝑖
) = 𝜌

1
(𝑤
𝑘
) as 𝑥

𝑖
̸= 0. (54)

Therefore we get that 𝜌
1
(𝑤
𝑖
) is constant for all 𝑖 ∈ 𝑈.

Similarly we can show that 𝜌
1
(𝑤
𝑗
) is constant for all 𝑗 ∈ 𝑊.

Hence 𝐺 is a bipartite semiregular graph.

Conversely, suppose that conditions (i)-(ii) of the the-
orem hold for the graph 𝐺. Let 𝐺 be (𝜌

1
(𝑤
𝑖
), 𝜌

1
(𝑤
𝑗
))-

semiregular bipartite graph. Let 𝑥 be a common eigenvector
of 𝑤

𝑖𝑘
corresponding to the largest eigenvalue 𝜌

1
(𝑤
𝑖𝑘
) for all

𝑖, 𝑘. Then we have

𝜌
1
(𝑤
𝑖
) = ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
) ,

𝜌
1
(𝑤
𝑗
) = ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
) .

(55)

By Lemma 3, we get

𝜆
1
= 𝜌

1
(𝑤
𝑖
) + 𝜌

1
(𝑤
𝑗
) , (56)

that is,

𝜆
1
=

𝜌
1
(𝑤
𝑖
) + 𝜌

1
(𝑤
𝑗
)

2

+

√(𝜌
1
(𝑤
𝑖
) − 𝜌

1
(𝑤
𝑗
))
2

+ 4( ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))( ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))

2
.

(57)

Corollary 13 (see [1]). Let 𝐺 be a simple connected weighted
graph where each edge weight 𝑤

𝑖,𝑗
is a positive number. Then

𝜆
1
≤ max

𝑖∼𝑗

{𝑤
𝑖
+ 𝑤

𝑗
} . (58)

Moreover equality holds in (58) if and only if 𝐺 is bipartite
semiregular graph.

Proof. Wehave 𝜌
1
(𝑤
𝑖
) = 𝑤

𝑖
and 𝜌

1
(𝑤
𝑖𝑗
) = 𝑤

𝑖𝑗
for all 𝑖, 𝑗. From

Theorem 12, we get the required result.

Corollary 14 (see [5]). Let 𝐺 be a simple connected unweight-
ed graph. Then

𝜆
1
≤ max

𝑖∼𝑗

{𝑑
𝑖
+ 𝑑

𝑗
} , (59)

where 𝑑
𝑖
is the degree of vertex 𝑖. Moreover equality holds in

(59) if and only if 𝐺 is a bipartite regular graph or 𝐺 is a
bipartite semiregular graph.

Proof. For unweighted graph, 𝑤
𝑖,𝑗
= 1 for 𝑖 ∼ 𝑗. Therefore

𝑤
𝑖
= 𝑑

𝑖
. Using Corollary 6, we get the required results.

Theorem 15. Let G be a simple connected weighted graph.
Then

𝜆
1

≤ max
𝑖∼𝑗

{√(𝜌
1
(𝑤
𝑖
) + ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))(𝜌

1
(𝑤
𝑗
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))} ,

(60)
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where𝑤
𝑖𝑗
is the positive definite weight matrix of order p of the

edge 𝑖𝑗. Moreover equality holds in (60) if and only if

(i) 𝐺 is a weighted-regular bipartite graph;
(ii) 𝑤

𝑖𝑗
have a common eigenvector corresponding to the

largest eigenvalue 𝜌
1
(𝑤
𝑖𝑗
) for all 𝑖, 𝑗.

