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We describe a construction of primitive 2-designs and strongly regular graphs from the simple
groups L(3, 5), U(5, 2), and S(6, 2). The designs and the graphs are constructed by defining in-
cidence structures on conjugacy classes of maximal subgroups of L(3, 5), U(5, 2), and S(6, 2). In ad-
dition, from the group S(6, 2), we construct 2-designs with parameters (28, 4, 4) and (28, 4, 1) hav-
ing the full automorphism group isomorphic to U(3, 3) : Z2.

1. Introduction

Questions about combinatorial structures related to finite groups arose naturaly in studying
of the groups. Studies on the interplay between finite groups and combinatorial structures
have provided many useful and interesting results. From a geometric point of view, the most
interesting designs are generally those admitting large automorphism groups. Famous Witt
designs constructed fromMathieu groups have been discovered in 1930’s (see [1, 2]), and for
some further construction of combinatorial structures from finite groups, we refere the reader
to [3–5]. A construction of 1-designs and regular graphs from primitive groups is described
in [6] and corrected in [7]. The construction employed in this paper is described in [8], as
a generalization of the one from [6, 7].

An incidence structure is an ordered triple D = (P,B,I)where P and B are nonempty
disjoint sets and I ⊆ P × B. The elements of the set P are called points, the elements of the
set B are called blocks, and I is called an incidence relation. If |P| = |B|, then the incidence
structure is called symmetric. The incidence matrix of an incidence structure is a b × v matrix
[mij] where b and v are the number of blocks and points, respectively, such that mij = 1
if the point Pj and block xi are incident, and mij = 0 otherwise. An isomorphism from
one incidence structure to another is a bijective mapping of points to points and blocks to
blocks which preserves incidence. An isomorphism from an incidence structure D onto itself
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is called an automorphism of D. The set of all automorphisms forms a group called the full
automorphism group of D and is denoted by Aut(D).

A t − (v, k, λ) design is a finite incidence structure (P,B,I) satisfying the following
requirements:

(1) |P| = v,

(2) every element of B is incident with exactly k elements of P,

(3) every t elements of P are incident with exactly λ elements of B.

A 2− (v, k, λ) design is called a block design. A 2− (v, k, λ) design is called quasisymmetric if
the number of points in the intersection of any two blocks takes only two values. If |P| = |B|,
then the design is called symmetric. A symmetric 2 − (v, k, 1) design is called a projective
plane.

An incidence structure has repeated blocks if there are two blocks incident with exactly
the same points. An incidence structure that has no repeated blocks is called simple. All
designs described in this paper are simple.

Let G = (V,E,I) be a finite incidence structure. G is a graph if each element of E is
incident with exactly two elements of V. The elements of V are called vertices, and the
elements of E are called edges. Two vertices u and v are called adjacent or neighbors if they
are incident with the same edge. The number of neighbors of a vertex v is called the degree of
v. If all the vertices of the graph G have the same degree k, then G is called k-regular. Define
a square {0, 1}-matrix A = (auv) labelled with the vertices of G in such a way that auv = 1 if
and only if the vertices u and v are adjacent. The matrix A is called the adjacency matrix of
the graph G.

A graph G is called a strongly regular graph with parameters (n, k, λ, μ) and denoted
by SRG(n, k, λ, μ) if G is k-regular graph with n vertices and if any two adjacent vertices have
λ common neighbors and any two nonadjacent vertices have μ common neighbors.

Let x and y (x < y) be the two cardinalities of block intersections in a quasi-symmetric
designD. The block graph ofD has as vertices the blocks ofD and two vertices are adjacent if
and only if they intersect in y points. The block graph of a quasi-symmetric 2−(v, k, λ) design
is strongly regular. In a 2−(v, k, 1) design which is not a projective plane, two blocks intersect
in 0 or 1 points; therefore, the block graph of this design is strongly regular (see [9]).

Let D be a symmetric (v, k, λ) design which possesses a symmetric incidence matrix
M with 1 everywhere on the diagonal. Then, the matrix M − I is an adjacency matrix of a
strongly regular graph G with parameters (v, k − 1, λ − 2, λ) (see [9]) and Aut(G) ≤ Aut(D).

