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Recently, we identified a hierarchy relation between trinucleotide comma-free codes and
trinucleotide circular codes (see our previous works). Here, we extend our hierarchy with two new
classes of codes, called DLD and LDL codes, which are stronger than the comma-free codes. We
also prove that no circular code with 20 trinucleotides is a DLD code and that a circular code with
20 trinucleotides is comma-free if and only if it is a LDL code. Finally, we point out the possible
role of the symmetric group >, in the mathematical study of trinucleotide circular codes.

1. Introduction

We continue our study of the combinatorial properties of trinucleotide circular codes. A
trinucleotide is a word of three letters (triletter) on the genetic alphabet {A,C, G, T}. The set
of 64 trinucleotides is a code in the sense of language theory, more precisely a uniform code
but not a circular code (Remark 2.4 and [1, 2]). In order to have an intuitive meaning of these
notions, codes are written on a straight line while circular codes are written on a circle, but,
in both cases, unique decipherability is required. Circular codes are some particular subsets
of the 64 trinucleotide set while comma-free codes are even more constrained subsets.

In the past 50 years, comma-free codes and circular codes have been studied in
theoretical biology, mainly to understand the structure and the origin of the genetic code as
well as the reading frame (construction) of genes, for example [3-5]. Before the discovery of
the genetic code, Crick et al. [3] proposed a (maximal) comma-free code of 20 trinucleotides
for coding the 20 amino acids. In 1996, a (maximal) circular code Xy of 20 trinucleotides
was identified statistically on two large and different gene populations, eukaryotes, and
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prokaryotes [6]. During the last years, circular codes are mathematical objects studied in
discrete mathematics, theoretical computer science, and theoretical biology, for example [7-
22]. In particular, in theory of codes, there are some unexpected common notions between
variable length circular codes and trinucleotide circular codes [17, 19, 21, 22].

Recently, we proposed a hierarchy relation between the trinucleotide comma-free
codes and the trinucleotide circular codes (Proposition 3 in [23]). More precisely, all the tri-
nucleotide codes in this hierarchy are circular, the strongest ones being comma-free. In this
paper, we identify two new classes of trinucleotide circular codes which are stronger than the
comma-free codes.

We introduce here the following new notions. A set X of trinucleotides has the
property DLD if for any trinucleotides t, ' € X, no letter occurs both as a proper suffix of t and
a proper prefix of t. A set X of trinucleotides has the property LDL if for any trinucleotides
t,t' € X, no diletter occurs both as a proper suffix of t and a proper prefix of t'. These sets
DLD and LDL are not only trinucleotides circular codes but they are also stronger than the
comma-free codes (Propositions 3.4 and 3.5, and Remarks 3.6 and 3.7). We also prove that no
circular code with 20 trinucleotides is a DLD code (Proposition 3.10) and that a circular code
with 20 trinucleotides is comma-free if and only if it is a LDL code (Proposition 3.11).

Therefore, our previous hierarchy (Proposition 3 in [23] recalled in Proposition 2.17
below) is extended with these new DLD and LDL classes of strong trinucleotides circular
codes (Proposition 4.1).

Finally, a curious relation with the symmetric group X4 appears again. The tables given
here and the other symmetric relations identified previously (e.g., Proposition 6 in [23])
suggest that the symmetric group 34 can play an important role in the mathematical study of
these trinucleotide circular codes. However, we have no formal mathematical explanation so
far.

2. Preliminaries

Let o denote a finite alphabet, &#* the free monoid over # and «#* the free semigroup over
4. The elements of «#* are words and the empty word, denoted by ¢, is the identity of «#*.
Given a subset X of «#*, X" is the set of the words over «# which are the products of n words
from X, thatis, X" = {x1x2---x, | x; € X}.If X is a (finite) set, then |X| denotes its cardinality
and if u is a word, then |u| denotes its length. A word u is a factor of a word v if there exist
two words u' and #” such that v = v'uu”. When v’ = € (resp. u" = €), u is a prefix (resp. suffix)
of v. A proper factor (resp. proper prefix, proper suffix) u of v is a factor (resp. prefix, suffix)
u of v such that |u| < |v].

There is a correspondence between the genetic and language-theoretic concepts. The
letters (or nucleotides or bases) define the genetic alphabet «#4 = {A,C,G,T}. The set of
nonempty words (resp. words) over <44 is denoted by <4, (resp. &/;). The set of the 16 words
of length 2 (or dinucleotides or diletters) is denoted by «#3. The set of the 64 words of length
3 (or trinucleotides or triletters) is denoted by <. The total order over the alphabet <4 is
A < C <G <T. Consequently, 4, is lexicographically ordered: given two words u,v € 4,
u is smaller than v in lexicographical order, written u < v, if and only if either u is a proper
prefix of v or there exist x,y € 44, x <y, and r,s,t € 4, such that u = rxs and v = ryt.

