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We reexamine Albert and Nowakowski’s variation on the game of Nim, called End-Nim, in which
the players may only remove coins from the leftmost or rightmost piles. We reformulate Albert and
Nowakowski’s solution to this game. We examine its misère version and a further variant where
the winner is the player who reduces the game to a single pile; we call this Loop-End-Nim. We show
that the three games, End-Nim, misère-End-Nim, and Loop-End-Nim, all have the same losing
positions, except for the positions where all the piles are of equal size. We also give some partial
results concerning the higher Sprague-Grundy values of the three games.

1. Introduction

Consider k piles of coins, in a row. In the classic game of Nim, the two players move
alternately, each removing a nonzero number of coins from a single pile; the winner is the
player to remove the last coin [1]. The well-known solution to Nim, using Sprague-Grundy
values, is both elegant and complete [1].

In [2], Albert and Nowakowski analysed a variation of Nim; they called End-Nim in
which the players may only remove coins from either of the end piles. This game had been
posed as problem 23 in [3], where it was called Burning the Candle at Both Ends. Albert and
Nowakowski gave a solution to this game, which we recall below, but the Sprague-Grundy
values seem particularly complicated and have not yet been determined. In this paper, we
examine the misère version of End-Nim, and a further variant where the winner is the player
who reduces the game to a single pile; we call this Loop-End-Nim, where “Loop” stands for
“leave only one pile”. While Loop-End-Nim is not strictly speaking a misère game, it has
something of the nature of a misère game. We show that the three games, End-Nim, misère-
End-Nim and Loop-End-Nim, all have the same losing positions (i.e., P-positions), except
for the positions where all the piles are of equal size. Thus, like the misère form of Nim,
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the games misère-End-Nim and Loop-End-Nim can be played with the same strategy as End-
Nim except that consideration has to be given to the exceptional positions.

The P-positions are the positions with Sprague-Grundy value 0. We also give some
partial results concerning the positions of higher Sprague-Grundy values of the three games.
It should be mentioned here that the Sprague-Grundy function plays no role in the strategy
of playing End-Nim, and it is well known that, in their usual form, they are inappropriate for
studying misère games [4]. Our interest here is simply to provide further indications as to
the complexity of the Sprague-Grundy function for End-Nim.

The positions in these games will be denoted by the corresponding sequences of coin
sizes: (a1, . . . , ak). The assumption is that the pile sizes ai are all nonempty. By reversing
A = (a1, . . . , ak) if necessary, we may assume that a1 ≤ ak.

2. The Losing Positions

In Albert and Nowakowski’s entertaining paper [2], their solution to End-Nim is given in
pictorial form, involving a matrix of arrows with asterisks and bullets. We will present it
in an alternate form. First, we introduce some notation, employing an idea similar to the
one used in [5]. For a position A = (a1, a2, . . . , ak), we define l(A) to be the largest natural
number i for which a1 = · · · = ai−1 ≤ ai. Similarly, for a position A = (a1, a2, . . . , ak) for
which the ai are not all equal, we define r(A) to be the largest natural number j for which
ak−j+1 ≥ ak−j+2 = · · · = ak. If a1 = · · · = ak, we set r(A) = 0. Then Albert and Nowakowski’s
solution can be rephrased as follows.

Theorem 2.1. In End-Nim, a position A = (a1, a2, . . . , ak) with a1 ≤ ak is a P-position if and only
if one of the following conditions holds:

(a) a1 = ak, and furthermore, l(A) + r(A) is even,

(b) ak = a1 + 1 and, furthermore, l(A) is odd and r(A) is even.

Condition (a) corresponds to the following 8 hieroglyphs of Albert and Nowakowski.

∗ ∗
∗

∗

∗ ∗

∗
∗

Condition (b) corresponds to the following 4 pictures.

