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Efficient and reliable power production is necessary to meet both the profitability of power systems
operations and the electricity demand, taking also into account the environmental concerns about
the emissions produced by fossil-fuelled power plants. The economic emission load dispatch
problem has been defined and applied in order to deal with the optimization of these two
conflicting objectives, that is, the minimization of both fuel cost and emission of generating units.
This paper introduces and describes a solution to this famous problem using a new metaheuristic
nature-inspired algorithm, called firefly algorithm, which was developed by Dr. Xin-She Yang
at Cambridge University in 2007. A general formulation of this algorithm is presented together
with an analytical mathematical modeling to solve this problem by a single equivalent objective
function. The results are compared with those obtained by alternative techniques proposed by
the literature in order to show that it is capable of yielding good optimal solutions with proper
selection of control parameters.

1. Introduction

Biology-inspired metaheuristic algorithms have recently become the forefront of the current
research as an efficient way to deal with many NP-hard combinatorial optimization problems
and non-linear optimization constrained problems in general. These algorithms are based on
a particular successful mechanism of a biological phenomenon of Mother Nature in order
to achieve optimization, such as the family of honey-bee algorithms, where the finding of an
optimal solution is based on the foraging and storing the maximum amount of flowers’ nectar
[1]. A new algorithm that belongs in this category of the so-called nature inspired algorithms
is the firefly algorithm which is based on the flashing light of fireflies.

Although the real purpose and the details of this complex biochemical process of
producing this flashing light is still a debating issue in the scientific community, many
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researchers believe that it helps fireflies for finding mates, protecting themselves from their
predators and attracting their potential prey [1–4]. In the firefly algorithm, the objective
function of a given optimization problem is associated with this flashing light or light
intensity which helps the swarm of fireflies to move to brighter and more attractive locations
in order to obtain efficient optimal solutions.

In this research paper we will show how the recently developed firefly algorithm can
be used to solve the famous economic emissions load dispatch optimization problem. This
hard optimization problem constitutes one of the key problems in power system operation
and planning in which a direct solution cannot be found and therefore metaheuristic
approaches, such as the firefly algorithm, have to be used to find the near optimal solutions.
This optimization problem deals with allocating loads to power generators of a plant for
minimum total fuel cost and emissions while meeting the power demand and transmission
losses constraints. There are numerous variations of this problem which model the two
objective functions and the constraints in many different ways.

Moreover, we will demonstrate how the firefly algorithm works and how this method
can be easily adapted in order to solve this multiobjective optimization problem. Therefore,
we will discuss why this method is sufficiently accurate and easy to implement for real-time
operation and control of power systems. For the efficiency and validation of this algorithm,
we will use, as an example, a sample realistic test system having six power generators. We
will also compare the solutions obtained with the ones obtained by alternative optimization
techniques that have been successfully applied by many scientists in order to solve these
types of problems, such as the goal attainment SQP method, ant colony optimization, and
particle swarm optimization [5–10].

The remainder of this paper is organized as follows: Section 2 gives a brief description
of the multiobjective optimization and why this is important in our case. In Section 3, a
mathematical formulation and description of the economic emissions load dispatch problem
is given. Section 4 gives a brief description of the goal attainment SQP method which was
used as an alternative way to solve an example test system of the economic emission load
dispatch problem, while Section 5 briefly describes the Firefly algorithm in general. Section 6
presents the computational results simulated in Matlab and acquired when we applied both
the firefly algorithm and the goal attainment SQP method to solve the economic emission load
dispatch problem. Moreover, the efficiency of the firefly algorithm is measured by comparing
its results with those obtained by other stochastic algorithms proposed by the researchers
for different test systems of this problem. Finally, Section 7 provides some conclusions
concerning the solutions obtained by the firefly algorithm and some suggestions and ideas
for further research.

2. Multiobjective Optimization and Problem Formulation

Multiple conflicting objectives arise naturally in most real-world combinatorial optimization
problems, such as the economic emissions load dispatch problem. Several principles and
strategies have been developed and proposed for over a decade in order to solve these
problems, some of which will be discussed in this section. In the multiobjective optimization
problem, as its name implies, we have multiple objective functions with a possibility of
conflict with each other. The aim is to find a vector of decision variables that satisfies
constraints and optimizes (minimizes or maximizes) these functions. In such cases, we have
to construct an overall objective function as a linear combination of the conflicting multiple
objective functions using a weighting factor for each function. In a more precise mathematical
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way, the multiobjective optimization problem can be defined as follows [1, 7, 10–14]:

Find vector X = (x1, x2, . . . , xn)T ∈ Ω

which optimizes f(x) =
(
f1(x), f2(x), . . . , fi(x)

)

subject to gj(x) ≥ 0 or gj(x) ≤ 0, j = 1, 2, . . . m,

(2.1)

where f1, f2, . . . , fi denote the objective functions to be optimized simultaneously, X is the
vector of discrete decision variables or search/decision space, Ω is the finite set of feasible
solutions and gj(x) denotes the inequality constraints. The functions fi(x) and gi(x) may
be linear or non-linear. The multiobjective optimization problem is sometimes called vector
minimization problem.

2.1. Pareto Optimal Solutions

For any given problem having more than one objective functions, any two solutions x and
y of this problem can have one of two distinct possibilities: one solution may dominate over
the other or none of them dominates over the other, since there can be no solution vector X
that minimizes all the i objective functions simultaneously. Therefore, we introduce the well
known Pareto optimum solution concept in multiobjective optimization problems. A feasible
solution X is called Pareto optimal solution if there exists no other feasible solution Y such
that fi(Y ) ≤ fi(X) for all i = 1, 2, . . . , k with fj(Y ) < fi(X) for at least one j, which means that
the solutionX is no worse than Y in all objective functions, and the solutionX is strictly better
than Y in at least one objective function [10, 11, 13, 14]. In other words, the solutions that are
nondominated within the entire search space are denoted as Pareto optimal solutions and
constitute the Pareto optimal set or Pareto optimal frontier (i.e., the image of the Pareto set
in objective space). The knowledge of this set is crucial in many multiobjective optimization
problems, as this enables the decision maker choose the best compromise solution [11, 13, 14].

As it is very difficult to effectively handle with all the conflicting objective functions,
several methods have been developed for this purpose, such as the utility function method
and the goal attainment method. In most of these methods, the multiobjective problem
is transformed into a single-objective problem, then a set of Pareto optimal solutions is
generated, and some additional criterion or rule to select one particular Pareto optimal
solution is used as a solution of the multiobjective problem.