Definition 2.1. Code: a subset X of «#* is a code over o if for each x1,...,x,,x7,..., %, € X,
n,m > 1, the condition x; - - - x, = x} - - x,, impliesn = mand x; = x; fori=1,...,n.
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For any k-letter alphabet, k > 1, and for any word length I, I > 1, . is a code. In
particular, & is a code. More precisely, it is a uniform code [1]. Consequently, any nonempty
subset of o4 is a code, called trinucleotide code in this paper.

Definition 2.2. Trinucleotide comma-free code: a trinucleotide code X C o is comma-free if
for each y € X and u,v € 4 such that uyv = x1---x, with x1,...,x, € X, n > 1, it results
that u, v € X*.

Several varieties of trinucleotide comma-free codes were described in [18].

Definition 2.3. Trinucleotide circular code: a trinucleotide code X C Ji is circular if for each
XiyooiyXn, Xy, Xy €X,m,m>1,p € A, s € A, the conditions sxz -+~ x,p = x7 - - - x,, and
x;=psimplyn=m,p=cand x; = x; fori=1,...,n.

Remark 2.4. o is obviously not a circular code and even less a comma-free code. However,
several subsets of /] are trinucleotide circular codes (e.g., Propositions 2.12 and 2.13).

Definition 2.5. Maximal trinucleotide circular code: a trinucleotide circular code X C ] is
maximal if for each x € Ji, x ¢ X, XU {x} is not a trinucleotide circular code.

Definition 2.6. A trinucleotide circular code containing exactly k elements is called a k-
trinucleotide circular code.

Remark 2.7. A 20-trinucleotide circular code is

(i) maximal (in the sense that it cannot be contained in a trinucleotide circular code
with more words);

(ii) maximum (in the sense that no trinucleotide circular code can contain more than 20
words).

We now recall some definitions and previous results related to the trinucleotide circu-
lar code necklaces. In the sequel, Iy, I, ..., I, are letters in 44, di, d, . . ., d,, are diletters in Ji,
and n is an integer satisfying n > 2.

Definition 2.8. Letter Diletter Necklaces (LDN): we say that the ordered sequence Iy, d1, l>,d,
., dy1,ly,d, is an nLDN for a subset X C 942 if lhidy, bdy,..., l,d, € X and dil,, d>l5,...,
d,1l, € X.

Definition 2.9. Letter Diletter Continued Necklaces (LDCN): we say that the ordered
sequence Iy, di, I, dy, ..., du-1,1n,dn, lns1is an (n+1) LDCN for a subset X C 942 iflidy, ds,. ..,
l,d, € Xand dilp, dbl3,...,dn1l,, dplys € X.

Definition 2.10. Diletter Letter Necklaces (DLN): we say that the ordered sequence dy, I1, da 5,
o ly1,dn, 1, is an nDLN for a subset X C 942 if dily,doly,...,d,l, € X and l1dy, bds,
.. -/lnfldn € X.

Definition 2.11. Diletter Letter Continued Necklaces (DLCN): we say that the ordered
sequence di, 1, dy, Iy, ..., lu-1,dy, Iy, dpsr is an (n+1) DLCN for a subset X C Ji if dily, doly, . . .,
dul, € X and hdy, bds,. .., 1, 1d,, l,du € X.
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Proposition 2.12 (see [17]). Let X be a trinucleotide code. The following conditions are equivalent:

(i) X is a circular code;

(ii) X has no 5LDCN.

Proposition 2.13 (see [18]). Let X be a trinucleotide code. The following conditions are equivalent:

(i) X is a comma-free code.

(ii) X has no 2LDN and no 2DLN.

Definition 2.14. Let X be a trinucleotide code. For any integer n € {2,3,4,5}, we say that X
belongs to the class C"*PN if X has no nLDN and that X belongs to the class C"PIN if X has
no nDLN. Similarly, for any integer n € {3,4,5}, we say that X belongs to the class C"tPN
if X has no nLDCN and that X belongs to the class C"PLN if X has no nDLCN.