∗ ∗ ∗ ∗

In these pictures, if a1 = · · · = ai−1 /=ai, then the ∗ symbol lies in the first (resp. second)
column if i is even (resp. odd), and it is adjacent to ↑ (resp. ↓) if ai−1 < ai (resp. ai−1 > ai). The
conventions for • are defined analogously, for the right hand end. Clearly, our formulation of
the result is more succinct, while Albert and Nowakowski’s presentation is more graphic.

To give the solution to misère-End-Nim, we modify slightly the definition of r. We set
rm(A) = r(A) except when a1 = · · · = ak = 1, in which case we set rm(A) = 1. Then we have
the following.
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Theorem 2.2. In misère-End-Nim, a position A = (a1, a2, . . . , ak) with a1 ≤ ak is a P-position if
and only if one of the following holds:

(a) a1 = ak and, furthermore, l(A) + rm(A) is even,

(b) ak = a1 + 1 and, furthermore, l(A) is odd and rm(A) is even.

We postpone the proof until the next section. Let us now describe the solution for
Loop-End-Nim. Once again, we modify the r function. We set ro(A) = r(A) except when
a1 = · · · = ak, in which case we set ro(A) = 1. Then we have the following.

Theorem 2.3. In Loop-End-Nim, a position A = (a1, a2, . . . , ak) with a1 ≤ ak is a P-position if and
only if one of the following holds:

(a) a1 = ak and, furthermore, l(A) + ro(A) is even,

(b) ak = a1 + 1 and, furthermore, l(A) is odd and ro(A) is even.

As an immediate consequence of the above three results, we have the following.

Corollary 2.4. The three games, End-Nim, misère-End-Nim, and Loop-End-Nim have the same P-
positions of the formA = (a1, a2, . . . , ak), where the ai are not all equal. IfA = (a1, a2, . . . , ak) where
a1 = · · · = ak, then

(a) A is a P-position of End-Nim if and only if k is even,

(b) A is a P-position of misère-End-Nim if and only if k is even and a1 > 1, or k is odd and
a1 = 1,

(c) A is a P-position of Loop-End-Nim if and only if k is odd.

3. Proof of Theorems 2.2 and 2.3

Proof of Theorem 2.2. We say that a position verifying condition (a) or (b) of Theorem 2.2 is a
0-position. We must prove two facts:

(1) from every position A that is not a 0-position, there is a move to a 0-position,

(2) there is no move from a 0-position to a 0-position.

(1) Let A = (a1, a2, . . . , ak) be a position that is not a 0-position. First suppose that A is
a P-position in End-Nim. By Theorem 2.1, a1 = · · · = ak = 1 and k is even. Then we have the
move A → (a1, a2, . . . , ak−1), which is a 0-position. Now suppose that A is not a P-position
in End-Nim. Then there is a moveA → B, where B = (b1, . . . , bn) is a P-position in End-Nim.
If B is not a 0-position, then by Theorem 2.1, b1 = · · · = bn = 1 and n is even. Hence either
k = n and a1 = · · · = ak−1 < ak, or k = n + 1 and a1 = · · · = ak−1 ≤ ak. In the former case, we
have the moveA → (a1, a2, . . . , ak−1), which is a 0-position. In the latter case, since A is not a
0-position, ak−1 < ak and we have the move A → (a1, a2, . . . , ak−1, 1), which is a 0-position.

(2) Let A → B be a move between two 0-positions, where A = (a1, a2, . . . , ak) with
a1 ≤ ak and B = (b1, . . . , bn). First suppose that A is not a P-position in End-Nim. So a1 =
· · · = ak = 1 and k is odd. But this is a contraction, since necessarily B = (a1, a2, . . . , ak−1),
which is not a 0-position. So we may suppose that A is a P-position in End-Nim. Therefore,
B is not a P-position in End-Nim. Hence b1 = · · · = bn = 1 and n is odd. Thus, either k = n and
a1 = · · · = ak−1 < ak, or k = n+ 1 and a1 = · · · = ak−1 ≤ ak. In the former case, rm(A) = 1, which
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is impossible as a1 < ak and A is a 0-position. In the latter case, l(A) is even and so, as A is a
0-position, rm(A) is also even. Hence ak = 1. But then a1 = · · · = ak = 1, which is impossible
as k is even and A is a 0-position. This completes the proof.

