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A subsetD of the vertex set of a graph G, is a dominating set if every vertex in V −D is adjacent to at
least one vertex inD. The domination number γ(G) is the minimum cardinality of a dominating set
of G. A subset of V −D, which is also a dominating set of G is called an inverse dominating set of G
with respect toD. The inverse domination number γ ′(G) is the minimum cardinality of the inverse
dominating sets.Domke et al. (2004) characterized connected graphsGwith γ(G)+γ ′(G) = n, where
n is the number of vertices in G. It is the purpose of this paper to give a complete characterization
of graphs Gwith minimum degree at least two and γ(G) + γ ′(G) = n − 1.

1. Introduction

Let G = (V, E) be a simple graph. For D ⊆ V , if every vertex in V − D is adjacent to
at least one vertex in D, then D is said to be a dominating set of G [1]. A dominating set
D is said to be a minimal dominating set if no proper subset of D is a dominating set of
G. The minimum cardinality among all dominating sets of G is called domination number
of G, and it is denoted by γ(G). Any dominating set of G with cardinality γ(G) is noted
as a γ set of G [1]. Let D be a γ-set of G. If V − D contains a dominating set D′ of G,
then D′ is called an inverse dominating set with respect to D. The minimum cardinality of
all inverse dominating sets is called the inverse domination number [2] and is denoted by
γ ′(G). An inverse dominating set D′ is called a γ ′- set if |D′| = γ ′. By virtue of the definition
of the inverse domination number, γ(G) ≤ γ ′(G). The concept of the inverse domination
number was introduced by Kulli and Sigarkanti [2]. It is well known by Ore’s Theorem
[3] that if a graph G has no isolated vertices, then the complement V − D of every γ-set
D contains a dominating set. Thus any graph with no isolated vertices contains an inverse
dominating set. However, for graphs with isolated vertices, one cannot find an inverse
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dominating set. For this reason, hereafter, we restrict ourselves to graphs with no isolated
vertices.

A Gallai-type theorem has the form α(G) + β(G) = n, where α(G) and β(G) are
parameters defined on the graph G, and n is the number of vertices in G. Cockayne et
al. [4] proved certain Gallai-type theorems for graphs. In the year 1996, Cockayne et al.
characterized graphs with δ(G) ≥ 2 and γ(G) = �n/2�. Since then Baogen et al. [5]
and Randerath and Volkmann [6] independently characterized all graphs G satisfying
γ(G) = �n/2�. Next in the year 2004, Domke et al. [7] characterized graphs for which
γ(G) + γ ′(G) = n. Later on, in the year 2010, Tamizh Chelvam and Grace Prema [8]
characterized graphs with γ(G) = γ ′(G) = (n − 1)/2 where n is an odd positive integer.
Now, in this paper we characterize all graphs G with δ(G) ≥ 2 for which γ(G) + γ ′(G) =
n − 1.

Motivated by the inverse domination number, Hedetniemi et al. [9] defined and
studied the disjoint domination number γγ(G) of a graph G. A pair (D1, D2) of disjoint sets
of vertices D1, D2 ⊆ V is said to dominate a vertex u ∈ V , if D1 and D2 dominate u. Further
(D1, D2) is a dominating pair, if (D1, D2) dominates all vertices in V . The total cardinality
of a pair (D1, D2) is |D1| + |D2|, and the minimum cardinality of a dominating pair is the
disjoint domination number γγ(G) of G. As mentioned earlier, by Ore’s observation, γγ(G) ≤
|V (G)| for every graph G without isolated vertices and Hedetniemi et al. characterized all
extremal graphs for this bound. In this connection, the existence of two disjoint minimum
dominating sets in trees was first studied by Bange et al. [10]. In a related paper, Haynes and
Henning [11] studied the existence of two disjoint minimum independent dominating sets in
a tree.