2.2. The Utility Function Method

In this paper, in order to apply and solve the economic emissions load dispatch problem
to the firefly algorithm, we use the utility function method or weighting function method
as an efficient way to deal with conflicting discrete goals and combine the two conflicting
objective functions of the problem into one objective function. In this method, the problem
is transformed into a single-objective function problem by using a utility function Ui(fi) for
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each objective function based on its importance compared to the other objective functions.
The overall utility function of the problem is defined as [12–14]

U =
k∑

i=1

Ui

(
fi
)
. (2.2)

Thus, the solution vector X is found by maximizing the total utility function U subject
to the constraints gj(x) ≥ 0, j = 1, 2, . . . m. Then, the previous equation can be rewritten as

U =
k∑

i=1

Ui =
k∑

i=1

wifi(X), (2.3)

where wi is a scalar weighting factor associated with the ith objective function and w1 +w2 +
· · · +wk = 1. In case of gi(x) ≤ 0, then w1 +w2 + · · · +wk = −1.

Since the economic emissions load dispatch problem has two conflicting objective
functions, the problem can be defined as f(x) = a ∗ f1(x) + (1 − a) ∗ f2(x), where f1(x)
and f2(x) represent these two conflicting objectives, and a is the weighting coefficient, as we
will see in Section 6. However, in all the tables of this paper, we will not use the weights in
the presentation of the values of the two objectives.

3. The Economic Emissions Load Dispatch Problem

The economic emission load dispatch problem is considered a hard optimization problem
which normally renders classical exact optimization methods ineffective. For this reason,
many approximate algorithms and particularly evolutionary methods such as artificial
immune systems, genetic algorithms, cultural algorithms, particle swarm optimization, and
differential evolution, have gained a lot of popularity for efficiently solving this problem [5,
6, 9, 10, 13, 15–18]. Furthermore, many hybrid methods in which two or more methodologies
are combined together in order to enhance the final model have been introduced and attracted
much attention by many researchers in the last few years [6, 8–10, 13, 15–17]. In fact, some of
these proposed hybrid approaches are considered very effective, robust, and well promising
so as to deal with other hard combinatorial optimization problems.

This problem is a multiple, conflicting objective function problem. Its primary
objective is to determine the optimal quantity of both energy and emission objectives to
reliably serve consumers. In particular, the main objective is the minimization of both the
fuel cost of operation and emission of each power unit, subject to satisfying the equality
and inequality constraints concerning operational limits of generations, the load demand,
and the transmission losses of the facilities. Notably, in the recent years, many countries in
the world have agreed to decrease the amount of pollutants fossil fuel power generating
units taking into account the environmental concerns and protection policies about the
emissions produced by these plants. However, this decrease of the total emission from a
system plant implies an increase in the system operating cost, justifying the high applicability
and paramount importance of this optimization problem. Therefore, the objective of this
problem is to find out an operating point, which keeps a balance between cost and emission.
This can be formulated mathematically as a minimization multiobjective problem as follows
[5, 6, 8–10, 13, 15–19].
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3.1. The Fuel Cost Objective

The aim is to minimize the total fuel cost (operating cost) of all committed plants can be
stated as follows:

min f1(X) =
n∑

i=1

Ci(PGi) =
n∑

i=1

(
αi + biPGi + ciP 2

Gi

)
, (3.1)

where n is the number of units power generators of a power plant, Ci is the fuel cost of
the ith generator, PGi is the out power of generator i and ai, and bi and ci are the fuel
cost coefficients of the ith generator. Normally, the fuel cost equation f1(X) is expressed
as continuous quadratic (higher order) equation, as we have here, but sometimes it can be
expressed in linear form, when the coefficient ci is equal to zero. However, in both cases, the
equation expresses the variation of fuel cost ($ or Rs) with generated power or time (MW or
hr). In our paper we use the $/hr as the only unit of measurement of the fuel cost function.

3.2. The Emissions Objective

The aim is to minimize the sum of all types of emissions from fossil power plants, namely,
the gaseous particle pollutants, such as NOx, SOx, and CO2, thermal and any other chemical
emissions with suitable emission weights/coefficients on each pollutant power generator.
In our research, without loss of generality, we will consider only one type of emission, the
amount of NOx, which is formulated in the following quadratic equation:

min f2(X) =
n∑

i=1

[
10−2 ∗

(
αi + βiPGi + γiP 2

Gi

)
+ ζi exp(λiPGi)

]
, (3.2)

where, αi, bi, γi, ζi, and λi are the emission coefficients of NOx for the ith power generator.
In our research, we use the unit of measurement of ton/hr for the emissions function (some
research papers use kg/hr).

3.3. The Necessary Constraints of the Problem

The total power generation must satisfy the total required demand (power balance) and
transmission losses. This can be formulated as follows:

n∑

i=1

PGi = D + Ploss, (3.3)

where D is the real total load demand of the system, PGi is the ith generator’s power, and Ploss

is the transmission losses. These can be determined from either the load/power flow or the
matrix Bij of coefficients. In this paper, only the Bij coefficients are considered

Ploss =
n∑

i

n∑

j

BijPiPj , (3.4)
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where, Bij are the elements of the loss coefficient matrix B and Pi and Pj are the out powers
of the ith and jth generator; respectively. In our paper, we use the MW as the only unit of
measurement of the power balance constrain.

Apart from the total demand and transmission loss constrain, there is also the
generator capacity constrain in which the power limits of each generator are formulated in
order to have a stable operation of a plant. The upper and lower limits are defined as follows:

PMIN
Gi ≤ PGi ≤ PMAX

Gi , for i = 1 . . . n, (3.5)

where PMIN
Gi and PMAX

Gi are the lower and upper limit of the ith generator’s out power PGi,
respectively. The power load of each generator unit is measured in MW. As we will see later,
in order incorporate these conditions into one equation, we will use an auxiliary (Lagrange)
function f3(x).