Notation 1. For any integer n € {2,3,4,5}, I" = C"!PN n C"PIN and U™ = C"PN y C"PLN,
Similarly, for any integer n € {3,4,5}, ["C = C"!PCN 0 C"PLCN and U"C = CHLPEN y CnPLEN,

Proposition 2.15 (see [23]). The following chains of inclusions hold:
(i) C2LDN ¢ C3LDCN ¢ (BLDN  CLDCN  C4LDN  CSLDCN - (5LDN,
(if) C2PLN ¢ C3DLCN ¢ C3DLN  C4DLCN  C4DLN  CSDLCN  C5DLN.,
(iii) C2LDN ¢ C3DLCN  (BLDN  C4DLCN  C4LDN  CSDLCN - (5LDN.
(iv) C2PLN ¢ CBLDCN  C3DLN  CALDCN  C4DLN  C5LDCN  CSDLN,
(vyI?’cPPCcPcI*CcIl*cIPCcl
(viyU?> cu3CcUu? cu*Ccu*cusccu’.

Remark 2.16. By Proposition 2.13, the chain of inclusions of Proposition 2.15 (v) begins with
I? which is the class of comma-free codes.

Proposition 2.17. With 20-trinucleotide circular codes, the following chains of inclusions and equal-
ities hold:

Pcl=Pcclc=Pcul=r*ccu*c=r*cu*=r°ccu’c=r=u’.
(2.1)

3. Strong Trinucleotide Circular Codes

We introduce new definitions which impose very strong conditions on the words of a subset
of Ji. These word subsets, strongly constrained, are indeed new circular codes which are
stronger than the trinucleotide comma-free codes according to the following propositions.

Definition 3.1. A subset X of Ji’ has the DLD property if, for any I1,1, 13,13, 1, I, € <44, the
conditions 1,13 € X and [ [,I, € X imply I; #13,.
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No letter of 44 can occur in the first position of a trinucleotide of X when it is also in
the last position of another trinucleotide of X.

Definition 3.2. A subset X of Ji’ has the LDL property if, for any Iy, I} € A4, dy,d; € Ji, the
conditions Iyd; € X and 41} € X imply d; #d;.

No diletter of «#7 can occur as a prefix of a trinucleotide of X when it is also a suffix of
another trinucleotide of X.

Remark 3.3. The trinucleotide code {ACG, GT A} is not a DLD-strong trinucleotide circular
code but it is a LDL-strong trinucleotide circular code. The trinucleotide code { ACG, CGT}
is not a LDL-strong trinucleotide circular code but it is a DLD-strong trinucleotide circular
code.

Therefore, the class of DLD-strong trinucleotide circular codes is different from the
class of LDL-strong trinucleotide circular codes. However, both are very particular cases of
comma-free codes according to the following propositions.

Proposition 3.4. A DLD-strong trinucleotide circular code over A4 is comma-free.

Proof. Suppose that X is a DLD-strong trinucleotide circular code and, by way of contradic-
tion, that it is not comma-free. Then, there exist two trinucleotides xyz, x'y/'z' € X such that
either yzx' or zx'y' are in X. In the first case, x’ is a prefix of x'y/'z" and a suffix of yzx’ while in
the second case, z is a prefix of zx'y’ and a suffix of xyz. In both cases, X is not a DLD-strong
circular code. This is a contradiction. O

Proposition 3.5. A LDL-strong trinucleotide circular code over <44 is comma-free.

Proof. Suppose that X is a LDL-strong trinucleotide circular code and, by way of contradic-
tion, that it is not comma-free. Then, there exist two trinucleotides xyz, x'yy'z' € X such that
either yzx' or zx'y’ are in X. In the first case, yz is a prefix of yzx' and a suffix of xyz while
in the second case, X'y’ is a prefix of x'y/'z' and a suffix of zx'y'. In both cases, X is not a
LDL-strong circular code. This is a contradiction. O

Remark 3.6. There are trinucleotide comma-free codes which are not DLD-strong trinu-
cleotide circular codes. Example: { ACA}.

Remark 3.7. There are trinucleotide comma-free codes which are not LD L-strong trinucleotide
circular codes. Example: { ACG, CGT}.

The two following propositions are obvious.

Proposition 3.8. For any letters x,y, z € <44, a trinucleotide singleton xyz € Ji is a DLD-strong
trinucleotide circular code over Ay if and only if x # z.

Proposition 3.9. For any letters x,y,z € <44, a trinucleotide singleton xyz € Ji is a LDL-strong
trinucleotide circular code over Ay if and only if at least two of its letters are different.

Remark 3.3 showed that DLD-strong and LDL-strong trinucleotide circular codes
are different classes. The following propositions give more information about their differ-
ence.
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Proposition 3.10. No 20-trinucleotide circular code can be a DLD-strong trinucleotide circular code.

