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Let G be a simple graph of order n and λ ∈ N. A mapping f : V (G) → {1, 2, . . . , λ} is
called a λ-colouring of G if f(u)/= f(v) whenever the vertices u and v are adjacent in G. The
number of distinct λ-colourings of G, denoted by P(G, λ), is called the chromatic polynomial of
G. The domination polynomial of G is the polynomial D(G, λ) =

∑n
i=1 d(G, i)λ

i, where d(G, i)
is the number of dominating sets of G of size i. Every root of P(G, λ) and D(G, λ) is called
the chromatic root and the domination root of G, respectively. Since chromatic polynomial and
domination polynomial are monic polynomial with integer coefficients, its zeros are algebraic
integers. This naturally raises the question: which algebraic integers can occur as zeros of chromatic
and domination polynomials? In this paper, we state some properties of this kind of algebraic
integers.

1. Introduction

LetG be a simple graph and λ ∈ N. Amapping f : V (G) → {1, 2, . . . , λ} is called a λ-colouring
of G if f(u)/= f(v) whenever the vertices u and v are adjacent in G. The number of distinct
λ-colourings ofG, denoted by P(G, λ), is called the chromatic polynomial ofG. A zero of P(G, λ)
is called a chromatic zero of G. For a complete survey on chromatic polynomial and chromatic
root, see [1].

For any vertex v ∈ V , the open neighborhood of v is the setN(v) = {u ∈ V | uv ∈ E}, and
the closed neighborhood is the set N[v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood
of S isN(S) =

⋃
v∈S N(v), and the closed neighborhood of S isN[S] = N(S)∪S. A set S ⊆ V

is a dominating set if N[S] = V , or, equivalently, every vertex in V \ S is adjacent to at least
one vertex in S. An i-subset of V (G) is a subset of V (G) of cardinality i. Let D(G, i) be the
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family of dominating sets of G which are i-subsets and let d(G, i) = |D(G, i)|. The polynomial
D(G, x) =

∑|V (G)|
i=1 d(G, i)xi is defined as domination polynomial of G [2, 3]. A root of D(G, x) is

called a domination root ofG. We denote the set of all roots ofD(G, x) by Z(D(G, x)). For more
information and motivation of domination polynomial and domination roots, refer to [2–6].

We recall that a complex number ζ is called an algebraic number (respectively, algebraic
integer) if it is a zero of some monic polynomial with rational (resp., integer) coefficients (see
[7]). Corresponding to any algebraic number ζ, there is a unique monic polynomial p with
rational coefficients, called the minimal polynomial of ζ (over the rationals), with the property
that p divides every polynomial with rational coefficients having ζ as a zero. (The minimal
polynomial of ζ has integer coefficients if and only if ζ is an algebraic integer.)

Since the chromatic polynomial and domination polynomial are monic polynomial
with integer coefficients, its zeros are algebraic integers. This naturally raises the question:
which algebraic integers can occur as zeros of chromatic and domination polynomials?

In Sections 2 and 3, we study algebraic integers as chromatic roots and domination
roots, respectively.

As usual, we denote the complete graph of order n and the complement of G, by Kn

and G, respectively.

2. Algebraic Integers as Chromatic Roots

Since chromatic polynomial is monic polynomial with integer coefficients, its zeros are
algebraic integers. An interval is called a zero-free interval for a chromatic (domination)
polynomial, if G has no chromatic (domination) zero in this interval. It is well known that
(−∞, 0) and (0, 1) are two maximal zero-free intervals for chromatic polynomials of the
family of all graphs (see [8]). Jackson [8] showed that (1, 32/27] is another maximal zero-
free interval for chromatic polynomials of the family of all graphs and the value 32/27 is best
possible.

For chromatic polynomials clearly those roots lying in (−∞, 0) ∪ (0, 1) ∪ (1, 32/27] are
forbidden. Tutte [9] proved that B5 = (3 +

√
5)/2 = 1 + τ , where τ = (1 +

√
5)/2 is the

golden ratio, cannot be a chromatic zero. Salas and Sokal in [10] extended this result to show
that the numbers B(k)

n = 4 cos2(kπ/n) for n = 5, 7, 8, 9 and n ≥ 11, with k coprime to n, are
never chromatic zeros. For n = 10 they showed the weaker result that B10 = (5 +

√
5)/2 and

B∗
10 = (5 − √

5)/2 are not chromatic zeros of any plane near-triangulation.
Alikhani and Peng [11] have obtained the following theorem.

Theorem 2.1. τn (n ∈ N), where τ = (1+
√
5)/2 is the golden ratio, cannot be zeros of any chromatic

polynomials.

Also they extended this result to show that φ2n and all their natural powers cannot be
chromatic zeros, where φn is called n-annaci constant [12].

For some times it was thought that chromatic roots must have nonnegative real part.
This is true for graphs with fewer than ten vertices. But Sokal showed the following.

Theorem 2.2 (see [13]). Complex chromatic roots are dense in the complex plane.

Theorem 2.3. The set of chromatic roots of a graph G is not a semiring.