4. The Goal Attainment SQP Method

The goal attainment SQP method is actually a hybrid method which combines the Goal
Attainment (GA) method with the Sequential Quadratic Programming (SQP). In particular,
a multiobjective non-linear optimization problem is initially reformulated by the goal
attainment method so as it can be used by the Sequential Quadratic Programming method
(SQP) in order to optimize it. This hybrid method has been successfully applied by
many scientists as an effective way to solve many optimization problems. It constitutes a
highly effective and state-of-the-art technique to obtain the best compromise solution in a
multiobjective problem [7]. This method is already implemented in Matlab 2008 and belongs
to the standard optimization toolbox multiobjective solver of Matlab. We will apply this
method in a realistic test system, described in Section 6, in order to compare and contrast
the solutions obtained by this alternative method and those obtained by the firefly algorithm.
By this way, we will prove the effectiveness and robustness of the proposed algorithm.

4.1. The Goal Attainment Method

The main idea behind this method is to reduce a set of non-linear functions fi(X) below
a set of goals of f∗

i . However, since all goals cannot be achieved, this set of functions is
reformulated in an appropriate, well-defined way and enabling the designer to be relatively
imprecise about the initial goals [6, 8, 14, 16]. In particular, in this method, we define a
set of desired design goals b = [b1, b2, . . . , bn]

T which is associated with a set of objective
functions f(x) = {f1(x), f2(x), . . . , fn(x)}. The relative degree of underachievement or
overachievement of the desired goals is controlled by a vector of weighting coefficients,
w = [w1, w2, . . . , wn] for each objective function, which express the importance of the ith
objective function relative to the other objective functions in meeting the respective ith goal.
The goal bi is found by first solving the single-objective function optimization problem [14]

minimize fi(X), i = 1, 2, . . . , n

subject to gj(X) ≥ 0 or gj(X) ≤ 0, j = 1, 2, . . . m,
(4.1)
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whereX = (x1, x2, . . . , xn)
T ∈ Ω are the design variables. In this case, the goal bi is taken as the

optimum value of the objective fi(X), that is, bi = f∗
i = f(X∗

i ), where X∗
i denotes the solution

of the problem defined in (4.1).
In order to find the best compromise solution of the problem, we introduce a scalar

variable γ as a design variable in addition to n design variables xi, for i = 1, 2, . . . , n. Then, the
problem is solved as a standard optimization problem using the following equation [6–8, 14]:

Find {x1, x2, . . . , xn} ∈ Ω, γ ∈ R
to minimize f

(
x1, x2, . . . , xn,γ

)
= γ

subject to gj(X) ≥ 0 or gj(X) ≤ 0, j = 1, 2, . . . m, fi(X) − γwi ≤ bi
(
for gj(X) ≤ 0

)
or fi(X) + γwi ≤ bi

(
for gj(X) ≥ 0

)
, i = 1, 2, . . . , n,

(4.2)

where X = (x1, x2, . . . , xn)
T ∈ Ω are the design variables (parameters), γ is a scalar variable

unrestricted in sign, and the weights w = [w1, w2, . . . , wn] ∈ Rn satisfy the necessary
normalization condition which in case of gj(X) ≥ 0 the condition is w1 +w2 + · · · +wk = 1 or
in case of gi(x) ≤ 0 the condition is w1 +w2 + · · · +wk = −1.

Moreover, the term γwi introduces the degree of slackness into the problem, which
otherwise imposes the goals to be rigidly met. The weighting vector w enables the decision
maker to quantitatively express a measure of the relative tradeoffs between the objectives
[6–8]. For example, if we set the weighting vector equal to the initial goals, we assume equal
underachievement and overachievement of the goals bi. We can also include hard constraints
into the design by setting a particular weighting factor to zero. In particular, if a component of
vector w is equal to zero (i.e., somewi = 0), this means that the maximum limit of an objective
fi(X) is equal to bi. We can easily see that a set of solutions can be generated by varying w
overRn even for nonconvex problems, and therefore the multiobjective optimization involves
generating and selecting solutions that characterize the objectives, where the improvement of
one objective causes a declination in another objective.

During this optimization procedure, the scalar variable γ is varied changing the size
of the feasible region. It is interesting to mention that the optimum value of γ , which is
also called attainment factor, will inform the decision maker whether the decision goals are
attainable or not. A negative value of γ implies that the goal defined by the decision maker
is attainable and an improved solution can be obtained. If the value of γ is positive, then the
goal defined by the decision maker is unattainable, and no improvement of the solution is
possible.

4.2. The Sequential Quadratic Programming Method

The Sequential Quadratic Programming (SQP) method constitutes one of the most popular,
efficient, and accurate algorithms for non-linear continuous optimization which has been
implemented and tested over a large number of several combinatorial optimization problems
[7]. This method is very closely related to Newton’s method for unconstrained optimization.
In particular, at each iteration, an approximation local model of the problem is constructed
and solved providing the necessary direction for finding the solution of the originally defined
problem. In the case of an unconstrained minimization, only the objective function must be
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approximated, then the local model is quadratic and the algorithm reduces to the famous
Newton’s method.

Given a problem defined as in (4.1), both the objective function and constraints have to
be modeled. The objective function is formulated as a quadratic model while constraints are
formulated as a linear model. Both of these models are based on the quadratic approximation
of the Langragian function of the problem which is updated using a quasi-Newton updating
method. The Langragian function of the problem defined in (4.1) is given as follows [1, 7, 14]:

L(X, λ) = fi(X) −
m∑

j=1

λj ∗ gj(X), (4.3)

where, λj is a Langrage multiplier, gj(X) ≥ 0 and for i = 1, 2, . . . , n. In case of gj(X) ≤ 0, we
have a plus sign instead of minus before the sum.

Now, we can define the quadratic programming model as follows [1, 7, 14]:

min
d

L(xk, λk) +∇L(xk, λk)Td +
1
2
dT∇2L(xk, λk)d,

s.t. g(xk) +∇g(xk)Td ≥ 0 for g(xk) ≥ 0,

(4.4)

where, xk is the current estimate of a solution x∗, and d is the solution of the quadratic
programming model which is used as a search direction for finding the appropriate solution
of the given problem.

5. The Firefly Algorithm

5.1. Description

The Firefly Algorithm (FA) is a metaheuristic, nature-inspired, optimization algorithm which
is based on the social (flashing) behavior of fireflies, or lighting bugs, in the summer sky in the
tropical temperature regions [1–3, 20]. It was developed by Dr. Xin-She Yang at Cambridge
University in 2007, and it is based on the swarm behavior such as fish, insects, or bird
schooling in nature. In particular, although the firefly algorithm has many similarities with
other algorithms which are based on the so-called swarm intelligence, such as the famous
Particle Swarm Optimization (PSO), Artificial Bee Colony optimization (ABC), and Bacterial
Foraging (BFA) algorithms, it is indeed much simpler both in concept and implementation
[2–4, 20]. Furthermore, according to recent bibliography, the algorithm is very efficient and
can outperform other conventional algorithms, such as genetic algorithms, for solving many
optimization problems; a fact that has been justified in a recent research, where the statistical
performance of the firefly algorithm was measured against other well-known optimization
algorithms using various standard stochastic test functions [1–3, 20]. Its main advantage is
the fact that it uses mainly real random numbers, and it is based on the global communication
among the swarming particles (i.e., the fireflies), and as a result, it seems more effective in
multiobjective optimization such as the economic emissions load dispatch problem in our
case.