Another application of finding two disjoint γ sets is the one in respect of networks.
In any network (or graphs), dominating sets are central sets, and they play a vital role
in routing problems in parallel computing [12]. Also finding efficient dominating sets is
always concern in finding optimal central sets in networks [13]. Suppose that S is a γ-
set in a graph (or network) G, when the network fails in some nodes in S, the inverse
dominating set in V − S will take care of the role of S. In this aspect, it is worthwhile to
concentrate on dominating and inverse dominating sets. Note that γ ′(G) ≥ γ(G). From the
point of networks, one may demand γ ′(G) = γ(G), where as many graphs do not enjoy
such a property. For example consider the star graph K1,n. Clearly γ(K1,n) = 1 where
as γ ′(K1,n) = n. If we consider the graph G = K1,n �K2 with n ≥ 3, then γ(G) = 2
and γ ′(G) = n. In both the cases if n is large, then γ ′(G) is sufficiently large compare to
γ(G).

The purpose of this paper is to characterize all graphs G with δ(G) ≥ 2 for which
γ(G) + γ ′(G) = n − 1. In this regards, it may be possible that γ ′(G) is larger than γ(G) and
γ(G) + γ ′(G) = n − 1. But we prove that graphs G with γ(G) + γ ′(G) = n − 1 having exactly
two disjoint minimum dominating sets. Hereafter G denotes a simple graph on n vertices
with no isolated vertices. The minimum degree of a graph G is denoted by δ(G). The set
of neighbors of a vertex v in a graph G is denoted by NG(v), and the set of neighbors of v
in an induced subgraph of G induced by A ⊆ V (G) is denoted by NA(v). Also Pn and Cn

denote the path and cycle on n vertices, respectively. The Cartesian product of graphs G1 and
G2 is the graph G1 �G2 whose vertex set is V (G1) × V (G2) and whose edge set is the set
of all pairs (u1, v1)(u2, v2) such that either u1u2 ∈ E(G1) and v1 = v2 or v1v2 ∈ E(G2) and
u1 = u2.

Let us first recall the following characterizations of graphs for which γ(G) + γ ′(G) = n.
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Theorem 1.1 (see [7, Theorem 2]). Let G be a connected graph on n vertices with δ(G) ≥ 2. Then
γ(G) + γ ′(G) = n if and only if G = C4.

Theorem 1.2 (see [7, Theorem 3]). Let G be a connected graph on n vertices with n ≥ 1 and
δ(G) = 1. Let L ⊆ V be the set of all degree one vertices and S = N(L). Then γ(G) + γ ′(G) = n if and
only if the following two conditions hold:

(1) V − S is an independent set and

(2) for every vertex x ∈ V − (S ∪ L), every stem inN(x) is adjacent to at least two leaves.

2. Graphs with γ(G) + γ ′(G) = n − 1

Tamizh Chelvam and Grace Prema [8] characterized graphs for which γ(G) = γ ′(G) =
(n − 1)/2. In this context, we attempt to characterize graphs G with δ(G) ≥ 2 for which
γ(G) + γ ′(G) = n − 1. To attain this aim, we first present the theorem which is useful in
the further discussion. To prove the following theorem, since no better proof technique is
available, authors prefer case by case analysis.

Theorem 2.1. Let G be a connected graph on n vertices with δ(G) ≥ 2. Then γ(G) + γ ′(G) = n − 1
implies that γ(G) = γ ′(G).

Proof. Let D be a γ-set of G and D′ be a γ ′-set of G with respect to D. Note that γ(G) ≤ γ ′(G).
Assume that γ(G) + γ ′(G) = n − 1, and let V (G) − {D ∪D′} = {w}. Let S ⊆ D be those vertices
that are adjacent to more than one vertex in D′. Suppose that γ(G) < γ ′(G). Then |D| < |D′|
and so S/= ∅. Let S′ = N(S) ∩D′.
Claim 1. There is at most one vertex in S′ which is adjacent to a vertex in D − S.

Suppose not, there are at least two vertices t′, r ′ in S′ and t, r ∈ D − S such that t′ is
adjacent to t and r ′ is adjacent to r. Then either both t, r ∈ D − S are adjacent to w or at least
one of t, r is not adjacent to w.

Suppose that both t, r ∈ D − S are adjacent to w. Since t′, r ′ are the only vertices in
V (G) − {D ∪ {w}} which are adjacent to t, r, and t′, r ′ are dominated by some vertices in S,
D1 = D ∪ {w} − {t, r} ⊂ D is a dominating set of G, which is a contradiction to the fact that
D is a γ-set of G.

