Hindawi Publishing Corporation
International Journal of Combinatorics
Volume 2011, Article ID 432738, 12 pages
doi:10.1155/2011/432738

Research Article

Identities of Symmetry for Generalized
Euler Polynomials

Dae San Kim

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
Correspondence should be addressed to Dae San Kim, dskim@sogang.ac.kr
Received 10 January 2011; Accepted 15 February 2011

Academic Editor: Chinh T. Hoang

Copyright © 2011 Dae San Kim. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We derive eight basic identities of symmetry in three variables related to generalized Euler
polynomials and alternating generalized power sums. All of these are new, since there have been
results only about identities of symmetry in two variables. The derivations of identities are based
on the p-adic fermionic integral expression of the generating function for the generalized Euler
polynomials and the quotient of integrals that can be expressed as the exponential generating
function for the alternating generalized power sums.

1. Introduction and Preliminaries

Let p be a fixed odd prime. Throughout this paper, Z,, Q,, and C, will, respectively, denote
the ring of p-adic integers, the field of p-adic rational numbers, and the completion of the
algebraic closure of (. Let d be a fixed odd positive integer. Then we let

Z
X =Xg=lim——7, 1.1
N dpNZ (D
and let r : X — Z,be the map given by the inverse limit of the natural maps
Z_ | Z 12)
dpNz  pNZ’ (1

If g is a function on Z,, then we will use the same notation to denote the function g o or. Let
x:(z/dzy — @* be a (primitive) Dirichlet character of conductor d. Then it will be pulled
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back to X via the natural map X — Z/dZ. Here we fix, once and for all, an imbedding
Q — G, so that y is regarded as a map of X to C, (cf. [1]).
For a continuous function f : X — G,, the p-adic fermionic integral of f is defined by

dpN-1 '
[ r@dua@ = tim 3 (). (13)
X © i=0
Then it is easy to see that
[ e ndpa@ s [ f@dpe =270, (14)
X X

More generally, we deduce from (1.4) that, for any odd positive integer n,
n-1
[ reemaus@ [ f@dE =231 @ (15)
X X a=0
and that, for any even positive integer 7,
n-1
[ rermansG - f@dee =250 ), (16)
a=0
Let |- |, be the normalized absolute value of C,, such that [p|, = 1/p, and let

E= {tec,, | 18], <p*1/<r’*1>}. (1.7)

Then, for each fixed t € E, the function e* is analytic on Zpand hence considered as a function
on X, and, by applying (1.5) to f with f(z) = y(z)e*, we get the p-adic integral expression of
the generating function for the generalized Euler numbers E, , attached to y:

tTl

: 2 d-1 ; . ©
[ x@edpa - T 2D @e” = S (eE) (18)

So we have the following p-adic integral expression of the generating function for the
generalized Euler polynomials E,, ,(x) attached to y:

. 2ext d-1 . . © m
J;( Y(2)e™dy_ (z) = m;}(—1) y(a)e™ = nzzoEn,X(x)E (t€E, x €Zyp). (1.9)

Also, from (1.4), we have

. 2
fxe "du_1(z) = ] (t €E). (1.10)
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Let Ti(n, y) denote the kth alternating generalized power sum of the first n + 1
nonnegative integers attached to y, namely,

Ti(n, x) = i(—l)“x(a)a" = (-1)°x(0)0% + (=1) x (1)1F + -+ + (=1)" x (m)n*. (1.11)
a=0

From (1.8), (1.10), and (1.11), one easily derives the following identities: for any odd positive
integer w,

f X dpa(x)  ewit 4 1%

J'X EWdytd/l_l (y> - edt 11 Z( 1) X(a)eat (112)
wd-1
= > (-D)x(a)e™ (1.13)
a=0
i Ty (wd -1, x)k, (t € E). (1.14)

P
1l

0

In what follows, we will always assume that the p-adic integrals of the various (twisted)
exponential functions on X are defined for t € E (cf. (1.7)), and therefore it will not be
mentioned.