Proof. Suppose, by way of contradiction, that a 20-trinucleotide circular code X is also a DLD-
strong trinucleotide circular code. Let P (resp. S) be the set containing the letters [; (resp. I3) of
the trinucleotides I1 1,15 of X. We have PNS = @) (otherwise, X has not the DLD property), |P| >
1 (otherwise, X has at most 16 elements) and |S| > 1 (otherwise, X has at most 16 elements).
Using Pigeon Hole Principle, it follows that <#4 has two disjoint subsets, say {a, b} and {c, d},
such that P = {a,b} and S = {c,d}. Consequently, X has at most the following elements:
aAc,aCc,aGc,aTc,aAd,aCd,aGd,aTd,bAc,bCc,bGc,bTc,bAd,bCd,bGd,bTd, so we have
again at most 16 elements. This is a contradiction. O

Proposition 3.11. A 20-trinucleotide circular code is comma-free if and only if it is a LDL-strong
trinucleotide circular code.

Proof. If. By Proposition 3.5, any LD L-strong trinucleotide circular code X is also comma-free.

Only if. Suppose that X is comma-free and, by way of contradiction, that it is not a
LDL-strong trinucleotide circular code. Then, there exist two letters a,b € <4 and a diletter
d € Ji such that ad;, dib € X. As X cannot contain two elements in the same conjugation
class, the condition a #b holds. So, <44 — {a, b} contains exactly two elements, say c and d.

X being a comma-free code, X must contain exactly one trinucleotide in each of the
20 conjugation classes. By considering the conjugation class {aac, aca,caa}, only aac can
belong to X. Indeed, {aca, ad;,dib} and {caa, ad;,d,b} are not comma-free codes as the
concatenations aca.d1b and caa.d;b lead to ad; in contradiction with Definition 2.2. With
the conjugation class {bbc, beb, cbb}, only cbb can belong to X. Indeed, {bbc, ady,d1b} and
{bcb, ady,d b} are not comma-free codes as the concatenations ad;.bbc and ad,.bcb lead to
dib in contradiction with Definition 2.2. Similarly, aad and dbb must belong to X. Moreover,
with the conjugation class {acb, cba, bac}, only acb can belong to X.

Now, we have:

(i) acd ¢ X (otherwise {aac, acd, dbb} is not a comma-free code);
(ii) cda ¢ X (otherwise {cda, acb, cbb} is not a comma-free code);
(iii) dac ¢ X (otherwise {aad, dac, acb} is not a comma-free code).

S0, no element in the conjugation class {acd, cda, dac} belongs to X. This is a contradiction.
O

4. Extended Hierarchy

The previous hierarchy of trinucleotide circular codes [23] is now extended with these new
DLD and LDL codes. By Proposition 3.10, the set of DLD-strong 20-trinucleotide circular
codes is empty. Moreover, by Proposition 3.11, the set of LDL-strong 20-trinucleotide circular
codes coincide with the set of trinucleotide comma-free codes (set I?). With the notations I"
and U" (Notation 1), the hierarchy of the above recalled Proposition 2.17 is extended with
these new strong trinucleotide circular codes as follows.

Proposition 4.1. With the 20-trinucleotide circular codes, the following chains of inclusions and
equalities hold:

¢=LDLNDLD c LDLUDLD =LDL=I*cU?=I*CcU’Cc=rcu?®
(4.1)
=I*Ccu*c=r*cu*=rccu’c=r=u’.
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5. Coding of Trinucleotide Circular Codes with
the Symmetric Group %,

We use the symmetric group %, (e.g., [24]) to develop a coding of trinucleotide circular codes.

A permutation of a set X is a bijection ¢ from X into itself. Given a positive integer n, [1]
denotes the set {0,1,...,n-1}. As [n] has anatural total order 0 <1 < - - - < n—1, a permutation
o of [n] is the word o(0)o(1) - - - o(n — 1) giving the successive images of the elements of [n].
Analogously, {a,} denotes any totally ordered set {ag, ai,...,an-1}, ap < a1 < -+ < a1, of
n elements. Also as a consequence of the total order, a permutation o of {aj,} is the word
As(0)do(1) - - - Ao(n—1) and by abuse of language, o can also be considered as a permutation of
[1]. The symmetric group X, denotes all the permutations of {aj,;}.

Recall that |X| denotes the number of elements of a set X. Recall that if w =
w(0)w(l)---w(k — 1) is a word of length k on the alphabet <, then Alph(w) =
{w(0),w(1),...,w(k — 1)}. So, Alph(w) is the set of the letters of <# having at least one
occurrence in w.