Proof. Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇 be an eigenvector corre-

sponding to the largest eigenvalue 𝜆
1
of 𝐿(𝐺).We assume that

𝑥
𝑖
is the vector component of𝑋 such that

𝑥
𝑇

𝑖
𝑥
𝑖
= max
𝑘∈𝑉

{𝑥
𝑇

𝑘
𝑥
𝑘
} . (61)

Since𝑋 is nonzero, so is 𝑥
𝑖
. Let

𝑥
𝑇

𝑗
𝑥
𝑗
= max
𝑘:𝑘∼𝑗

{𝑥
𝑇

𝑘
𝑥
𝑘
} (62)

be. We have

𝐿 (𝐺)𝑋 = 𝜆1𝑋. (63)

From the 𝑖th equation of (43), we have

𝜆
1
𝑥
𝑖
= 𝑤

𝑖
𝑥
𝑖
− ∑

𝑘:𝑘∼𝑖

𝑤
𝑖𝑘
𝑥
𝑘
, (64)

that is,

𝜆
1
𝑥
𝑇

𝑖
𝑥
𝑖
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑇

𝑖
𝑤
𝑖
𝑥
𝑖
− ∑

𝑘:𝑘∼𝑖

𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑖
𝑤
𝑖
𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨
+ ∑

𝑘:𝑘∼𝑖

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑖
𝑤
𝑖𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨

≤ 𝜌
1
(𝑤
𝑖
) 𝑥
𝑇

𝑖
𝑥
𝑖
+ ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
)√𝑥

𝑇

𝑖
𝑥
𝑖
√𝑥

𝑇

𝑘
𝑥
𝑘

by (2)

≤ 𝜌
1
(𝑤
𝑖
) 𝑥
𝑇

𝑖
𝑥
𝑖
+ ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
) 𝑥
𝑇

𝑖
𝑥
𝑖

by (40) .

(65)

Hence we get

𝜆
1
≤ 𝜌

1
(𝑤
𝑖
) + ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
) . (66)

By the same method, from the 𝑗th equation of (43), we have

𝜆
1
𝑥
𝑗
= 𝑤

𝑗
𝑥
𝑗
− ∑

𝑘:𝑘∼𝑗

𝑤
𝑗𝑘
𝑥
𝑘
, (67)

that is,

𝜆
1
𝑥
𝑇

𝑗
𝑥
𝑗
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑇

𝑗
𝑤
𝑗
𝑥
𝑗
− ∑

𝑘:𝑘∼𝑗

𝑥
𝑇

𝑗
𝑤
𝑗𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑗
𝑤
𝑗
𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨
+ ∑

𝑘:𝑘∼𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑇

𝑗
𝑤
𝑗𝑘
𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨

≤ 𝜌
1
(𝑤
𝑗
) 𝑥
𝑇

𝑗
𝑥
𝑗
+ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)√𝑥

𝑇

𝑗
𝑥
𝑗
√𝑥

𝑇

𝑘
𝑥
𝑘

by (2)

≤ 𝜌
1
(𝑤
𝑗
) 𝑥
𝑇

𝑗
𝑥
𝑗
+ ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
) 𝑥
𝑇

𝑗
𝑥
𝑗

by (41) .

(68)

Hence we get

𝜆
1
≤ 𝜌

1
(𝑤
𝑗
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
) . (69)

From (49) and (58), we have

𝜆
2

1
≤ (𝜌

1
(𝑤
𝑖
) + ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))(𝜌

1
(𝑤
𝑗
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
)) ,

(70)

that is,

𝜆
1

≤ max
𝑖∼𝑗

{√(𝜌
1
(𝑤
𝑖
) + ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))(𝜌

1
(𝑤
𝑗
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))} .

(71)

This completes the proof of (60).
Now we show the case of equality in (60). By similar

method in Theorem 12. In the part of equalit, the necessary
condition can show easily. So we will show the sufficient
condition.

Suppose that conditions (i)-(ii) of Theorem hold for the
graph 𝐺. We must prove that

𝜆
1

= max
𝑖∼𝑗

{√(𝜌
1
(𝑤
𝑖
) + ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))(𝜌

1
(𝑤
𝑗
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))} .