References [2-6] are some of the previous works on identities of symmetry in two
variables involving Bernoulli polynomials and power sums. On the other hand, for the first
time we were able to produce in [7] some identities of symmetry in three variables related
to Bernoulli polynomials and power sums and to extend in [8] to the case of generalized
Bernoulli polynomials and generalized power sums. Also, [4] is about identities of symmetry
in two variables for Euler polynomials and alternating power sums, and [9] is about those in
three variables for them.

In this paper, we will be able to produce 8 identities of symmetry in three variables
regarding generalized Euler polynomials and alternating generalized power sums. The case
of two variables was treated in [10].

The following is stated as Theorem 4.2 and an example of the full six symmetries in
w1, W, W3

< >Ekx(w1}/1)Elx(wzy2)T (wsd - 1, x)wi ™S k™!

k+l+m=n

k,1,m

k+l+m n

l+m k+m k+l1

n

< )Ekx<w1yl>E1x<w3yz>T (12~ 1, )0l
0 (jo 1 ) Era (2 B 010e) T (nd = 1, )k a0t

k+l+m=n N’ I

n
< >Ekx(wzy1)Elx(w33/2)T (wrd =1, X)wy ™" w5 " wr™
k+l+m=n k/ l/m
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n l+m, k+m,_ k+l
= Eky (wsy1) Eiy (w2y2) T (wrd — 1, ) w05 w0, w0
+m=n k/ l/ m

l+m,, k+m, k+l

Eiex (wsy1) iy (w1y2) T (w2d = 1, ) w5 w0y ™"y ™

1]

o~
+

T
3

Il
=
N\
ke
O

3
N

(1.15)

The derivations of identities are based on the p-adic integral expression of the gener-
ating function for the generalized Euler polynomials in (1.9) and the quotient of integrals
in (1.12) that can be expressed as the exponential generating function for the alternating
generalized power sums. This abundance of symmetries would not be unearthed if such p-
adic integral representations had not been available. We indebted this idea to paper [10].

2. Several Types of Quotients of p-Adic Fermionic Integrals

Here we will introduce several types of quotients of p-adic fermionic integrals on X or X?
from which some interesting identities follow owing to the built-in symmetries in w;, wy,
ws. In the following, w1, wy, w; are all positive integers, and all of the explicit expressions of
integrals in (2.2), (2.4), (2.6), and (2.8) are obtained from the identities in (1.8) and (1.10). To
ease notations, from now on, we will suppress y_1 and denote, for example, du_1(x) simply
by dx.

(a) Type A}, (fori=0,1,2,3):
.[X3 X(xl)x(xZ)X(xs)e(wzwsxl+w1w3xz+w1wzx3+w1wzw3(Z}t{ yj))tdxldxzdx3

1(A}) = 2.1)

(_[X edw1w2w3x4tdx4)i

23—iew1w2w3(2?;{ yjt (ed‘wlwzwst + 1)i

= (edeW3t + 1) (edwl’(AJgt + 1) (edwlet + 1)

d-1 d-1 d-1
X <Z(_1)ax(a)eawZW3t> <Z(_1)ax(a)eaW1W3t> <Z(_1)ax(a)eaw1wzt> .
a=0 a=0 a=0

(2.2)

(b) Type Al, (fori=0,1,2,3):

(w1 x1+wr 0+ w3 x3+w wows (X Yt
) X x x3)e i dx1dx,dx:
I<A’13> _ Jxa X (1) x (x2) x (263) 1dxodxs 2.3)

(_[X edw1w2w3x4tdx4>i

23—iew1w2w3(2,3-: yjt (edwlwzwgt + 1)’

— (edwit + 1) (edwat + 1) (edwst + 1)

= d-1 d-1
X <Z(_1)ﬂx(a)eaw1t> <Z(_1)ax(a)eawzt> <Z(_1)ax(a)eaw3t> .
a=0 a=0 a=0

(2.4)
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(c-0) Type A%:

I<A(1Jz> = f X(xl)X(xz)x(xs)e(wlx1+wzxz+w3w3+wzw3y+w1w3y+w1wzy)tdxldxzdx3 (2.5)
X3

86(w2w3+wl w3 +w W)yt

" (et + 1) (edwat + 1) (edwrl 1 1)

d-1 d-1 d-1
x <Z(—1>“x<a>e“’”1*> <Z<—1>“x<a>e“wz*> <Z<—1>“x<a>e“wsf>.
a=0 a=0 a=0

(2.6)

(c-1) Type Aj,:

_ IX3 X (1) X (302) x (03 ) el x1+w2xarwsxa)t g oy dxcs

1(A}) = 2.7)

_[XS ed(w2w321+w1 w3 zy+wy wZ23)tdzl Zr23

~ (edw2w3t + 1) (edwlwgt + 1)(€dw1wzt + 1)
(ed@rt + 1) (edwat + 1) (edwst +1)

= a1 d-1
x <Z(—1)“x(a)e‘"‘“*> <Z<—1>“x<a)e“wz*> <z<—1>ﬂ x(a)eawsf>.
a=0 a=0 a=0

(2.8)

All of the above p-adic integrals of various types are invariant under all permutations
of w1, wy, w3, as one can see either from p-adic integral representations in (2.1), (2.3), (2.5),
and (2.7) or from their explicit evaluations in (2.2), (2.4), (2.6), and (2.8).

3. Identities for Generalized Euler Polynomials

In the following, w1, w», ws are all odd positive intege;s except for (a-0) and (c-0), where they
are any positive integers. First, let’s consider Type A’;, for each i = 0,1,2,3. The following
results can be easily obtained from (1.9) and (1.12):

(a-0)

1(8%)

f X(xl)ewwa(xl+wlyl)tdx1f X(xz)ewlws(xﬁwzyz)tdxzf X(x3)ew1w2(x3+w3y3)tdx3
X X X

(35550 o) (3,0 ) (3,22

k=0 1=0 m=0

k Illm m, 33 1 0. +

n=0 +l+m=n

(3.1)
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where the inner sum is over all nonnegative integers k, [, m with k + [ + m = n and

n n!
<k, l,m> " Klm! (3.2)

(a-1) Here we write I (A§3) in two different ways:
1)

IX x(x3)ew1w2x3tdx3

j edw1 wa3X4tdx4

<iEkx<wl w) ><ZE1x<w2 ) 2 ><T (-1, ) 2220

(3.3)

1(AL) =

'_.

x )ew2w3<xl+wlyl)td.’x1f X(x )ew1w3(xz+wzyz)fd

] n n
=20 2 Ekx (w1y1) Epy (w2y2) T (w3d — 1, x)w} ™" w5 M ws™ ) —.
k,l,m n!

n=0 \k+l+m=n

(2) Invoking (1.13), (3.3) can also be written as
wgd—l
I(Ay) = 3 (-D)x(a) fx () gy f X () sl g
a=0

wsd-1
Z (-1) X(a)<ZEkx(w1y1) (wzysf) > <Zsz<wzyz N _3 > (w1ly|3t) >
e wid-1 o
= <wsz <k>Ekx(w1y1> Z ( 1) X(a)En k,x <w2y2 + _a) w;t kw12<> m
k=0 :

n=0

(a-2) Here we write I (A%s) in three different ways:
1)

IX X(xZ)ewlwsxztde IX X(x3)ewlw2x3tdx3

J‘X edwleW3X4tdx4 J‘X edwleW3X4tdx4

<ZEw(ww0@><ZTz(wzd 1 >M> (6)
> .

1=0

x<iTm(w3d 1, )%)
tn

x n
=Z< > < >EkX(ZU1]/1)Tl(TU2d L) T (wsd - 1, x)wh™ §*mw§*l>—|.
720 \k+lem=n \K, I, m n!