A permutation of {aj,)} can be represented by a word of length n—1. Clearly, the prefix
of length n — 1 of the word ae(q) . . . As(n-1) uniquely determines ¢. There are also four other
cases to represent the elements of X, by words of length n — 1: i < j and o(i) < 0(j);i < j
and o(i) > 0(j); i > j and o(i) < 0(j); i > j and o(i) > o(j). We begin with the case i < j and
o(i) > o(j).

For a given h € [n - 1], {ajn) denotes the subset of [n — 1] containing its first
h elements ay,...,an1. For a given i € [n] and for a permutation o of {af,}, the set
ry is defined as follows: r{ = {a[s@)} N Alph(as(i+1) - - - Ao(n-1)) contains the elements of
{ae@} = {ao, ..., asa)-1} having one occurrence in ag(is1) - - - dg(n-1), the suffix of length n—i-1
of as() -+ as(n-1). Consequently, [r7| counts the number of elements j of [n] such thati < j
and ag(;) > as(j)- In other words, [r]| counts the number of elements ay of {a[,} such that
ax < aq(;) and ax is on the right of as(;) in the word as() - - - ao(n-1). Put r(i) = |r7| and let the
code of o be the word r(0)r(1) - --r(n — 1) denoted by (o).

For a given permutation o, r(0) is the number of the letters of as() - - - as(n-1) that are
strictly smaller than a, () or equivalently, the number of the elements of the alphabet {aj,}
that are strictly smaller than the leftmost letter as (), and by the choice of the alphabet, this
number is exactly 0(0) and belongs to [n — 0] = [n]. Then, r(1) is the number of the letters of
as(0) - Ao(n—1) that are strictly smaller than aq(1) and on the right of as(1y or equivalently, the
number of the elements of the alphabet {aj,} — {c(0)} that are strictly smaller than as(1) and
this number belongs to [n — 1]. And so on until r(n — 2) which is the number of the letters of
as(0) - * - Ao(n-1) that are strictly smaller than as(»-2) and on the right of as(,-2) or equivalently,
the number of the elements of the two-letter alphabet {aj,} - {c(0),...,0(n-3)} = {o(n -
2),0(n—1)} that are strictly smaller than as(,-2) and this number belongs to [n—(n-2)] = [2],
that is, with only values 0 or 1. Finally, r(n — 1) is the number of the letters of as () - - - do(n-1)
that are strictly smaller than as(,-1) and on the right of as(,-1) or equivalently, the number of
the elements of the one-letter alphabet {a[,} - {c(0),...,0(n-2)} = {o(n-1)} that are strictly
smaller than as(,-1) and this number belongs to [n — (n — 1)] = [1], that is, with value equal
to 0. Thus, r(0) € [n],r(1) € [n—-1],...,7r(i) € [n—i] and r(0)r(1) - - - v(n — 1) belongs to a set
of cardinality n! which is exactly the cardinality of %,,.

Clearly, if o and 7 are two different permutations of {ay,}, then r(c) # (7). Indeed,
let k be the maximum integer such that as) = arx). Without loss of generality, suppose that
Ao (k+1) < Ar(k+1)- As Alph(ao(k+1) e ao(n,l)) = Alph(aT(k+1) te aT(n,l)), then |T;:+1| < |T,:+1|. SO,
r(0o) is different from (7).
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Example 5.1. The code of the permutation o = asasaraiazapas of {az} is r(o) = 452110.

The correspondence p : ¢ — r(0) is an injective map between two finite sets of same
cardinality (n!). So p is a bijection and to each r(o) corresponds a unique o. The following
algorithm allows the permutation ¢ from the code (o) to be retrieved.

Algorithm 1 (principle). Initialisation aq() = a,(); only one element, say ae, in {aj,} - {as()}
can verify r(1) = [{a; € {a)} — {ac©)} | ax > a¢}l, so as1y = a,; only one element, say ag, in
{am} = {a0(), a0y} can verify 7(2) = [{a; € {am} - {400, ao)} | ap > ag}l, s0 as) = ag;
repeat this procedure until all the elements {as(), ..., dsn-2) } are found; finally as(,-1) is the
unique value in {ap,} — {as),-- ., Aom-2)}

Remark 5.2. In general, r(i+1) - - - r(n—1) is the code of the permutation as(i+1) - - - do(n-1) ON the
totally ordered alphabet {as(i+1), ..., dom-1)}-

Example 5.3. Consider the previous example with the permutation o of { a7} having the code
r(o) = 452110. As r(0) = 4, then as() = a4; as1) = a¢ as {ao, a1, az, as, as, ag} contains r(1) =5
elements strictly smaller; as) = a2 as {ao, a1, a2, as, as} contains r(2) = 2 elements strictly
smaller; as@3) = a1 as {ao, a1, a3, as} contains r(3) = 1 element strictly smaller; as4) = asz as
{ao, a3, as} contains r(4) = 1 element strictly smaller; as) = ag as {ag, as} contains r(5) = 0
element strictly smaller; finally, as) = as as {aj7} — {a00), A0(1), s(2), A6(3), Ao(a), Ao5)} =
{ain} —{as, as, a2, a1, a3, a0} = {as}. So, the permutation o is asasaraiazapas.