The following argument is modelled closely on the proof we have just given.

Proof of Theorem 2.3. We say that a position verifying condition (a) or (b) of Theorem 2.3 is a
0-position. We must prove two facts:

(1) from every position A that is not a 0-position, there is a move to a 0-position,

(2) there is no move from a 0-position to a 0-position.

(1) Let A = (a1, a2, . . . , ak) be a position that is not a 0-position. First suppose that A
is a P-position in End-Nim. By Theorem 2.1, a1 = · · · = ak and k is even. Then we have the
moveA → (a1, a2, . . . , ak−1), which is a 0-position. Now suppose thatA is not aP-position in
End-Nim. Then there is a move A → B, where B = (b1, . . . , bn) is a P-position in End-Nim. If
B is not a 0-position, then by Theorem 2.1, b1 = · · · = bn and n is even. Hence either k = n and
a1 = · · · = ak−1 < ak, or k = n+ 1. In the former case, we have the moveA → (a1, a2, . . . , ak−1),
which is a 0-position. In the latter case, k is odd and at first sight there are two possibilities:

(a) a1 < a2 = a3 = · · · = ak. Here we have the move A → C = (a1, a2, . . . , ak−1, a1),
which is a 0-position since l(C) + ro(C) = 4.

(b) a1 = a2 = · · · = ak−1 ≤ ak. Note that as A is not a 0-position, ak−1 < ak. Here we have
the move A → (a1, a2, . . . , ak−1, ak−1), which is a 0-position.

(2) Let A → B be a move between two 0-positions, where A = (a1, a2, . . . , ak) with
a1 ≤ ak and B = (b1, . . . , bn). First suppose that A is not a P-position in End-Nim. So a1 =
· · · = ak and k is odd. Then either n = k, b1 < a1 and b2 = b3 = · · · = bk = ak, in which case
l(B) = 2, or n = k − 1 and b1 = b2 = · · · = bk−1. But in both cases, B is not a 0-position, which
gives a contradiction. So we may suppose that A is a P-position in End-Nim. Therefore, B
is not a P-position in End-Nim. Hence, b1 = · · · = bn and n is odd. Thus, either k = n and
a1 = . . . = ak−1 < ak, or k = n + 1. In the former case, ro(A) = 1, which is impossible as a1 < ak

and A is a 0-position. In the latter case, k is even and at first sight there are two possibilities:

(a) a1 < a2 = a3 = · · · = ak. Here, ro(A) = k − 1 = n, which is odd, contrary to the
assumption that A is a 0-position.

(b) a1 = a2 = · · · = ak−1 ≤ ak. Since A is a 0-position and k is even, we have ak−1 < ak.
But then ro(A) = 1, again contracting the assumption that A is a 0-position.

4. Sprague-Grundy Values for Games with Two Piles

Let us denote the Sprague-Grundy function for the games End-Nim, misère-End-Nim, and
Loop-End-Nim by G,Gm,Go, respectively. First observe that End-Nim with two piles is the
same as Nim with two piles. So we have G(a, b) = a ⊕ b, where ⊕ denotes Nim addition. The
situation regarding Loop-End-Nim is also very simple.