Proof. The set of chromatic roots is not closed under either addition or multiplication, because
it suffices to consider α + α∗ and αα∗, where α is nonreal and close to the origin.
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Theorem 2.4. Suppose that a, b are rational numbers, r ≥ 2 is an integer that is not a perfect square,
and a − |b|√r < 32/27. Then a + b

√
r is not the root of any chromatic polynomial.

Proof. If λ = a + b
√
r is a root of some polynomial with integer coefficients (e.g., a chromatic

polynomial), then so is λ∗ = a − b
√
r. But λ or λ∗ cannot belong to (−1, 0) ∪ (0, 1) ∪ (1, 32/27],

a contradiction.

Corollary 2.5. Let b be a rational number, and let r be a positive rational number such that
√
r is

irrational. Then b
√
r cannot ba a root of any chromatic polynomial.

We know that for every graph G with edge e = xy, P(G, λ) = P(G + e, λ) + P(G · e, λ),
where G · e is the graph obtained from G by contracting x and y and removing any loop. By
applying this recursive formula repeatedly, we arrive at

P(G, λ) =
∑

i≥1
biP(Ki, λ) =

∑

i≥1
bi(λ)i, (2.1)

where bi’s are some constants and

(λ)i = λ(λ − 1) · · · (λ − i + 1). (2.2)

Let us recall the definition of join of two graphs. The join of two graphsG1 andG2, denoted by
G1+G2, is a graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{uv | u ∈ V (G1)
and v ∈ V (G2)}.

Theorem 2.6 (see [14]). Let G1 and G2 be any two graphs with P(Gi, λ) expressed in factorial form,
i = 1, 2. Then

P(G1 +G2, λ) = P(G1, λ) ⊗ P(G2, λ), (2.3)

where ⊗ is called umbral product, and acts as powers (i.e., (λ)i ⊗ (λ)j = (λ)i+j).

Here we state and prove the following theorem.

Theorem 2.7. For any graph H,

P(H +Kn, λ) = λ(λ − 1) · · · (λ − n + 1)P(H,λ − n). (2.4)

Proof. It suffices to prove it for n = 1. Assume that P(H,λ) =
∑

i≥1 bi(λ)i. By Theorem 2.6,

P(H +K1, λ) = P(H,λ) ⊗ (λ)1 =
∑

i≥1
bi(λ)i+1

= λ
∑

i≥1
bi(λ − 1)i = λP(H,λ − 1).

(2.5)

Here we state and prove the following theorem.



4 International Journal of Combinatorics

Theorem 2.8. If α is a chromatic root, then for any natural number n, α + n is a chromatic root.

Proof. Since

P(G +Kn, λ) = λ(λ − 1) · · · (λ − n + 1)P(G, λ − n), (2.6)

we have the result.

By Theorem 2.1, τ and τ + 1 = τ2 are not chromatic roots. However τ + 3 is a chromatic
root (see Theorem 2.14). Therefore by Theorem 2.8 we have the following corollary.

Corollary 2.9. For every natural number n ≥ 3, τ + n is a chromatic root.

There are the following conjectures.

Conjecture 2.10 (see [15]). Let α be an algebraic integer. Then there exists a natural number n such
that α + n is a chromatic root.

Conjecture 2.11 (see [15]). Let α be a chromatic root. Then nα is a chromatic root for any natural
number n.

Definition 2.12 (see [15]). A ring of cliques is the graph R(a1, . . . , an) whose vertex set is the
union of n + 1 complete subgraphs of sizes 1, a1, . . . , an, where the vertices of each clique are
joined to those of the cliques immediately preceding or following it modn + 1.

Theorem 2.13 (see [15]). The chromatic polynomial of R(a1, . . . , an) is a product of linear factors
and the polynomial

1
q

(
n∏

i=1

(
q − ai

) −
n∏

i=1

(−ai)

)

. (2.7)

We call the polynomial in Theorem 2.13 the interesting factor.

Theorem 2.14. τ + 3 is a chromatic root.

Proof. Consider the graph R(1, 1, 5). Obviously this graph has eight vertices and by
Theorem 2.13 its interesting factor is q2 − 7q + 11, with roots (7 ± √

5)/2. Therefore the graph
R(1, 1, 5) has τ + 3 as chromatic root.

Remark 2.15. We observed that τ + n is a chromatic root for every n ≥ 3. Also we saw that
τ + 1 is not a chromatic root, but we do not know whether τ + 2 is a chromatic root or not.
Therefore this remains as an open problem.

3. Algebraic Integers as Domination Roots

For domination polynomial of a graph, it is clear that (0,∞) is zero-free interval. Brouwer
[16] has shown that −1 cannot be domination root of any graph G. For more details of the
domination polynomial of a graph at −1 refer to [17]. We also have shown that every integer
domination root is even [18].



International Journal of Combinatorics 5

Let us recall the corona of two graphs. The corona of two graphs G1 and G2, as defined
by Frucht and Harary in [19], is the graph G = G1 ◦ G2 formed from one copy of G1 and
|V (G1)| copies of G2, where the ith vertex of G1 is adjacent to every vertex in the ith copy of
G2. The coronaG◦K1, in particular, is the graph constructed from a copy ofG, where for each
vertex v ∈ V (G), a new vertex v′ and a pendant edge vv′ are added.