(72)

Let 𝐺 be regular bipartite graph. Therefore we have
𝜌
1
(𝑤
𝑖
) = 𝛼 for 𝑖 ∈ 𝑈 and 𝜌

1
(𝑤
𝑗
) = 𝛼 for 𝑗 ∈ 𝑊 such

that 𝑉 = 𝑈 ∪ 𝑊. Let 𝑥 be a common eigenvector of 𝑤
𝑖𝑘

corresponding to the largest eigenvalue 𝜌
1
(𝑤
𝑖𝑘
) for all 𝑖, 𝑘.

Hence we have

𝜌
1
(𝑤
𝑖
) = ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
) . (73)

From (71) we get that

𝜆
1
≤ 2𝛼. (74)
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On the other hand, the following equation can be easily
verified:

(2𝛼)

(
(
(
(
(
(
(

(

𝑥

𝑥

...
𝑥

−𝑥

−𝑥

...
−𝑥

)
)
)
)
)
)
)

)

=

(
(
(
(

(

𝑤
1

⋅ 0 −𝑤
1,𝑘+1

⋅ −𝑤
1,𝑛

0 ⋅ 0 −𝑤
2,𝑘+1

⋅ −𝑤
2,𝑛

. . . ⋅ . . . . . . ⋅ . . .

0 ⋅ 𝑤
𝑘

−𝑤
𝑘,𝑘+1

⋅ −𝑤
𝑘,𝑛

−𝑤
𝑘+1,1

⋅ −𝑤
𝑘+1,𝑘

𝑤
𝑘+1

⋅ 0

−𝑤
𝑘+1,2

⋅ −𝑤
𝑘+2,𝑘

0 ⋅ 0

. . . ⋅ . . . . . . ⋅ . . .

−𝑤
𝑛,1

⋅ −𝑤
𝑛,𝑘

0 ⋅ 𝑤
𝑛

)
)
)
)

)

×

(
(
(
(
(
(
(

(

𝑥

𝑥

...
𝑥

−𝑥

−𝑥

...
−𝑥

)
)
)
)
)
)
)

)

.

(75)

Thus 2𝛼 is an eigenvalue of 𝐿(𝐺). Since 𝜆
1
is the largest

eigenvalue of 𝐿(𝐺), we get

2𝛼 ≤ 𝜆
1
. (76)

So from (74) and (76) we obtain

𝜆
1

= max
𝑖∼𝑗

{

{

{

√(𝜌
1
(𝑤
𝑖
) + ∑

𝑘:𝑘∼𝑖

𝜌
1
(𝑤
𝑖𝑘
))(𝜌

1
(𝑤
𝑗
) + ∑

𝑘:𝑘∼𝑗

𝜌
1
(𝑤
𝑗𝑘
))
}

}

}

.

(77)

Corollary 16. Let 𝐺 be a simple connected weighted graph
where each edge weight 𝑤

𝑖,𝑗
is a positive number. Then

𝜆
1
≤ max

𝑖∼𝑗

{2√𝑤𝑖𝑤𝑗} . (78)

Moreover equality holds in (78) if and only if 𝐺 is bipartite
semiregular graph.

Proof. Wehave 𝜌
1
(𝑤
𝑖
) = 𝑤

𝑖
and 𝜌

1
(𝑤
𝑖𝑗
) = 𝑤

𝑖𝑗
for all 𝑖, 𝑗. From

Theorem 15 we get the required result.

Corollary 17. Let 𝐺 be a simple connected unweighted graph.
Then

𝜆
1
≤ max

𝑖∼𝑗

{2√𝑑𝑖𝑑𝑗} , (79)

where 𝑑
𝑖
is the degree of vertex 𝑖. Moreover equality holds in

(79) if and only if 𝐺 is a bipartite regular graph or 𝐺 is a
bipartite semiregular graph.

Proof. For unweighted graph, 𝑤
𝑖,𝑗
= 1 for 𝑖 ∼ 𝑗. Therefore

𝑤
𝑖
= 𝑑

𝑖
. Using Corollary 16, we get the required results.