Let G be a simple group andH be a maximal subgroup of G. The conjugacy class ofH
is denoted by cclG(H). Obviously, NG(H) = H, so |cclG(H)| = [G : H]. Denote the elements
of the conjugacy class cclG(H) byHg1 ,Hg2 , . . . ,Hgj , j = [G : H].

In this paper, we consider block designs constructed from the linear group L(3, 5),
strongly regular graphs constructed from the unitary group U(5, 2), and block designs and
strongly regular graphs constructed from the symplectic group S(6, 2).

L(3, 5) is the simple group of order 372000, and it has five distinct classes of maximal
subgroups: H1

∼= H2
∼= (Z5 × Z5) : GL(2, 5), H3

∼= S5, H4
∼= (Z4 × Z4) : S3, and H5

∼= F93. We
define incidence structures on the elements of conjugacy classes of the maximal subgroups of
L(3, 5); that is, points and blocks are labelled by elements of conjugacy classes of the maximal
subgroups of L(3, 5).

U(5, 2) is the simple group of order 13685760, and it has six distinct classes of maximal
subgroups:K1

∼= (E64 : Z2) · (E9 : Z3) · SL(2, 3),K2
∼= Z3 ×U(4, 2),K3

∼= (E16 : E16) : (Z3 ×A5),
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K4
∼= E81 : S5, K5

∼= (S3 × (E9 : Z3)) : SL(2, 3), and K6
∼= L(2, 11). We define strongly

regular graphs whose vertices are labelled by elements of conjugacy classes of the maximal
subgroups of U(5, 2).

S(6, 2) is the simple group of order 1451520, and it has eight distinct classes of maximal
subgroups: M1

∼= U(4, 2) : Z2, M2
∼= S8, M3

∼= E32 : S6, M4
∼= U(3, 3) : Z2, M5

∼= E64 : L(3, 2),
M6

∼= ((E16 : Z2) × E4) : (S4 × S4), M7
∼= S3 × S6, and M8

∼= L(2, 8) : Z3. We define incidence
structures on the elements of conjugacy classes of the maximal subgroups of S(6, 2) and
strongly regular graphs whose vertices are labelled by elements of conjugacy classes of the
maximal subgroups of S(6, 2).

Generators of groups L(3, 5), U(5, 2), and S(6, 2) and their maximal subgroups are
available on the Internet: http://brauer.maths.qmul.ac.uk/Atlas/.

In this paper, we describe a construction of primitive block designs with parameters
(28, 12, 11), (28, 4, 5), (28, 10, 40), (31, 6, 1), (31, 6, 100), (31, 10, 300), (31, 15, 700), (31, 3, 25),
(31, 12, 550), (31, 15, 875), (36, 16, 12), (36, 8, 6), (36, 12, 33), (36, 6, 8), and (63, 31, 15) and
strongly regular graphs with parameters (63, 30, 13, 15), (120, 56, 28, 24), (135, 64, 28, 24),
(165, 36, 3, 9), (176, 40, 12, 8), (297, 40, 7, 5), and (1408, 567, 246, 216). The designs and the
graphs are constructed by defining incidence structures on conjugacy classes of maximal sub-
groups of the simple groups L(3, 5), U(5, 2), and S(6, 2). In addition, from the group S(6, 2),
we construct 2-designs with parameters (28, 4, 4) and (28, 4, 1) having the full automorphism
group isomorphic to U(3, 3) : Z2.

The graphs described in this paper have been previously known, since they can be con-
structed as rank 3 graphs. For more details on rank 3 graphs, we refer the reader to
[9]. Some of the constructed block designs on 31 points have large number of blocks,
and we did not find a record that they have been previously studied, although these
designs can be constructed from PG(2, 5). The constructed designs with parameters
(28, 12, 11), (28, 4, 5), (36, 16, 12), (36, 8, 6), and (63, 31, 15) are isomorphic to the already
known designs. However, we did not find an evidence that the constructed designs with
parameters (28, 10, 40), (36, 12, 33), and (36, 6, 8) are isomorphic to the already known
objects.

The paper is organized as follows: in Section 2, we describe the method of
construction of primitive designs and graphs used in this paper, Section 3 describes block
designs on 31 points constructed from the group L(3, 5), Section 4 gives strongly regular
graphs constructed from the group U(5, 2), and Section 5 describes the group S(6, 2)
as block designs and strongly regular graphs. At the end of the paper, we give a list
of the constructed designs and strongly regular graphs and their full automorphism
groups.