D

For a given permutation o, we can also define the sets IJ = {ajsu)}
Alph(as() - - aoi)-1), RY = ({am} - {aee+}) N Alph(assy -+ - @om-1)) and LY = ({apn} -
{aio()+11}) N Alph(as() - - ao(n-1)). The set I7 consists of the elements of {a[sx)]} = {ac(),---,
as(i)-1} that have one occurrence in the prefix of length i of as(g) - - - @o(n-1. Its cardinality [I7]
counts the number of elements j of [n] such that j < i and o(j) < o(i) or, in other words,
|I7| counts the number of elements ax of {a[,} such that ax < a,(;) and ay is on the left of
ao(i) N Ag(0) - * Ao(n-1)- Similarly, the set RY consists of the elements of {ap,} — {a[a4)+11} =
{ac(i)+1, ..., an-1} that have one occurrence in as(i+1) - - - o(n-1), the suffix of length n —i — 1 of
as(0) - Ao(n-1)- Its cardinality |RY| counts the number of elements j of [n] such that j > i and
o(j) > o(i) or, in other words, |R{| counts the number of elements ax of {af,} such that
ar > aq(;) and ay is on the right of as(;) in as() - - as(n-1). Finally, the set LY consists of the
elements of {aj,} — {a[o@)+1]} = {ac(@)+1,.-.,an—1} that have one occurrence in the prefix of
length i of as(g) - - - @o(n-1). Its cardinality |LY| counts the number of elements j of [n] such that
j <iand o(j) > o(i) or, in other words, |L{| counts the number of elements ax of {af,} such
that ax > a,¢) and ax is on the left of as(;) in as() - - - As(n-1)-

There are trivial relations

I7+L7 =1,
r7+R =n-i-1,
(5.1)
ry +17 = o(i),
R? + L7 =n-o(i) - 1.

For a given permutation, I, RY, and L] allow the construction of three other codes,
namely, [(0)I(1)---I(n—1), R(O)R(1) ---R(n—1) and L(0)L(1) - - - L(n — 1), which have similar
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Table 1: (a) The first column contains the permutations o of the symmetric group X, on the alphabet
{apy} = {ao, a1} and the second column contains their codes r(c). (b) The first column contains the
permutations o of the symmetric group X3 on the alphabet {aj3} = {ag, a1, a2} and the second column
their codes r(c). (c) The first column contains the permutations o of the symmetric group %4 on the
alphabet {ay} = {ao, a1, a2, a3} and the second column contains their codes (o). This table easily allows
to determine the codes for permutations on any other totally ordered four-letter alphabet, in particular the
alphabet [4] = {0,1,2,3} (0 < 1 < 2 < 3), the genetic alphabet «/; (A < C < G < T) and the alphabet
{a,b,c,d} (a < b < ¢ < d). For example, 211 is the code for 2130 on the alphabet [4], for GCT A on the
alphabet «44 and for cbda on the alphabet {a,b,c,d}.

(a)

Permutation o Code r(0)
apay 0
aap 1
(b)
Permutation o Code r(0)
apaydy 00
apaxay 01
a)apdy 10
aiarap 11
azapay 20
aray ap 21
()

Permutation o Code r(0)
apaiazas 000
apaiaza; 001
apazaias 010
apazasaq 011
apaza;ap 020
apaszdazaq 021
ajapazas 100
ajapasap 101
ajazapas 110
ajazasap 111
ajazapap 120
ajaszaap 121
apapai as 200
apapasaq 201
apaiapas 210
apaiasap 211
aaszapaq 220
axaszai ag 221
asapai az 300
asapdazaq 301
asapapap 310
aszapazap 311
asaxapay 320

azaxaidy 321
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Table 2: (a) The four classes having each six LD L-strong 20-trinucleotide circular codes. Each class is de-
scribed by its pattern and the five codes of the permutations of the symmetric group X4 on the pattern
allow the other five LD L-strong 20-trinucleotide circular codes of the class to be deduced. (b) The 16 classes
having each 12 LDL-strong 20-trinucleotide circular codes. Each class is described by its pattern and the
11 codes of the permutations of the symmetric group %4 on the pattern allow the other 11 LDL-strong
20-trinucleotide circular codes of the class to be deduced. (c) The eight classes having each 24 LDL-strong
20-trinucleotide circular codes. In this case, each class is only described by its pattern as the other 23 LDL-
strong 20-trinucleotide circular codes are obtained with the 23 permutations of the symmetric group 2.