When at least one of them, say t, is not adjacent to w. Since t ∈ D − S and δ(G) ≥ 2,
t is adjacent to a vertex u in D. Therefore D1 = D − {t} is a dominating set of G, which is
a contradiction to the fact that D is a γ-set of G. Hence, at most one vertex t′ ∈ S′ which is
adjacent to a vertex in D − S. By similar argument as given above, one can prove that t′ is
adjacent to exactly one vertex in D − S. Let us take

S′
1 =

{
S′ − {t′} if t′ exists,
S′ otherwise.

(2.1)

Note that each vertex in S has at least two neighbors in S′ and so S′
1 /= ∅.

Claim 2. (S′
1 is independent.)
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Suppose that there exists a vertex x′ ∈ S′
1 which is adjacent to y′ ∈ S′

1. Suppose that w
is not adjacent to both x′ and y′. By the fact that each vertex in S has at least two neighbors
in D′ and Claim 1, D′ − {x′} is a γ ′-set of G, a contradiction. If w is adjacent to one of x′ or y′,
say x′, then D′ − {y′} is a γ ′-set of G, which is a contradiction. Hence S′

1 is independent.
Now we have the following three possibilities.

(1) w is not adjacent to any of the vertices in S′
1.

(2) w is adjacent to exactly one vertex in S′
1.

(3) w is adjacent to more than one vertex in S′
1.

Case 1. Suppose thatw is not adjacent to any of the vertices of S′
1. If there exists x

′ ∈ S′
1 which

is adjacent to a vertex in D′ − S′
1, then D′ − {x′} is a γ ′-set with respect to D, a contradiction.

Therefore, Claim 2 along with δ(G) ≥ 2 together implies that each vertex in S′
1 has at least

two neighbors in S. Suppose that there exists a vertex x ∈ S which is adjacent to y ∈ S, then,
as in the proof of Claim 2, we get that eitherD−{x} or D−{y} is a γ-set of G, a contradiction.
Thus S is independent.
Case 1.1. Suppose that there exists a pair of vertices u, v ∈ S such thatNS′

1
(u) ∩NS′

1
(v) = {u′}

for some u′ ∈ S′
1.

Case 1.1.1. If w is adjacent to a vertex in D − {u, v}, then, by the assumption in Case 1.1, the
vertices in S′

1 −{u′}, dominated by either u or v, are also adjacent to some vertex in S−{u, v},
and so D − {u, v} ∪ {u′} is a γ-set of G, which is a contradiction.
Case 1.1.2. If w is adjacent to one of u or v, say u, and let u′ /=v′ ∈ NS′

1
(v). Note that by

assumption in Case 1, w is not adjacent to u′ as well as v′.

If there exists x ∈ S such that NS′
1
(x) = {u′, v′}. Suppose that there exists no vertex

in S′
1 − {u′, v′} which is adjacent to only v and x, and then D − {v, x} ∪ {v′} is a γ-set of

G, which is a contradiction. If there exists x′ ∈ S′
1 − {u′, v′} such that NS(x′) = {v, x}, then

D1 = D − {v} ∪ {v′} is a γ-set of G and D′
1 = D′ − {v′, x′} ∪ {v} is a γ ′-set of G with respect

to D1, a contradiction. If there exists y ∈ S − {u, v, x} such that y is adjacent to v′ and x′ only,
then by similar argument one can get a contradiction in all the cases.

If there is no vertex x ∈ S such thatNS′
1
(x) = {u′, v′}, then, by Claim 2,D1 = D − {v} ∪

{v′} is a γ-set of G, and so D′
1 = D − {u′, v′} ∪ {v} is a γ ′-set of G, which is a contradiction.

Case 1.2. Suppose that, for each pair of vertices x, y ∈ S, there exist at least two vertices
x′, y′ ∈ S′

1 such that {x′, y′} ⊆ NS′
1
(x) ∩NS′

1
(y).