The firefly algorithm has three particular idealized rules which are based on some of
the major flashing characteristics of real fireflies [2–4, 20]. These are the following: (1) all
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fireflies are unisex, and they will move towards more attractive and brighter ones regardless
their sex. (2) The degree of attractiveness of a firefly is proportional to its brightness which
decreases as the distance from the other firefly increases due to the fact that the air absorbs
light. If there is not a brighter or more attractive firefly than a particular one, it will then
move randomly. (3) The brightness or light intensity of a firefly is determined by the value of
the objective function of a given problem. For maximization problems, the light intensity is
proportional to the value of the objective function.

5.2. Attractiveness

In the firefly algorithm, the form of attractiveness function of a firefly is the following
monotonically decreasing function [2, 3, 20]:

β(r) = β∗0 exp
(−γrm), with m ≥ 1, (5.1)

where, r is the distance between any two fireflies, β0 is the initial attractiveness at r = 0, and
γ is an absorption coefficient which controls the decrease of the light intensity.

5.3. Distance

The distance between any two fireflies i and j, at positions xi and xj , respectively, can be
defined as a Cartesian or Euclidean distance as follows [2, 3, 20]:

rij =
∥∥xi − xj

∥∥ =

√√√
√

d∑

k=1

(
xi,k − xj,k

)2
, (5.2)

where xi,k is the kth component of the spatial coordinate xi of the ith firefly and d is the
number of dimensions we have, for d = 2, we have

rij =
√(

xi − xj
)2 +

(
yi − yj

)2
. (5.3)

However, the calculation of distance r can also be defined using other distance metrics,
based on the nature of the problem, such as Manhattan distance or Mahalanobis distance.

5.4. Movement

The movement of a firefly i which is attracted by a more attractive (i.e., brighter) firefly j is
given by the following equation [2, 3, 20]:

xi = xi + β0 ∗ exp
(
−γr2

ij

)
∗ (xj − xi

)
+ a ∗

(
rand − 1

2

)
, (5.4)

where the first term is the current position of a firefly, the second term is used for considering
a firefly’s attractiveness to light intensity seen by adjacent fireflies, and the third term is
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used for the random movement of a firefly in case there are not any brighter ones. The
coefficient α is a randomization parameter determined by the problem of interest, while rand
is a random number generator uniformly distributed in the space [0,1]. As we will see in this
implementation of the algorithm, we will use β0 = 1.0, α ∈ [0, 1] and the attractiveness or
absorption coefficient γ = 1.0, which guarantees a quick convergence of the algorithm to the
optimal solution.

5.5. Convergence and Asymptotic Behavior

The convergence of the algorithm is achieved for any large number of fireflies (n) if n � m,
where m is the number of local optima of an optimization problem [1, 3]. In this case,
the initial location of n fireflies is distributed uniformly in the entire search space. The
convergence of the algorithm into all the local and global optima is achieved, as the iterations
of the algorithm continue, by comparing the best solutions of each iteration with these
optima. However, it is under research a formal proof of the convergence of the algorithm
and particularly that the algorithm will approach global optima when n → ∞ and t� 1 [3].
In practice, the algorithm converges very quickly in less than 80 iterations and less than 50
fireflies, as it is demonstrated in several research papers using some standard test functions
[1–3, 20]. Indeed, the appropriate choice of the number of iterations together with the γ ,
β, α, and n parameters highly depends on the nature of the given optimization problem as
this affects the convergence of the algorithm and the efficient find of both local and global
optima. Note that the firefly algorithm has computational complexity of O(n2), where n is
the population of fireflies. The larger population size becomes the greater the computational
time is [1–3].

5.6. Special Cases

There are two important special cases of the firefly algorithm based on the absorption
coefficient γ ; that is, when γ → 0 and γ → ∞ [1, 3, 20]. When γ → 0, the attractiveness
coefficient is constant β = β0, and the light intensity does not decrease as the distance r
between two fireflies increases. Therefore, as the light of a firefly can be seen anywhere, a
single local or global optimum can be easily reached. This limiting case corresponds to the
standard Particle Swarm Optimization (PSO) algorithm. On the other hand, when γ → ∞,
the attractiveness coefficient is the Dirac delta function β(r) → δ(r). In this limiting case,
the attractiveness to light intensity is almost zero, and as a result, the fireflies cannot see
each other, and they move completely randomly in a foggy place. Therefore, this method
corresponds to a random search method.

5.7. Hybridization

In a recent bibliography, a new metaheuristic algorithm has been developed and formulated
based on the concept of hybridizing the firefly algorithm. In particular, the new Levy flight
Firefly algorithm was developed by Dr. Xin-She Yang at Cambridge University in 2010 and
it combines the firefly algorithm with the Levy flights as an efficient search strategy [4]. It
combines the three idealized rules of the firefly algorithm together with the characteristics of
Levy flights which simulate the flight behavior of many animals and insects. In this algorithm,
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the form of the attractiveness function and the calculation of distance between two fireflies
are the same as in firefly algorithm, but in the movement function, the random step length
is a combination of the randomization parameter together with a Levy flight. In particular,
the movement of a firefly is a random walk, where the step length is drawn by the Levy
distribution [4].

6. Case Study

6.1. Application Example

In order to apply the firefly algorithm to the economic emissions load dispatch problem, we
need to effectively deal with the necessary constraints of the problem and the fact that the
firefly algorithm can directly solve only maximum optimization problems, not minimization
problems. This is expected as the light intensity or brightness of a firefly at a particular
location x can be chosen as analogous or equal to the value of the objective function at location
x.