Proposition 4.1. In Loop-End-Nim, Go(a, b) = ((a − 1) ⊕ (b − 1)) + 1, for all a, b > 0.
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Proof. Wewill prove that Go(a, b) = G(a− 1, b− 1) + 1 by induction on a+ b. Clearly Go(1, 1) =
1 = G(0, 0) + 1. Suppose a, b > 0. Then by induction

Go(a, b) = Mex
({Go

(
a′, b

)
: 0 ≤ a′ < a

} ∪ {Go

(
a, b′

)
: 0 ≤ b′ < b

})

= Mex
({0} ∪ {Go

(
a′, b

)
: 1 ≤ a′ < a

} ∪ {Go

(
a, b′

)
: 1 ≤ b′ < b

})

= Mex
({0} ∪ {G(a′ − 1, b − 1

)
+ 1 : 1 ≤ a′ < a

} ∪ {G(a − 1, b′ − 1
)
+ 1 : 1 ≤ b′ < b

})

= Mex
({G(a′ − 1, b − 1

)
: 1 ≤ a′ < a

} ∪ {G(a − 1, b′ − 1
)
: 1 ≤ b′ < b

})
+ 1

= G(a − 1, b − 1) + 1.
(4.1)

The situation concerningmisère-End-Nim seems to be considerablymore complicated.
Indeed, as far as we are aware, even for two piles, where the game is just misère Nim, the
Sprague-Grundy function has not yet been determined! We have only been able to obtain
very partial information. From Theorem 2.2, a position A = (a, b) has Sprague-Grundy value
0 if and only if a = b /= 1. We also have the following.

Proposition 4.2. In the misère-End-Nim, a position A = (a, b) with a ≤ b has Sprague-Grundy
value 1 if and only if either a = b = 1 or a ≥ 3 is odd and b = a + 1.

We omit the proof of the above proposition; it is simple and straightforward.

5. Sprague-Grundy Values for Games with Three Piles

As we saw in Section 2, in End-Nimwith three piles, a positionA = (a1, a2, a3) is aP-position
if and only if it is symmetrical but not constant; that is, a3 = a1 and a2 /=a1. The P-positions
of misère-End-Nim comprise those of End-Nim, as well as (1, 1, 1). The P-positions of Loop-
End-Nim comprise those of End-Nim, as well as the constant positions (a, a, a), with a ≥ 1.
For the positions of Sprague-Grundy value 1, we have the following three results.

Theorem 5.1. In End-Nim, a position A = (a1, a2, a3) with a1 ≤ a3 has Sprague-Grundy value 1 if
and only if one of the following three conditions holds

(a) A = (1, 1, 1),

(b) a3 = a1 + 1 and either

(i) a1 is even and a2 < a1 or
(ii) a1 is odd and a2 > a1 and a2 /=a1 + 2,

(c) a3 = a1 + 2 and a1 is odd and a2 = a3.

Theorem 5.2. In misère-End-Nim, a position A = (a1, a2, a3) with a1 ≤ a3 has Sprague-Grundy
value 1 if and only if one of the following three conditions holds

(a) A = (1, 2, 2)

(b) a1 = a2 = a3 ≥ 3,
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(c) a3 = a1 + 1 and either

(i) a1 is even and a2 = 1 or
(ii) a1 is odd and either 2 ≤ a2 < a1 or a2 > a3.

Theorem 5.3. In Loop-End-Nim, a position A = (a1, a2, a3) with a1 ≤ a3 has Sprague-Grundy
value 1 if and only if one of the following two conditions holds

(a) a3 = a1 + 1 and either

(i) a1 is even and a2 < a1 or
(ii) a1 is odd and a2 > a3.

(b) a3 = a1 + 2 and a1 is odd, a2 = a1 + 1.

Weprovide a proof of Theorem 5.1 in the next section. The proof is simple and straight-
forward, but rather long.We omit the proofs of Theorems 5.2 and 5.3 which can be established
in the same manner. We also provide the following result without proof. It shows that it is
unlikely that there is a simple formula for the Sprague-Grundy function for End-Nim.

Theorem 5.4. In End-Nim, a position A = (a1, a2, a3) with a1 ≤ a3 has Sprague-Grundy value 2 if
and only if one of the following conditions holds, where the congruences are all modulo 4:

(a) a1 = a2 = a3 ≥ 2, a1 ≡ 1, 2,

(b) a3 = a1 + 1 and either

(i) A = (1, 1, 2)
(ii) a1 ≡ 2, a2 = a3 or
(iii) a1 is odd, a1 ≥ 7, 5 ≤ a2 ≤ a1 − 1, a2 ≡ 1, 2, except for a1 ≡ 3 where a2 /=a1 − 2.