(3.7)

1(A3) = f ()t
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(2) Invoking (1.13), (3.6) can also be written as

defl

wiwyx3t
Z (_1)ax(a) f X(xl)ew2w3(x1+w1y1+(w1/wz)a)tdxl x .[X X(x3)€ 1W2X3 dX?,
a=0 X

_[X edw1 wa3X4tdx4

wyrd-1
Z ( 1) X(a) <ZEkX<TU1y1+ >%><Zn(w3d 1, x) (wlw2t) >

1(A%)

a=0 1=0
(3.8)
0 n 1\ wad-1 "
= Z<w7212< > Z (-1) X(a)Ekx<w1y1 + —a> ok (wsd = 1, y)wi™* k>—'.
n=0 k=0 \k/ 220 n
(3.9)
(3) Invoking (1.13) once again, (3.8) can be written as
de—l wgd—l b
I(A%) = Z (-1)y(a) Z (-1)by(b) fx X(xl)ewzws(x1+w1y1+(w1/wza)+(w1/ws)b)tdx1
a=0 b=0
(3.10)

n!

wyd—1 wsd-1
Z (- 1) x(a) Z -1 X(b)ZEnX<w1y1+—a+ s )M

o wod—1 wsd-1 n
= Z((wa?)) Z Z (- 1)“+bx(ab)Enx<w1}/1 + Ea + —b>> —. (3.11)

|
n=0 a=0 b=0 ws e

(a-3)

1(A%) = [x x(re™ > idx - fy x(o)e ™ 2dx, [y x(xs)e™ ™ dxy

J‘X edwlew;Xl;tdxAl J‘X edwleW3X4tdx4 J‘ edwleW3X4tdx4
t t
<ZTk(wld 1, )M><ZTZ(W 1, ) et > (3.12)
k=0 1=0

X<ZT (wsd -1, )M>

< n l+m k+m,, k+1 t"

:Z Z Tk (wid-1, x)Ti(wad -1, x) T (w3d -1, x)w; ™ w; ™" wy™ ) —.
k+ k,l,m

|
n=0 l+m=n n

(3.13)

(b) For Type Al, (i = 0,1,2,3), we may consider the analogous things to the ones in (a-
0), (a-1), (a-2), and (a-3). However, these do not lead us to new identities. Indeed, if
we substitute wows, wiws, wiw,, respectively, for wi, wy, ws in (2.1), this amounts
to replacing t by wjw,wst in (2.3). So, upon replacing w;, wy, w3, respectively, by
wrws, wyws, wiw; and dividing by (wyw,ws)", in each of the expressions of (3.1),
(3.4), (3.5), (3.7), (3.9)-(3.13), we will get the corresponding symmetric identities
for Type A, (i=0,1,2,3).
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(c-0)

1(A%) = [ et [ xeeneroiaz, [ yeaentniax,
X

- <iW(wmk> <ZM t)><z%(wsf) > (3.14)

k=0 1=0 m=0
oo n "
=2 2 (o, ) (@) B (wsy) En (ory)wleotaos’ )
n=0 \k+l+m=n ,Lm

(c-1)

I</\1 [x x(x)e ™ dx, x Jx x(x2)e™> ! dx; y [x x(x3)e™ st doxs
12> f edw1w223td23 J' ed‘wzw3zltdzl j €dw3w122tdzz

- (Srtont1,00 ) (Stn-1,0S0) (Sntuna-1,0 )

O n n
= Z Z T (w2d — 1, Y)Ti(wsd = 1, x) T (wrd — 1, ) whwhew! —.
k,1,m n!

n=0 \k+l+m=n
(3.15)

4, Main Theorems

As we noted earlier in the last paragraph of Section 2, the various types of quotients of p-adic
fermionic integrals are invariant under any permutation of w;, w,, ws. So the corresponding
expressions in Section 3 are also invariant under any permutation of w1, w», ws. Thus, our
results about identities of symmetry will be immediate consequences of this observation.