For this reason, in order to avoid the violation of constraints, which could cause
infeasible solutions, we have converted the constrained optimization problem into an
unconstrained problem by penalizing infeasible solutions of the objective function, instead
of repairing them, which is very computationally expensive in our case [1, 11, 14]. Therefore,
we used the method of Lagrange multipliers as an efficient strategy for finding the maxima
(orminima) of the given function subject to the constraints of total required demand and
transmission losses (Section 3.3). The Lagrange multiplier we used as a weighting factor in
the Lagrange (constraints) function f3(X) is 1000. This value was chosen experimentally as a
parameter that maximizes f3(X). Furthermore, without loss of generality, in an optimization
problem, the minimum of a function can be found by seeking the maximum of the negative
of the same function, or alternatively, we can subtract from that function a large positive
number which is usually the global optimum of this function [1, 11, 12, 14]. In this problem
we adopt the first choice, where we maximize the negative form of the objective function.
Finally, we use w1 = w2 = a = 0.5 as a weighting factor for each objective function, since both
of the objectives (i.e., fuel cost and emissions) have equal importance in the given problem,
and therefore, they have to contribute equally to the formulation of the objective function.
Moreover, the choice of equal weights is also justified by some experiments we conducted
with different weights, in which we did not achieve better results, as the ranges of the values
of the two objective functions f1(X) and f2(X) are very different (Figures 3 and 6). Now the
problem can be formulated as follows:

max−f(X) = max− 0.5 ∗ f1(X) − 0.5 ∗ f2(X) − f3(X), (6.1)

where f1(X) is the fuel cost objective function defined in the following equation (in $/hr):

f1(X) =
6∑

i=1

(
αi + biPGi + ciP 2

Gi

)
, (6.2)
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Table 1: Generator cost, emission, and capacities coefficients of the test problem we will solve with the
firefly algorithm.

G1 G2 G3 G4 G5 G6

cost
a 100 120 40 60 40 100
b 200 150 180 100 180 150
c 10 10 20 10 20 10

emission

α 4.091 2.543 4.258 5.326 4.258 6.131
β −5.554 −6.047 −5.094 −3.55 −5.094 −5.555
γ 6.490 5.638 4.586 3.38 4.586 5.151
ζ 2e − 4 5e − 4 1e − 6 2e − 3 1e − 6 1e − 5
λ 2.857 3.333 8 2 8 6.667

power Pmin 0.05 0.05 0.05 0.05 0.05 0.05
Pmax 0.5 0.6 1.0 1.2 1.0 0.6

where f2(X) is the emissions objective function defined in the following equation (in ton/hr):

f2(X) =
6∑

i=1

[
10−2 ∗

(
αi + βiPGi + γiP 2

Gi

)
+ ζi exp(λiPGi)

]
, (6.3)

and f3(X) is the constraints equation which is defined as follows (in MW):

f3(X) = 1000 ∗ abs

⎛

⎝
6∑

i=1

PGi −D −
6∑

i=1

6∑

j=1

BijPGiPGj

⎞

⎠, (6.4)

It can be easily seen that the generalized form of the objective function given in
(6.1) is non-linear, and the number of equality and inequality constraints of the problem
increase with the size of the power test system we use. Therefore, the application of
conventional straightforward optimization techniques, such as the gradient-based methods,
is highly unsuccessful as the solution of the non-linear objective functions with many
inequality constraints of the problem is very computationally expensive and the search space
inefficiently large to explore.

In this test problem, we consider a plant with 6 power generators. The test system was
derived from [10]. The generation data are given in Tables 1 and 2. The total power system
load demand D is 1 MW. In particular, the values of the fuel cost and emission coefficients
together with the power limits of each generator are given in Table 1 of the next page.

In order to test and demonstrate the efficiency of the algorithm and how it deals with
different problem complexities and tradeoff surfaces we have considered two different cases.
In case A the test problem is considered as lossless; that is, the transmission power loss matrix
B is not considered. In case B, the power loss is taken into account and the transmission power
loss coefficients matrix B is defined in Table 2 of the following page. Notice that the power
loss coefficients matrix B is not symmetric (i.e., B46 /=B64), which depicts a realistic sample
system for application. The reported results of both of these cases are discussed and analyzed
in the following Section 6.3.
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Table 2: The transmission losses matrix B of the test problem we apply.

Power loss coefficients
0.001382 −0.000299 0.000044 −0.000022 −0.000010 −0.000008
−0.000299 0.000487 −0.000025 0.000004 0.000016 0.000041
0.000044 −0.000025 0.000182 −0.000070 −0.000066 −0.0066
−0.000022 0.000004 −0.000070 0.000137 0.000050 0.0033
−0.000010 0.000016 −0.000066 0.000050 0.000109 0.0005
−0.000008 0.000041 −0.000066 0.000033 0.000005 0.02444

6.2. Application of the Proposed Firefly Algorithm

In order to solve the economic emissions load dispatch problem, we have implemented the
firefly algorithm in Matlab 2008 and it was run on a portable computer with an Intel Core2
Duo (1.8 GHz) processor, 2 GB RAM memory and MS Windows 7 as an operating system.
Mathematical calculations and comparisons can be done very quickly and effectively with
Matlab and that is the reason that the proposed Firefly algorithm was implemented in Matlab
2008 programming environment. In this proposed method, we represent and associate each
firefly with a valid power output (i.e., potential solution) encoded as a real number for
each power generator unit, while the combined fuel cost and emission objective (i.e., the
objective function of the problem) is associated and represented by the light intensity of
the fireflies. In this simulation, the values of the control parameters are: α = 0.2, γ = 1.0,
β0 = 1.0, and n = 12, and the maximum generation of fireflies (iterations) is 50. The values
of the fuel cost, the emission coefficients, the power limits of each generator, the power
loss coefficients, and the total power load demand are supplied as inputs to the firefly
algorithm. The power output of each generator, the total system power, the fuel cost, and
the emissions with/without transmission losses are considered as outputs of the proposed
Firefly algorithm. The pseudocode of this algorithm can be summarized in Pseudocode 1 of
the next page [1, 3, 20].

Pseudocode 1 gives a brief description and a practical application of the proposed
algorithm for the economic emission load dispatch problem. Initially, the objective function
of the given problem is formulated as defined in (6.1) and it is associated with the light
intensity of the swarm of the fireflies. The initial solution of the given problem is generated
based on the mathematical formulation given below:

xj = rand ∗ (upper-range − lower-range
)
+ lower-range, (6.5)

where xj is the new solution of jth firefly, that is, created, rand is a random number generator
uniformly distributed in the space [0,1], while upper range and lower range are the upper
range and lower range of the jth firefly (variable), respectively.