Case 1.2.1. Suppose that, for some u′, v′ ∈ S′
1, there exists at most one vertex u ∈ S such that

NS(u′) ∩ NS(v′) = {u}. If w is adjacent to a vertex in D − {u}, then D1 = D − {u} ∪ {u′} is a
γ-set, and so D′

1 = D′ − {u′, v′} ∪ {u} is a γ ′-set of G, a contradiction. If ND(w) = {u}, then
D1 = D − {u} ∪ {w} is a γ-set and so D′

1 = D′ − {u′, v′} ∪ {u} is a γ ′-set of G, a contradiction.
Case 1.2.2. Suppose that, for each pair of vertices x′, y′ ∈ S′

1, there exist at least two vertices
x, y ∈ S such that {x, y} ⊆ NS(x′)∩NS(y′). Note that |S| ≥ 2 and |S′

1| ≥ 2. Assume that |S| = k
and S = {u1, u2, . . . , uk}. If w is adjacent to some vertex in S, say u1, then by the assumption
in Case 1.2, there exist u2 ∈ S and u′

1, u
′
2 ∈ S′

1 such that 〈{u1, u2, u
′
1, u

′
2}〉 = K2,2 as S, and S′

1
are independent.

Assume that |S| = k ≥ 3. Suppose that Ns′1(u3) = {u′
1, u

′
2}. Since u′

2 dominates both
u2, u3 and u′

1, u
′
2 are the vertices dominated by u2 and u3, D1 = D − {u3, u2} ∪ {u′

2} is a
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γ-set of G, a contradiction. Thus u3 is adjacent to vertex in S − {u′
1, u

′
2}, say u′

3. Suppose
that NS(u′

3) ⊆ {u1, u2, u3}. Since each pair of vertices in S has at least two neighbors, we
have D1 = D − {u2} ∪ {u′

2} as a γ-set and D′
1 = D′ − {u′

2, u
′
3} ∪ {u2} as a γ ′-set of G, a

contradiction. Thus u′
3 is adjacent to some vertex in S − {u1, u2, u3}, take u4. Proceed like this

up to uk, and let u′
k
∈ Ns′1(uk). If NS(u′

k
) ⊆ S, then D1 = D − {uk−1} ∪ {u′

k−1} is a γ-set, and
so D′

1 = D′ − {u′
k−1, u

′
k
} ∪ {uk−1} is a γ ′-set of G, a contradiction. Hence u′

k
is adjacent to at

least one vertex in S − {u1, . . . , uk} = ∅, which is not possible.
Let |S| = k = 2. If |S′

1| ≥ 3, then u′
3 is adjacent to u1 and u2 only. Therefore

D1 = D − {u2} ∪ {u′
2} is a γ-set, and D′

1 = D′ − {u′
2, u

′
3} ∪ {u2} is a γ ′-set of G, a contradiction.

If |S′
1| = 2, then D = D′, which is a contradiction.

Case 2. Suppose that w is adjacent to exactly one vertex x′ ∈ S′
1. If u

′ ∈ S′
1 − {x′} is adjacent to

a vertex in D′, then D′ − {u′} is a γ ′-set of G, a contradiction. Thus every vertex in S′
1 − {x′}

has at least two neighbors in S.
If |S′

1| ≥ 3, then, as in Case 1, replacing S′
1 by S′

1 − {x′}, we get contradiction in all the
possibilities.

Let |S′
1| = 2 and S′

1 = {x′, y′}. Since y′ has at least two neighbors in S, |S| ≥ 2 and so
|S| ≥ |S′

1|, which is contradiction to |D| < |D′|.
If |S′

1| = 1, then since |D| < |D′|, S = ∅, a contradiction to S/= ∅.
Case 3. Suppose w is adjacent to more than one vertex in S′

1, say u′, v′ ∈ S′
1. If no vertex in

S is adjacent to only u′, v′, then D′ − {u′, v′} ∪ {w} is a γ-set of G, a contradiction. Thus there
exists a vertex u ∈ S such thatNS′

1
(u) = {u′, v′}. Ifw is adjacent to u, thenD1 = D − {u} ∪ {w}

is a γ-set and D′
1 = D′ − {u′, v′} ∪ {u} is a γ ′-set of G, a contradiction. Now let u/=x ∈ ND(w)

and let x′ ∈ ND′(x).
Suppose that there exists y ∈ D − {x} such that y ∈ N(x′). Suppose there exists

z ∈ D − {u, x} such that ND′(z) ⊆ {u′, v′, x′}. Then D − {u, z} ∪ {u′} is a γ-set of G, a
contradiction. Otherwise,D1 = D − {u, x} ∪ {u′, w} is a γ-set andD′

1 = D′ − {u′, v′, x′} ∪ {x, u}
is a γ ′-set of G, a contradiction.