(c) a3 = a1 + 2 and either

(i) a1 ≡ 0, a2 ≤ a1 − 1 and if a2 ≥ 5 then a2 ≡ 0, 3, or
(ii) a1 ≡ 1 and either

(I) A = (1, 2, 3),
(II) a2 ≥ a1 + 3, or
(III) a2 ≤ a1 − 1 and if a2 ≥ 5 then a2 ≡ 0, 3,

(iii) a1 ≡ 2 and either a2 = a1 − 1 ≥ 5 or a2 ≥ a1 + 2, a2 /=a1 + 4.

(d) a3 = a1 + 3, a1 ≡ 2 and a2 = a1 + 4.

6. Proof of Theorem 5.1

We say that a position is a 1-position if it has the form (a1, a2) with Sprague-Grundy value 1,
or the form (a1, a2, a3) verifying condition (a), (b), or (c) of Theorem 5.1; in the latter case we
say A is of type (a), (b), or (c), respectively. We must prove two properties:

(1) there is no move from a 1-position to a 1-position,

(2) from every position that is not a 0-position or a 1-position, there is a move to a
1-position.
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To establish the first property, we suppose that A = (a1, a2, a3) is a 1-position. If (x, y) has
Sprague-Grundy value 1, and x < y, then x is even and y = x + 1. It follows that as A =
(a1, a2, a3) is a 1-position, neither (a1, a2) nor (a2, a3) has Sprague-Grundy value 1. Indeed, if
A is a 1-position, then |a3 − a2|/= 1, and if |a1 − a2| = 1, then A is necessarily of type (b). But
in this case, if a1 is even, a2 < a1, while if a1 is odd, a2 > a1, and both cases are impossible if
(a1, a2) has Sprague-Grundy value 1. Hence it suffices to considermovesA → B = (b1, b2, b3).
First suppose that A is of type (c), that is, A has the form (a1, a1 + 2, a1 + 2), where a1 is
odd. There is obviously no move from A to (1, 1, 1). So, since the 1-positions (b1, b2, b3) have
|b3 − b1| ≤ 2, we need only consider the following moves:

(a1, a1 + 2, a1 + 2) −→ B1 = (a1, a1 + 2, a1 + 1),

(a1, a1 + 2, a1 + 2) −→ B2 = (a1, a1 + 2, a1 − 1),

(a1, a1 + 2, a1 + 2) −→ B3 = (a1, a1 + 2, a1 − 2).

(6.1)

Firstly, B1 is not a 1-position, since here b1 = a1 is odd and b2 = b1 + 2.

Secondly, B2 is not a 1-position. Indeed, b3 = a1 − 1 is even and b2 > b3.

Thirdly, B3 is not a 1-position, as here b1 = b3 + 2 but b2 /= b1.

Now suppose that A is of type (b), that is A has the form (a1, a2, a1 + 1). We need only
to consider the following moves:

(a1, a2, a1 + 1) −→ B4 = (a1 − 1, a2, a1 + 1),

(a1, a2, a1 + 1) −→ B5 = (a1, a2, a1 − 2),

(a1, a2, a1 + 1) −→ B6 = (a1, a2, a1 − 1),

(a1, a2, a1 + 1) −→ B7 = (a1, a2, a1).

(6.2)

If B4 is a 1-position, then it is of type (c) and so a1 must be even and a2 = a1 + 1, contradicting
the assumption that A is a 1-position. Similarly, if B5 is a 1-position, then it is of type (c) and
so a1 must be odd and a2 = a1, again contradicting the assumption that A is a 1-position. If
B6 is a 1-position, then it is of type (b) and either a1 is odd and a2 < a1 − 1 or a1 is even and
a2 > a1−1, and both cases contradict the assumption thatA is a 1-position. If B7 is a 1-position,
then it is of type (a) and thus a1 = 1, but then A = (1, 1, 2), which is not a 1-position.