After the evaluation of the initial population/generation (i.e., solution), the firefly
algorithm enters its main loop which represents the maximum number of generations of the
fireflies. This is actually the termination criterion that needs to be satisfied for the termination
of the loop.
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Input: α,γ ,β0,n, MaxGeneration, B, cost-emission-capacities coefficients
Output: PGi for i = 1, . . . 6, f(X), f1(X), f2(X)

Begin of algorithm
Define the multiobjective function: max −f(PGi), with i = 1, . . . , 6
Generate initial population of fireflies n = 1, . . . , 12 %generate n = 12 initial solutions
Light Intensity of firefly n is determined by objective function, In ∼ f(PGi)
Define α = 0.2, β0 = 1.0 and γ = 1.0 %necessary algorithm’s parameters
While (t ≤ MaxGeneration = 50)

For i = 1 : 12 %for all fireflies (solutions)
For j = 1 : 12 %for all fireflies (solutions)

If (Ii < Ij)
Then move firefly i towards firefly j (move towards brighter one)
Attractiveness varies with distance rij via exp(−γrij)
Generate and evaluate new solutions and update Light Intensity

End for j loop
End for i loop

Check the ranges of the given solutions and update them as appropriate
Rank the fireflies, find and display the current best %max solution for each iteration
End of while loop
% Post-process results and visualization
Find the firefly with the highest Light Intensity among all fireflies %optimal solution
Plot the increase of the Light Intensity with time\iterations
Plot the two objectives with time %best solution with time
End of algorithm

Pseudocode 1: The proposed implemented firefly algorithm.

Repeat for each firefly i
If PGi < Pi min

Then PGi = Pi min

If PGi > Pi max
Then PGi = Pi max

End of Repeat

Pseudocode 2: Repair procedure for the generator capacity constraints.

The generation of a new solution (i.e., the movement of a firefly) of the given problem
is made based on the following mathematical formulation:

xi = xi + β0 ∗ exp

⎛

⎝−γ ∗
6∑

i,j=1

(
xi − xj

)2

⎞

⎠ ∗ (xj − xi
)
+ a ∗

(
rand − 1

2

)
, (6.6)

where xi is the current solution of the ith firefly and xj is the current (optimal) solution of
jth firefly. The values of the algorithm’s control parameters is α = 0.2, γ = 1.0, β0 = 1.0, and
rand is a random number which is uniformly distributed in the space [0,1]. As we can see the
distance between two fireflies is calculated using the Euclidean distance (Section 5.3) and the
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generation of a new solution is actually a sum of the current solution (xi), the metric of the
evaluation of the current solution based on the current optimal solution (Euclidian metric),
and a random step/move of the algorithm (Section 5.4).

After the generation of the new solutions, we have to apply the generator capacity
constraints so as the new solutions are within the given operational power ranges. To avoid
such violation, a repair process is applied to each solution (firefly) in order to guarantee
that the generated power outputs are feasible. PGi, Pi min and Pi max denote the current, the
minimum, and the maximum power outputs of the ith unit, which is associated with the ith
firefly. The implemented procedure is shown in Pseudocode 2 of the previous page.

Finally, it is notable that for each generation (iteration), the swarm of 12 fireflies is
ranked based on their light intensity, and the firefly with the maximum light intensity (i.e.,
the solution with the higher objective function value) is chosen as the brighter one (i.e., it is a
potential optimal solution), while the others are updated based on (6.6). In the final iteration,
the firefly with the brighter light intensity among the swarm of 12 fireflies is chosen as the
brightest one which represents the optimal solution of the problem.

6.3. Results and Discussion

The main characteristic feature of the firefly algorithm is the fact that it simulates a parallel
independent run strategy, where in every iteration, a swarm of n fireflies (12 in our case) has
generated n solutions. Each firefly works almost independently, and as a result the algorithm,
will converge very quickly with the fireflies aggregating closely to the optimal solution
[1, 3, 20]. In our case, we can see that the total number of 600 function evaluations (12 fireflies
∗ 50 generations) is sufficient, and as a result, the algorithm stably converges to the optimal
solution very quickly (approximately from the 10th generation/iteration). This algorithm
also differs from other alternative approaches in the selection procedure in which each firefly
constructs its own solution based on a weighted sum of the objective functions, where the
weight attached to multiobjective criteria is constant. It is also observed that the proposed
implementation of the firefly algorithm is very fast and predicts accurate results while
satisfying inequality generator capacity constraints at various power load levels. It also offers
a considerable saving in computer memory. The algorithm generated the optimal solution in
less than 5 seconds, on the personal computer we used with specifications discussed in the
previous section. From the results we obtained, it is clear that the firefly algorithm gives a
global optimum in a computation time of less than 3 seconds, which is much lower than
the time of other alternative techniques, such as the goal attainment SQP method, where the
computation time was approximately 5 seconds. From the simulation results, as we show
in Table 3 of the next page, we can conclude that the algorithm is very fast, efficient, and
computational inexpensive in finding the Pareto optimal solutions of the given combinatorial
optimization problem.

6.3.1. Application to the Test System

The results in terms of values of the power losses, the best fuel cost, and the best emission
objectives of both the proposed firefly algorithm and the goal attainment SQP method can be
summarized in the following Table 3 of the next page. Two different cases (A and B) have
been considered as discussed earlier, and in both cases, the proposed algorithm has been
demonstrated through a sample test system consisting of six power generators with load
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Table 3: Solutions compromising minimum fuel cost and emission for D = 1 MW and a = 0.5.

Firefly algorithm Goal attainment SQP method
Case A Case B Case A Case B

PG1 (MW) 0.050000 0.050000 0.05000 0.05000
PG2 (MW) 0.147177 0.147177 0.23670 0.23770
PG3 (MW) 0.099979 0.099979 0.07250 0.07270
PG4 (MW) 0.434936 0.434936 0.32520 0.33010
PG5 (MW) 0.214481 0.214481 0.07250 0.07190
PG6 (MW) 0.052670 0.052670 0.24310 0.23910
Obj. function 302.552853 302.709382 301.633115 301.625363
Fuel cost 603.354361 603.354361 603.034045 603.018459
Emission 0.236339 0.236339 0.232184 0.232266
PLoss 0.000000 0.000158 0.000000 0.001596

demand D of 1 MW and equal weights of the two objectives (w1 = w2 = a = 0.5) with and
without transmission losses B.