Suppose that ND(x′) = {x}. If x′ is adjacent to w, then, D′ − {u′, x′} ∪ {w} is a γ ′-set
of G. If x′ is not adjacent to w, then as δ(G) ≥ 2, x′ is adjacent to at least a vertex say y′ ∈ D′.
Since x′ ∈ N(y′), x, u′ ∈ N(w) and ND(x′) = {x}, we get D′ − {u′, x′} ∪ {w} is a γ ′-set of G,
which is a contradiction.
Hence, γ(G) = γ ′(G).

Bange et al. [10] characterized trees with two disjoint minimum dominating sets. In
the following corollary, we give the necessary condition for graphs with minimum degree at
least two having two disjoint minimum dominating sets.

Corollary 2.2. Let G be a connected graph on n vertices with δ(G) ≥ 2. If γ(G)+ γ ′(G) = n−1, then
G has two disjoint γ-sets.

The following example shows that in general Theorem 2.1 is not true whenever
δ(G) = 1.

Example 2.3. (i) Consider the graph P6, the path on 6 vertices. Then γ(P6) = 2 and γ ′(P6) = 3.
Therefore, γ(P6) + γ ′(P6) = 5 but γ(P6)/= γ ′(P6).
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Figure 1: Graph G.

H1 H2 H3

H4 H5 H6

Figure 2: Graphs in family C.

(ii) Consider the graph G in Figure 1. Clearly, γ(G) = 3 and γ ′(G) = 4. Therefore γ(G)+
γ ′(G) = 7 = n − 1 whereas γ(G)/= γ ′(G).

Lemma 2.4. Let G be a connected graph with δ(G) ≥ 2. Then γ(G) + γ ′(G) = n − 1 if and only if
γ(G) = γ ′(G) = �n/2�, and n is odd.

Proof. If γ(G) + γ ′(G) = n − 1, then, by Theorem 2.1, γ(G) = γ ′(G). Therefore γ(G) = γ ′(G) =
(n − 1)/2, and hence n is odd. Conversely, assume that γ(G) = γ ′(G) = �n/2� and n is odd.
Since n is an odd integer, we get γ(G) + γ ′(G) = n − 1.

Let C and D be the families of graphs given in Figures 2 and 3, respectively.
Note that the class C is a subclass of the class A, and the class D is same as the class B

where A and B are classes given in Theorem 2.6 [1, Page 45].
The next theorem characterizes all connected graphs Gwith δ(G) ≥ 2 for which γ(G)+

γ ′(G) = n − 1. By Lemma 2.4 and Lemma 2.4 [1], we get the main theorem of this paper.

Theorem 2.5. Let G be a connected graph with δ(G) ≥ 2. Then γ(G) + γ ′(G) = n − 1 if and only if
G ∈ C ∪ D.

It may be worth noting that, for any graph G, the disjoint domination number γγ(G) ≤
γ(G) + γ ′(G). Due to this, we get an upper bound for γγ(G) and γ(G) + γ ′(G) which is better
than the Ore’s observation for disjoint domination number and sum of domination number
and inverse domination number [7].

Corollary 2.6. Let G be a connected graph with δ(G) ≥ 2 and G /∈ {H1, . . . ,H11}. Then γγ(G) ≤
γ(G) + γ ′(G) ≤ n − 2.

We suggest the following problems for further study in this direction.
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H7 H8 H9 H10 H11

Figure 3: Graphs in family D.

Open Problems

(1) Find a necessary and sufficient condition for a graph G with δ(G) = 1 and γ(G) + γ ′(G) =
n − 1.

(2) Characterize all connected graphs G with δ(G) ≥ 2 for which γ(G) + γ ′(G) = n − 2.
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