(a)

Cq : aab,aac,aad,bab,bac,bad,bbc,bda,bdb,bdc,cab,cac,cad,ccb,cda,cdb,cdc,dda,ddb,ddc
Codes of C; : 211,220,221,301, 320
C, : aab, aac,aad,bab,bac,bad,bca,bcb,bcd,bdd, cca, ccb, ccd,dab, dac,dad, dbb, dca, dcb, dcd
Codes of C; : 201,221,311, 320,321
Cs : aab,aca, acb, acc,ada, adb, add,bba,bca,bcb,bcc, bda,bdb,bdd, cda, cdb, cdd, dca,dcb, dcc
Codes of C3 : 120,121,310,311, 321
Cy : aba, abb, abc, acc,ada, adc, add,bda,bdc,bdd, caa,cba,cbb, cbc, cda,cdc, cdd, dba, dbb, dbc
Codes of Cy4 : 201,221,311, 320,321

(b)

Cs : aab, aac,aad,bab,bac,bad,bbc,bbd, cab,cac,cad,cbc,cbd,ccd,dab,dac,dad, dbc, dbd, ddc
Codes of Cs : 020,021,101, 120,121,300, 301, 310,311,320, 321

C¢ : aab,aac,aad,bab,bac,bad,bbc,bbd, cab,cac,cad,cbc,cbd,cdb,cdc,dab,dac,dad,ddb, ddc
Codes of Cq : 011,020,201, 220,221,300,301,310,311,320,321

Cy : aab, aac,aad,bab,bac,bad,bbc,bbd, cab,cac,cad,cbc,cbd,cdd,dab,dac,dad, dbc,dbd, dcc
Codes of C7 : 020,021,101, 120,121,300, 301, 310,311,320, 321

Cs : aab,aac,aad,bab,bac,bad,bbc,bda,bdb,bdc,cab,cac,cad, cbc,cda,cdb,cdc,dda,ddb,ddc
Codes of Cg : 111,120, 121,211,220,221,300, 301,310, 320, 321

Cy : aab,aac,aad,bab,bac,bad,bbc,bdb,bdc,bdd, cab,cac,cad,ccb,cdb, cdc,cdd,dab,dac, dad
Codes of Cy : 011,021,200,201,210,211,220,221,301, 320,321

Cyo : aab, aac,aad,bab,bac,bad,bca,bcb,bcd, bdb,bdd, cca, ccb, ccd,dab,dac,dad,dca,dcb,dcd
Codes of Cyp : 110,111,121,200, 201,211, 220,221,311, 320, 321

C11 : aab, aac,aad,bab,bac,bad,bcb,bee, bed, bdd, cab, cac, cad,dab,dac,dad, dbb, dcb, dcc, dcd
Codes of Cy; : 011,020,201, 220,221,300,301, 310,311, 320,321

C1p : aab, aac,aad,bab,bac,bad,bcb,bce, bdb,bdd, cab, cac,cad, cdb, cdd,dab, dac,dad, dcb, dcc
Codes of Cy, : 020,021,101,120,121, 300,301, 310,311, 320,321

Ci3 : aab, aac,ada, adb, adc, add,bab,bac, bbc,bda,bdb,bdc,bdd, cab, cac,ccb,cda,cdb,cdc, cdd
Codes of Cy3 : 011,021,200, 201,210,211,220,221,301, 320,321

Cy4 : aab, aac,ada, adb, adc, add,bab,bac,bca,bcb,bda,bdb,bdc,bdd, cca,ccb,cda, cdb, cdc, cdd
Codes of Cy4 : 110,111,121,200,201,211,220,221,311, 320,321

Ci5 : aab, aac,ada, adb, adc, add,bab,bac,bcc,bda,bdb,bdc,bdd, cab, cac,cbb, cda,cdb,cdc, cdd
Codes of Cy5 : 011,021,200,201,210,211,220,221,301, 320,321

Ci6 : aab, aca, acb,acc, acd,ada, adb, add,bba,bca,bcb,bcc,bed,bda,bdb,bdd, dca, dcb,dcc, dcd
Codes of Cy¢ : 101,110,111,120,121,210,211,221,310,311, 321