The Obj. function in Table 3 represents the value of the single-objective function of
the problem, as defined in (6.1), which is used by the firefly algorithm in order to find the
true Pareto optimal solution. The values of the fuel cost and emission objectives have been
calculated directly from (6.2) and (6.3) without using weights.

According to the analysis of the simulation results, the firefly algorithm generated a
good quality of Pareto set of solutions in contrast to the goal attainment SQP method. Using
this algorithm, we can find the global minimum of the problem in about 10 iterations for a
population of 12 fireflies. Thus, the total number of function evaluations is just 120. This is
indeed very efficient and robust.

It is also worth to mention that in Table 3, the amount of transmission losses PLoss is
very low, and as a result, it does not seem to affect the finding of the Pareto optimal solution
using the proposed firefly algorithm since both the Pareto optimal solutions and the fuel cost
and emission objectives remain the same. The small increase in the objective function of the
problem (Obj. function) is expected as we have penalized infeasible solutions, based on the
problem constraints, into the single-objective function of the problem. It is notable, however,
that the transmission losses slightly affect the Pareto optimal solution in the goal attainment
method.

In the goal attainment SQP method, we gave the following input parameters: X0 =
[0.1, 0.1, 0.1, 0.1, 0.1, 0.1] as initial values of power generators, weight = [0.5 0.5] as a weight
of the two objectives, and goal = [603 0.2] as an initial solution of the two objectives for the
algorithm. We should consider that the goals are usually found empirically by first solving
every single objective of the optimization problem individually, which constitutes higher
initial values than those given here. However, in this case, we give as goals the solutions we
obtained by the firefly algorithm as an effective way to test the robustness of these solutions
and whether these could be further improved. It is also notable that the goal attainment
method gave positive attainment factor (γ = 0.0644 and 0.0645 for transmission losses) which
implies that the goal defined is unattainable, and as a result, no further improvement of the
solution is possible. Therefore, the solution obtained by the firefly algorithm is both robust
and efficient.

A graphical representation of the convergence of the objective function of the problem
(with equal weights w1 = w2 = a = 0.5) given in (6.1) with time (iterations) is shown
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Figure 1: Convergence of the single-objective function of the problem with time (iterations).

10501000950900850800750700650600

Values of the objective function of fuel cost

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

V
al

ue
s

of
th

e
ob

je
ct

iv
e

fu
nc

ti
on

of
em

is
si

on
s

The economic emissions load dispatch problem

Figure 2: Convergence of fuel cost and emission objectives.

above in Figure 1. Figures 2 and 3 show the convergence of fuel cost and emission objectives
when optimized and their convergence through time (iterations) respectively. The red point
in Figure 2 represents the Pareto optimal solution found by the firefly algorithm in Table 3.
Moreover, in Figure 3 we can see that the decrease of fuel cost causes the increase of emission
and vice versa, since these are conflicting objectives and cannot be minimized simultaneously.
The aim of this optimization problem is to find a good balance between them by converting
the biobjective function into a single-objective function with different weights for each
objective.
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Figure 3: Convergence of the fuel cost and emission objectives with time (iterations).

6.3.2. Comparison with Other Optimization Algorithms

Recently, Abd El-Wahed et al. [10] used an efficient hybrid ant colony optimization and
modified simplex method in order to solve the economic emissions load dispatch problem
with random weighting factors [10]. The test system they used is the same as those described
in this paper, with the same emission/cost coefficients as defined in Tables 1 and 2 and total
load demand D = 2.8 MW. The best Pareto optimal solution found is at x∗ ≈ (0.135, 0.411,
0.467, 1.00, 0.462, 0.357), which corresponds to f1∗ ≈ 891.1966 and f2∗ ≈ 0.2192. This means
that the lowest fuel cost is about 891.1966 $/hr, while the emissions are 0.2192 ton/hr. The
transmission losses are PLoss = 0.0035. However, it is notable a minor mistake which gives
erroneously that the lowest fuel cost is about 603.3 $/hr instead of 891.1966 $/hr which is the
correct value. The fuel cost and emission values can be easily verified if we apply the given
solutions to (6.2) and (6.3) or if we use the same equations given in [10]. Applying the firefly
algorithm to the same problem, we have found a slightly better solution but with higher
power losses. The Pareto optimal solution we obtained with 12 fireflies after 50 iterations
is at x∗ ≈ (0.050000, 0.511433, 0.215548, 0.935979, 0.581323, 0.507463), which corresponds
to f1∗ ≈ 881.533506 and f2∗ ≈ 0.222158 and transmission losses PLoss = 0.007614. This
clearly shows that the firefly algorithm is very efficient and effective. However, obviously,
further applications are highly needed to see how it may behave for solving various similar
tough engineering optimization problems, such as the economic, rapid and environmental
power dispatch problem [13]. The following three Figures show the stable convergence of
the objective function of the problem given in (6.1) with time (Figure 4), the convergence
of fuel cost and emission objectives when optimized (Figure 5) and their quick convergence
through time (Figure 6). Notice again the red point in Figure 5, which represents the Pareto
optimal solution found and the fact that the two objectives are conflicting and they cannot be
minimized simultaneously (Figure 6).
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Figure 4: Convergence of the single-objective function of the problem with time (iterations).
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Figure 5: Convergence of fuel cost and emission objective.

In another research article, Kumar et al. [5] used an improved version of particle
swarm optimization algorithm in order to solve the economic emissions load dispatch
problem for a test system of 6 power generators, for several load demands, with transmission
losses, using a price penalty factor h [5]. The equations used in that article for the problem
formulation constitute a slight variation of those defined in this paper.

In order to apply the firefly algorithm to this example problem, we have slightly
changed the firefly algorithm. In particular, there is a change of the generation of the initial
solution since the difference of the ranges of each solution (power generator) is relatively
large. For the case of load demand equal to 900 MW, the initial solution is generated using
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Figure 6: Convergence of the fuel cost and emission objectives with time (iterations).

the same equation (6.5), while in the other two cases the initial solution is created based on
the following two equations:

for D = 500 MW; xj = rand ∗ up-range − low-range
4

+ low-range, (6.7)

for D = 700 MW; xj = rand ∗
(
up-range − low-range

)

2
+

(
up-range

)

3
, (6.8)

where xj is the new solution of jth firefly that is created, rand is a random number generator
uniformly distributed in the space [0,1], while up range and low range are the upper range
and lower range of the jth firefly (power generator), respectively.