Here we state the following theorem.

Theorem 3.1 (see [2]). Let G be a graph. Then D(G, x) = xn(x + 2)n if and only if G = H ◦K1 for
some graph H of order n.

By above theorem there are infinite classes of graphs which have −2 as domination
roots. Since −1 is not domination root of any graph, so we do not have result for domination
roots similar to Theorem 2.8. Also we think that the following conjecture is correct.

Conjecture 3.2 (see [18]). If r is an integer domination root of a graph, then r = 0 or r = −2.

Now we recall the following theorem.

Theorem 3.3 (see [2]). Let G be a connected graph of order n. Then, Z(D(G, x)) = {0, (−3 ±√
5)/2}, if and only if G = H ◦K2, for some graphH. IndeedD(H ◦K2, x) = xn/3(x2 + 3x + 1)n/3.

The following corollary is an immediate consequence of above theorem.

Corollary 3.4. All graphs of the form H ◦K2, have −τ2 as domination roots.

The following theorem state that −τ cannot be a domination root.

Theorem 3.5. −τ cannot be a domination root.

Proof. Let G be any graph. Since D(G,−τ) is a polynomial with integral coefficients, we have
D(G, (−1 +√

5)/2) = 0. But (−1 +√
5)/2 > 0, a contradiction.

The following theorem is similar to Theorem 3.6 for domination roots.

Theorem 3.6. Suppose that a, b are rational numbers, r ≥ 2 is an integer that is not a perfect square,
and a − |b|√r < 0. Then −a − b

√
r is not the root of any domination polynomial.

Proof. If λ = −a−b√r is a root of some polynomial with integer coefficients (e.g., a domination
polynomial), then so is λ∗ = −a + b

√
r. But λ∗ ∈ (0,∞), a contradiction.

Corollary 3.7. Let b be a rational number, and let r be a positive rational number such that
√
r is

irrational. Then −|b|√r cannot ba a root of any domination polynomial.

Here we will prove that −τn for odd n, cannot be a domination root. We need some
theorems.

Theorem 3.8 (see [20]). For every natural number n,

Fn =
1√
5

(
τn − (1 − τ)n

)
. (3.1)
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Corollary 3.9. For every natural number n

Fn

Fn−1

{
< τ if n is even,

> τ if n is odd.
(3.2)

Proof. This follows from Theorem 3.8.

Now, we recall the Cassini’s formula.

Theorem 3.10 (Cassini’s formula [20]). One has

Fn−1Fn+1 − F2
n = (−1)n, (3.3)

where n ≥ 1.

Using this formula, we prove another property of golden ratio and Fibonacci numbers
which is needed for the proof of Theorem 3.13.

Theorem 3.11.

Fn−1 − τ−1Fn ∈

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

0,
1

Fn−1

)

if n is even,

( −1
Fn−1

, 0
)

if n is odd.

(3.4)

Proof. Suppose that n is even, therefore n − 1 is odd, and by Corollary 3.9, we have

Fn−1
Fn−2

> τ >
Fn

Fn−1
. (3.5)

Hence,

Fn−1
Fn

> τ−1 >
Fn−2
Fn−1

, (3.6)

and by multiplying Fn in this inequality, we have

Fn−1 > τ−1Fn >
Fn−2Fn

Fn−1
. (3.7)

Thus,

0 > τ−1Fn − Fn−1 >
(−1)n−1
Fn−1

. (3.8)
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By Theorem 3.10, we have

(−1)n
Fn−1

> Fn−1 − τ−1Fn > 0. (3.9)

Hence, for even n,

0 < Fn−1 − τ−1Fn <
1

Fn−1
. (3.10)

Similarly, the result holds when n is odd.

Theorem 3.12 (see [20, page 78]). For every n ≥ 2, τn = Fnτ + Fn−1 (n ≥ 2).

Now we are ready to prove the following theorem.

Theorem 3.13. Let n be an odd natural number. Then −τn cannot be domination roots.

Proof. By Theorem 3.12, we can write

τn = Fnτ + Fn−1 =
(
Fn

2
+ Fn−1

)

+

(√
5Fn

2

)

. (3.11)

Suppose that D(G,−τn) = 0, that is

D

(

G,

(

−Fn+1 + Fn−1
2

−
√
5Fn

2

))

= 0. (3.12)

Then

D

(

G,

(

−Fn+1 + Fn−1
2

+
√
5Fn

2

))

= 0 (3.13)

(see page 187 in [21]), but we can write

−Fn+1 + Fn−1
2

+
√
5Fn

2
= −
(
−τ−1Fn + Fn−1

)
. (3.14)

By Theorem 3.11, −(−τ−1Fn+Fn−1) ∈ (−1, 0)when n is even and −(−τ−1Fn+Fn−1) ∈ (0, 1)when
n is odd. Since n is odd, we have −(−τ−1Fn+Fn−1) ∈ (0, 1). But we know that (0,∞) is zero-free
interval for domination polynomial of any graph. Hence we have a contradiction.
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