C17 : aab, aca, acb, acc,ada, adb, add,bab,bca, bcb, bee, bda, bdb,bdd, cda, cdb, cdd, dca, dcb, dcc
Codes of Cy7 : 020,021,101,120, 121,300,301, 310,311, 320, 321

Cig : aba, abb, abc, abd, aca, acc, acd, add, cba,cbb, cbc,cbd,daa, dba, dbb, dbc,dbd,dca,dcc,dcd
Codes of Cyg : 111,120,121,211, 220,221,300, 301,310, 320, 321

Ci9 : aba, abb, abc, abd, aca, acc,ada, add, cba, cbb, cbc,cbd, cda,cdd,dba, dbb, dbc,dbd, dca, dcc
Codes of Cy9 : 020,021,101,120, 121,300,301, 310,311, 320, 321

Cy : aba, abb, abc,aca, acc,ada, adc, add,bda,bdc,bdd, cba,cbb, cbe,cda,cdc,cdd, dba, dbb, dbc
Codes of Cy : 011,020, 201,220,221, 300,301, 310,311, 320, 321
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Cy1 : aab, aac,aad,bab,bac,bad,bbc,bbd, cab, cac,cad, cbc,cbd, ccd,dab,dac,dad, dbc, dbd, dcd
Cy : aab,aac,aad,bab,bac,bad,bbc,bbd, cab, cac,cad, cbc,cbd, cdc,cdd,dab,dac,dad, dbc, dbd
Cy3 : aab, aac, aad,bab,bac,bad,bbc,bdb, bdc,bdd, cab, cac, cad, cbc,cdb, cdc, cdd,dab,dac, dad
Cyy : aab, aac,aad,bab,bac,bad,bcb,bcc,bed, bdb,bdd, cab, cac,cad,dab,dac,dad, dcb,dcc,dcd
Cys : aab, aac,ada, adb, adc, add,bab,bac,bbc,bda,bdb,bdc,bdd, cab, cac,cbc, cda, cdb, cdc,cdd
Cy : aab, aac,ada, adb, adc, add,bab,bac,bcb,bcc, bda,bdb,bdc,bdd, cab, cac,cda, cdb, cdc,cdd
Cy7 : aab, aca, acb, acc, acd,ada, adb, add,bab,bca,bcb,bcc,bed,bda,bdb,bdd, dca,dcb,dcc, dcd
Cog : aba, abb, abc, abd, aca, acc,acd, ada, add, cba,cbb, cbc, cbd, dba, dbb, dbc, dbd,dca,dcc, dcd

properties to the code r(0)r(1) - - - #(n—1). These relations can retrieve more efficiently the per-
mutation o from the code 7 (o). For the interesting case n = 4 of this paper, an efficient algo-
rithm is given.

Algorithm 2 (principle). Initialisation as() = ar); Consider {c(1),c(2),c(3)} and let {o(1),
0(2),03)} ={a,py} witha<p<y.

If (1) = 2, then as1) = ay and, if 7(2) = 1, then as2)as3) = apa, or, if r(2) = 0, then
ao(2)Ao(3) = Aadp.

If (1) = 1, then as) = ag and, if (2) = 1, then as2)as3) = ayaq or, if r(2) = 0, then
a(2)Ao(3) = Aady-

If (1) = 0, then asq)
Ao(2)A0(3) = apay-

The number r(1)r(2) is the code of the permutation as(a)ao () ao(y) On {aa, ag, ay}.

a, and, if r(2) = 1, then as)as@) = ayag or, if r(2) = 0, then

Example 5.4. Consider the permutation o of {a4} having 111 as its code. Clearly, as() = ai.
Then, the considered set {0(1),0(2),0(3)} = {a,B,y} is {ao, a2, az}. As r(1) = 1, then asn) =
ag = ap and as r(2) = 1, then as(2)as3) = aya, = asao. So, the permutation o is a;azasao.

Finally, the code of a permutation c(A)c(C)o(G)o(T) on the genetic alphabet 44 (A <
C < G <T) caneasily be computed by putting A = ap, C = a1, G = ap and T = a3. Similarly, for
the totally ordered alphabet {a,b,c,d} (a < b < ¢ < d) in Section 5, the code of a permutation
is obtained by putting a = ag, b = a1, ¢ = a, and d = as.

6. Role of the Symmetric Group 2,

Weputa=A,b=C,c=Gandd =T and identify the elements of the symmetric group 24
over {a,b,c,d} (a < b < ¢ < d) with the 24 permutations of the word abcd. We denote the
permutations by their codes (Table 1(c)).

We wish to point out that a computer calculus confirms that the 20-trinucleotide com-
ma-free codes are exactly the LDL-strong 20-trinucleotide circular codes. These codes are
partiti