Example 18. Let 𝐺
1
= (𝑉

1
, 𝐸
1
) and 𝐺

2
= (𝑉

2
, 𝐸
2
) be a

weighted graph where 𝑉
1
= {1, 2, 3, 4}, 𝐸

1
= {{1, 3}, {2, 4},

{3, 4}} and each weight is the positive definite matrix of order
three. Let 𝑉

2
= {1, 2, 3, 4, 5, 6, 7}, 𝐸

2
= {

{1,4},{2,4},{3,4},

{4,5},{5,6},{5,7}
} such

that each weight is the positive definite matrix of order two.
Assume that the following Laplacian matrices of 𝐺

1
and 𝐺

2

are as follows:

𝐿 (𝐺
1
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0 −1 0 0 0 0 0

0 5 3 0 0 0 0 −5 −3 0 0 0

0 3 3 0 0 0 0 −3 −3 0 0 0

0 0 0 2 −1 0 0 0 0 −2 1 0

0 0 0 −1 2 −1 0 0 0 1 −2 1

0 0 0 0 −1 2 0 0 0 0 1 −2

−1 0 0 0 0 0 7 2 −2 6 2 −2

0 −5 −3 0 0 0 2 11 1 2 6 −2

0 −3 −3 0 0 0 −2 1 13 −2 −2 10

0 0 0 2 −1 0 6 2 −2 8 1 −2

0 0 0 −1 2 −1 2 6 −2 −3 8 −3

0 0 0 0 −1 2 −2 −2 10 −2 −2 12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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𝐿 (𝐺
2
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 1 0 0 0 0 −1 −1 0 0 0 0 0 0

1 2 0 0 0 0 −1 −2 0 0 0 0 0 0

0 0 1 1 0 0 −1 −1 0 0 0 0 0 0

0 0 1 3 0 0 −1 −3 0 0 0 0 0 0

0 0 0 0 1 1 −1 −1 0 0 0 0 0 0

0 0 0 0 1 4 −1 −4 0 0 0 0 0 0

−1 −1 −1 −1 −1 −1 4 4 −1 −1 0 0 0 0

−1 −2 −1 −3 −1 −4 4 14 −1 −5 0 0 0 0

0 0 0 0 0 0 −1 −1 3 3 −1 −1 −1 −1

0 0 0 0 0 0 −1 −5 3 18 −1 −6 −1 7

0 0 0 0 0 0 0 0 −1 −1 1 1 0 0

0 0 0 0 0 0 0 0 −1 −6 1 6 0 0

0 0 0 0 0 0 0 0 −1 −1 0 0 1 1

0 0 0 0 0 0 0 0 −1 −7 0 0 1 7

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(80)

The largest eigenvalues of 𝐿(𝐺
1
) and 𝐿(𝐺

2
) are 𝜆

1
= 25, 66,

𝜆
2
= 26.16 rounded two decimal places and the previously

mentioned bounds give the following results:

(6) (7) (10) (12) (14) (60)

𝐺
1
32.90 32.88 27.90 29.55 30.88 30.93

𝐺
2
34.12 29.86 27.11 27.22 34.05 33.90

. (81)

For 𝐺
1
, we see that the upper bounds in (14) and (60)

are better than upper bounds in (6) and (7). But they are not
better than upper bounds in (10) and (12) from (81).

For also𝐺
2
, we see that upper bounds in (14) and (60) are

only better than the upper bound in (6).
Consequently, we cannot exactly compare all the bounds

for weighted graphs, where the weights are positive definite
matrices. Modifications according to each weight of edges,
especially for matrices can be shown.

References

[1] K. Ch. Das and R. B. Bapat, “A sharp upper bound on the largest
Laplacian eigenvalue of weighted graphs,” Linear Algebra and Its
Applications, vol. 409, pp. 153–165, 2005.

[2] K. Ch. Das, “Extremal graph characterization from the upper
bound of the Laplacian spectral radius of weighted graphs,”
Linear Algebra and Its Applications, vol. 427, no. 1, pp. 55–69,
2007.
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