However, not all permutations of an expression in Section 3 yield distinct ones. In
fact, as these expressions are obtained by permuting w;, w,, ws in a single one labeled by
them, they can be viewed as a group in a natural manner, and hence it is isomorphic to a
quotient of S3. In particular, the number of possible distinct expressions is 1, 2, 3, or 6 (a-0),
(a-1(1)), (a-1(2)), and (a-2(2)) give the full six identities of symmetry, (a-2(1)) and (a-2(3))
yield three identities of symmetry, and (c-0) and (c-1) give two identities of symmetry, while
the expression in (a-3) yields no identities of symmetry.

Here we will just consider the cases of Theorems 4.4 and 4.8, leaving the others as easy
exercises for the reader. As for the case of Theorem 4.4, in addition to (4.11)—(4.13), we get
the following three ones:

n
> <kl >Ekx(w1y1)T1(w3d 1, )T (wad — 1, y)w! ™k mepk (4.1)
,m

k+l+m=n

n
= > <k l m>EkX(w2y1)Tl(w1d L, x) T (wsd — 1, y) wh™wk ™Mk (4.2)

k+l+m=n

n
= > <kl >Ekx(w3y1)Tl(w2d LX) T (wid - 1, y)whmwh ™kt (4.3)
,m

k+l+m=n
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But, by interchanging | and m, we see that (4.1), (4.2), and (4.3) are, respectively, equal to
(4.11), (4.12), and (4.13). As to Theorem 4.8, in addition to (4.17) and (4.18), we have:

n
> < >Tk (wrd -1, Y)Ti(wsd = 1, Y) T (wid - 1, ) whwhw! (4.4)
k+l+m=n k.1,
n
<k l >Tk (wsd -1, ) Ti(wid =1, x) T (wod - 1,X)w§wéw{” (4.5)
7 /m
n
<k l >Tk (wsd -1, ) Ti(wad = 1, ) Tn (wnd — 1,X)wfwéw§” (4.6)
7 /m
n
<k l >Tk (wad -1, ) Ti(wrd =1, x) Tn (w3d — 1,X)w§wéw{”. 4.7)
7 /m

However, (4.4) and (4.5) are equal to (4.17), as we can see by applying the permutations
k—11—-mm— kfor (44)and k — m,l — k, m — [for (4.5). Similarly, we see that
(4.6) and (4.7) are equal to (4.18), by applying permutations k — I, — m, m — k for (4.6)
and k - m,l — k, m — [ for (4.7).

Theorem 4.1. Let w1, wy, w3 be any positive integers. Then one has

n
by <kl >Ekx(wlyl)Elx(w2y2>’5mx(w3ys)wl+m wy Wit
,m

k+l+m=n

> Ex (w1y1) Eiy (w3y2) Em,y (w2y3) wy ™ w} w0l ™!

k+l+m n

n

. )Ekx<wzy1>Ezx<w1yz>me<wsy3>w”m ot
4 /m

k+l+m=n

(4.8)

k,I,m

n

‘ >Ekx(wsyl)Elx(wlyZ)me(wzw)w”m T wh
7 vr7 m

k,I,m

% (o
%
5 (7 ) s it
2
2

)Ekx<w3y1>Ezx<wzyz>me<w1ys>w”m o
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Theorem 4.2. Let wq, w,, w3 be any odd positive integers. Then one has

>,

k+l+m=n

k+l+m=n

k+l+ =n

k+l+m=n

%
2
2
2
=

k,

k,

k,

k,

n

l

,m

n

l

,m

n

l

,m

,m

n
<kl >Ekx(w1y1)51x(w2y2)T (wsd - 1, y)w;"" w5 " w0}
,m

) B0 oy ) T =1, )

Ex. (w231) Epy (w1y2) T (w3d = 1, ) w}y ™ w0} )™

Exy (w02y1) Ery (w3y2) T (wrd = 1, x)w) ™" w} ™ wr™

Exy (wsy1) Eiy (w212) Ty (wnd — 1, ) w0 wh ™ wi ™

)
)
)
)

Theorem 4.3. Let wq, w,, w3 be any odd positive integers. Then one has

n n
w}y, < k> Ex(wsy1)
k=0

I I
& &
M= IM-=

Il
wgg
M=

Ekx(wzyl) >, (1) x(@)En-ky w3yz+%ja wl”