Finally, ifA is of type (a), thenA = (1, 1, 1) and there is only one move, to (1, 1), which
is a 0-position. This completes the proof of property 1.

To prove property 2, consider a position B = (b1, b2, b3), with b1 ≤ b3, that is not a
0-position or a 1-position. There are 7 cases to consider;

(a) b3 > b1 + 2,

(b) b3 = b1 + 2 and b1 is even,

(c) b3 = b1 + 2 and b1 is odd and b2 /= b3,

(d) b3 = b1 + 1 and b1 is even and b2 ≥ b1,

(e) b3 = b1 + 1 and b1 is odd and b2 ≤ b1,
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(f) b3 = b1 + 1 and b1 is odd and b2 = b1 + 2,

(g) b3 = b2 = b1 and b1 /= 1.

In each case, we must exhibit moves to 1-positions.

Case (a). We divide this further into subcases;

(i) If b1 is even and b2 < b1, consider the move B → (b1, b2, b1 + 1).

(ii) If b1 is even and b2 = b1 or b2 > b1 + 1, consider the move B → (b1, b2, b1 − 1).

(iii) If b1 is even and b2 = b1 + 1, consider the move B → (b1, b2).

(iv) If b1 is odd and b2 = b1 + 1 or b2 > b1 + 2, consider the move B → (b1, b2, b1 + 1).

(v) If b1 is odd and b2 = b1 + 2, consider the move B → (b1, b2, b2).

(vi) If b1 is odd and b1 > 1 and b2 < b1 − 1, consider the move B → (b1, b2, b1 − 1).

(vii) If b1 is odd and b1 > 1 and b2 = b1, consider the move B → (b1, b1, b1 − 2).

(viii) If b1 is odd and b1 > 1 and b2 = b1 − 1, consider the move B → (b1, b1 − 1).

(ix) If b1 = b2 = 1, consider the move B → (1, 1, 1).

Case (b). We have subcases;

(i) If b2 < b1, consider the move B → (b1, b2, b1 + 1).

(ii) If b2 = b1 or b2 > b1 + 1, consider the move B → (b1, b2, b1 − 1).

(iii) If b2 = b1 + 1, consider the move B → (b1, b2).

Case (c). We have subcases;

(i) If b2 = b1 + 1 or b2 > b1 + 2, consider the move B → (b1, b2, b1 + 1).

(ii) If b1 > 1 and b2 < b1 − 1, consider the move B → (b1, b2, b1 − 1).

(iii) If b1 > 1 and b2 = b1, consider the move B → (b1, b1, b1 − 2).

(iv) If b1 > 1 and b2 = b1 − 1, consider the move B → (b1, b1 − 1).

(v) If b1 = b2 = 1, consider the move B → (1, 1, 1).

Case (d). We have subcases;

(i) If b2 = b1 or b2 > b1 + 1, consider the move B → (b1, b2, b1 − 1).

(ii) If b2 = b1 + 1, consider the move B → (b1, b2).

Case (e). We have subcases;

(i) If b1 > 1 and b2 < b1 − 1, consider the move B → (b1, b2, b1 − 1).

(ii) If b1 > 1 and b2 = b1, consider the move B → (b1, b1, b1 − 2).

(iii) If b1 > 1 and b2 = b1 − 1, consider the move B → (b1, b1 − 1).

(iv) If b1 = b2 = 1, consider the move B → (1, 1, 1).

Case (f). Consider the move B → (b2, b3) = (b1 + 2, b1 + 1).

Case (g). We have subcases;

(i) If b1 is odd, consider the move B → (b1 − 2, b1, b1).

(ii) If b1 is even, consider the move B → (b1, b1, b1 − 1).
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