The results of that research paper including the generation cost, emission level, and
power losses can be summarized in Table 4, while Table 5 presents the results obtained when
we applied the firefly algorithm to the same test system.

From Tables 4, 5 (next page) we can see that the firefly algorithm gives good quality
of Pareto optimal solutions for the given test problem and in some cases it outperforms the
improved version of particle swarm optimization. In particular, in the case of D = 500 MW
the Firefly algorithm obtains lower fuel cost, emissions and power losses than those found
by the particle swarm optimization. In the other two cases the firefly algorithm managed
to obtain a lower value in one of the two objectives, while in all three cases the algorithm
achieved lower power losses.

It is also notable that the firefly algorithm solves this test problem by converting the
multiobjective problem to a single-objective problem by a linear combination of different
objectives as a weighted sum, while the particle swarm optimization introduces a price
penalty factor h for the same purpose. Moreover, by using a population of solutions (fireflies)
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Table 4: Minimum fuel cost and emission for various load demands using new particle swarm
optimization [5].

New particle swarm optimization algorithm [5]
D = 500 MW D = 700 MW D = 900 MW

PG1 (MW) 34.5469 62.1411 90.8027
PG2 (MW) 28.1660 61.8393 100.0541
PG3 (MW) 90.4942 120.3419 153.8375
PG4 (MW) 91.4414 119.1079 148.0631
PG5 (MW) 130.000 178.2963 220.7988
PG6 (MW) 134.2356 175.3215 214.3293
Fuel cost 27640 37504 48358
Emission 262.6220 439.5522 693.8518
PLoss 8.8848 17.0481 27.8856

Table 5: Minimum fuel cost and emission for various load demands using the firefly algorithm.

Firefly algorithm
D = 500 MW D = 700 MW D = 900 MW

PG1 (MW) 46.940406 72.997450 102.24677
PG2 (MW) 55.668856 56.099051 149.58352
PG3 (MW) 63.889521 164.74354 156.58499
PG4 (MW) 73.894725 129.65927 142.96344
PG5 (MW) 130.000000 151.09698 200.92360
PG6 (MW) 125.000000 125.00000 145.97127
Fuel cost 27414.977 37072.477 48652.824
Emission 259.488314 447.59928 664.78570
PLoss 7.910586 14.865361 23.263366

in its search, multiple Pareto optimal solutions can be found more quickly, even in one run, in
contrast to particle swarm optimization algorithm where each agent (particle) corresponds
to one single solution of the problem. Finally, it is important to point out that the firefly
algorithm converges in an acceptable time, which for this test system was approximately
3 seconds.

In general, the analysis of the experimental results has demonstrated that the firefly
algorithm performs better than other methods used for the same problem, or at least it
obtains good quality Pareto optimal solutions in significantly low computing times. It is
characterized by a stable and fast convergence compared to other conventional methods
and good computation efficiency, as it has been demonstrated by its application. This much
improved speed of computation allows for additional searches and improvements that could
be made in order to increase the confidence and efficiency of the generated solutions. As we
have seen, one such improvement is the generation of the initial solution. Overall, the firefly
algorithm is shown to be very helpful and promising in solving optimization problems in
power systems although more example problems are necessary in order to prove its efficiency
and superiority towards other alternative optimization algorithms used in the same domain,
such as the particle swarm optimization and ant colony optimization algorithms.
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7. Conclusions and Future Work

There is no doubt that the firefly algorithm, developed by Dr. Xin-She Yang in 2007, is a very
powerful novel population-based method for solving constrained optimization problems and
particularly NP-hard problems. The idea behind this algorithm is that the social behavior
and especially the flashing light of fireflies can be easily formulated and associated with the
objective function of a given optimization problem [1, 3, 20].

In this paper, we have proposed, presented, and tested the recently developed Firefly
algorithm for application to the multiobjective minimization problem of economic emissions
load dispatch. Focus was on the reduction of a single pollutant nitrogen oxide, NOx, while
the transmission losses, the equality constraint of power balance, and the inequality generator
capacity constraints are also considered. The results of the implementation of this proposed
method clearly showed the efficiency and effectiveness of the firefly algorithm for solving the
particular optimization problem and finding the true Pareto optimal solutions. The algorithm
achieved good results comparable to those achieved by other stochastic nature-inspired
algorithms as these reported in the literature.

For various load demands of two different test systems consisting of 6 power
generators the simulation results of the algorithm compared favorably with other competitive
state-of-the-art algorithms, and as a result, we can say that the firefly algorithm is very
efficient and accurate in obtaining global optima with high success rates for the given
constrained optimization problem. In particular, the results indicate that the algorithm
obtained good quality Pareto optimal solutions which are better or at least equal to the
solutions obtained by other stochastic alternative optimization algorithms such as the goal
attainment SQP method, the particle swart optimization, and the Genetic algorithms, in terms
of efficiency and success rates.

In all cases, the algorithm converged to the optimal solution very quickly (mainly
from the 10th iteration), and its computation time in the simulations we run was less than 3
seconds. Moreover, the fact that the proposed algorithm is very simple in concept and easy
to implement clearly implies that it could also be effectively applied to other multiobjective
optimization problems and especially to NP-hard combinatorial optimization problems, such
as the vehicle-routing problem.

However, from the simulation results, it seems that the proper selection of the
population size, the number of generations (iterations), and the absorption coefficient is
of paramount importance for the convergence of the algorithm as this heavily depends
on the nature of the applied problem. Moreover, a refinement and improvement of the
generation of the initial solution and the decreasing random step size seem very promising
and beneficial to further increase the algorithm’s performance, while it might also be
possible to hybridize the algorithm together with other heuristic search methods for better
results, such as the Levy flight firefly algorithm [4]. Furthermore, future comparison
studies with other methods are necessary so as to identify the strengths and weaknesses
of the current metaheuristic algorithm and prove its superiority and effectiveness. In
future works, we intend to analyze the behavior of the proposed algorithm in other
variations of the economic emissions load dispatch problem, such as the environmental
power load dispatch problem with more security constraints [13]. Ultimately, even better
optimazation algorithms may emerge as a promising way to solve NP-hard optimization
problems.

We hope that this paper will provide the necessary background for further improve-
ment of optimization algorithms and will be the milestone conducive to further research and



International Journal of Combinatorics 23

development in the domain of analyzing and applying evolutionary optimization algorithms
to NP-hard combinatorial optimization problems.
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