Eiy(wsy1) D, (-1)*x(a)Enky
a=0

Eiy(wa1) D (-1)*x(a)Epky

Eicx(wiyn) Z (-1)*x(a)En-ky wz}/ﬁ”%a

C

(2 50)
Ek,x(wlyl)wfl(_1)ax<a>zsn_kX(w3y2 -0 gk

(1o )

(smte )t

wld 1

3 (D x(@En- o (20 + —a)wg "

wld 1

k. k
Wy

a=0

defl

a=0
wsd-1

a=0
wid-1

a=0 3

Ex (wsy1) Eny (w01y2) Ty (wad -1, x) w0 ™ wi ™ wj ™,

(4.9)

(4.10)
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Theorem 4.4. Let w1, wo, wz be any odd positive integers. Then one has the following three

symmetries in wi, wo, w3:

n
> <kl >Ekx(w1y1)Tl(w2d 1, X) T (wsd = 1, x)w!™w; " w}™
7 /m

k+l+m=n

n
= > <kl >Ekx(w2y1)Tl(w3d L )T (wid - 1, y)wh ™ wh ™ok
4 /m

k+l+m=n

k+l+m=n

n
= Z <kl >Ekx(w3y1)Tl(W1d 1X)T (W2d 1X)wl+m k+mw12<+1'
7 /m

Theorem 4.5. Let w1, w,, w3 be any odd positive integers. Then one has

n n\ wid-1 w
w?§)<k> Zo (_1)aX(a)Ek,x<w2]/l + ;ja) n— k(ZU3d 1, x)w" k k

n wld 1 w
w?zo<k> 2 (-1) x(a)Ekx<w3y1+;i’a> i (wad -1, X)wn k k

n 1\ w2d-1 . . k

:wgz K (-1) x(a)Ekx<W1y1+;2a) n— k(W3d 1, X)w
k=0 a=0
n n wod-1 w

= w’z“z <k> (—1)“x(a)Ekx<w3y1 + ;za> wk (wd — 1, y)wi " w k k
k=0 a=0
n n w3d 1

:wgz<k> Z (-1) x(a)Ekx<w1y1+—a> ke (w2d = 1, y) Wt *wk
k=0 a=0
n n wsd-1

:w’312<k> Z (-1 X(a)Ekx<w2y1+—a) - k(w1d 1, X)w" k k.
k=0

(4.11)

(4.12)

(4.13)

(4.14)

Theorem 4.6. Let w1, wo, wsz be any odd positive integers. Then one has the following three

symmetries in wi, Wy, w3:

wid—1 wod-1
()" 3 3 (D) @) Eny (s + Za s )

a=0  b=0 w2

wzd 1w;d 1
= (waws)" >, D (- 1)‘”bx(ab)Enx<w1y1 + —a+ —b)

a=0  b=0

wgd—l w1 d-1

= (wswy)" >, D (-1)™x(ab)Eny <w2y1 + 53a + —b>

a=0  b=0 w1

(4.15)
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Theorem 4.7. Let w1, wy, w3 be any positive integers. Then one has the following two symmetries
n w1, Wy, Ws:

n
Z <k l >Ek,x (w01y) Evy (w02y) Em,y (w3y) wiw,wy’
77 m

k+l+m=n

(4.16)

n
" <k ! m>E"’X(wly)El/x(Wsy)Em,x(wzy)wgwgwgf.

k+l+m=n

Theorem 4.8. Let w1, wy, ws be any odd positive integers. Then one has the following two
symmetries in wi, Wy, w3:

n
> < >Tk(w1d -1, ) Ti(w2d = 1, )T (wsd — 1, x)whw! wit, (4.17)
k+l+m=n k/ l/ m
n
> < >Tk(w1d -1, ) Ti(wsd = 1, x) T (wad — 1, x)whw! wi. (4.18)
k+l+m=n k/ l/ m
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