For basic definitions and group theoretical notation, we refer the reader to [10, 11].

2. The Construction

The following construction of symmetric 1-designs and regular graphs is presented in [6, 12].

Theorem 2.1. Let G be a finite primitive permutation group acting on the set Ω of size n. Let α ∈ Ω,
and let Δ/= {α} be an orbit of the stabilizer Gα of α. If B = {Δg : g ∈ G} and, given δ ∈ Δ,
E = {{α, δ}g : g ∈ G}, then D = (Ω,B) forms a symmetric 1 − (n, |Δ|, |Δ|) design. Further, if Δ is a
self-paired orbit of Gα, then Γ(Ω,E) is a regular connected graph of valency |Δ|, D is self-dual, and G
acts as an automorphism group on each of these structures, primitive on vertices of the graph and on
points and blocks of the design.
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In [8], we introduced a generalization of the above construction. This generalization,
presented below in Theorem 2.2, allows us to construct 1-designs that are not necessarily
symmetric and stabilizers of a point and a block are not necessarily conjugate.

Theorem 2.2. Let G be a finite permutation group acting primitively on the setsΩ1 andΩ2 of sizem
and n, respectively. Let α ∈ Ω1, δ ∈ Ω2, and let Δ2 = δGα be the Gα-orbit of δ ∈ Ω2 and Δ1 = αGδ

be the Gδ-orbit of α ∈ Ω1. If Δ2 /=Ω2 and

B =
{
Δ2g : g ∈ G

}
, (2.1)

thenD(G, α, δ) = (Ω2,B) is a 1− (n, |Δ2|, |Δ1|) design with m blocks and G acts as an automorphism
group, primitive on points and blocks of the design.

The construction of a design described in Theorem 2.2 can be interpreted in the
following way:

(i) the point set is Ω2 = δG,

(ii) the block set is Ω1 = αG,

(iii) the block αg ′ is incident with the set of points {δg : g ∈ Gαg
′}.

Let a point δg ∈ Ω2 be incident with a block αg ′ ∈ Ω1. Then, g ∈ Gαg
′; hence, there

exists g ∈ Gα such that g = gg ′. Therefore,

Gαg ′ ∩Gδg = Gαg ′ ∩Gδgg ′ = G
g ′
α ∩G

g ′

δg
=
(
Gα ∩Gδg

)g ′
=
(
Gα ∩G

g

δ

)g ′

=
(
G

g−1

α ∩Gδ

)gg ′

= (Gα ∩Gδ)gg
′
= (Gα ∩Gδ)g.

(2.2)

If a point δg ∈ Ω2 is incident with the block α ∈ Ω1, then Gα ∩Gδg = (Gα ∩Gδ)
g . If the

set {Gα ∩ Gδg | g ∈ G} contains Orb(Gα,Ω2) Gα-conjugacy classes, where Orb(Gα,Ω2) is the
number of Gα-orbits on Ω2, then each conjugacy class corresponds to one Gα-orbit and the
incidence relation in the design D(G, α, δ) can be defined as follows:

(i) the block αg ′ is incident with the point δg if and only if Gαg ′ ∩ Gδg is conjugate to
Gα ∩Gδ.
Similarly, if the set {Gα ∩ Gδg | g ∈ G} contains Orb(Gα,Ω2) isomorphism classes, then the
incidence in the design D(G, α, δ) can be defined as follows:

(ii) the block αg ′ is incident with the point δg if and only if Gαg ′ ∩Gδg
∼= Gα ∩Gδ.

In the construction of the designD(G, α, δ) described in Theorem 2.2, instead of taking
a single Gα-orbit, we can take Δ2 to be any union of Gα-orbits.

Corollary 2.3. Let G be a finite permutation group acting primitively on the sets Ω1 and Ω2 of size
m and n, respectively. Let α ∈ Ω1 and Δ2 =

⋃s
i=1 δiGα, where δ1, . . . , δs ∈ Ω2 are representatives of

distinct Gα-orbits. If Δ2 /=Ω2 and

B =
{
Δ2g : g ∈ G

}
, (2.3)

then D(G, α, δ1, . . . , δs) = (Ω2,B) is a 1 − (n, |Δ2|,
∑s

i=1 |αGδi |) design with m blocks and G acts as
an automorphism group, primitive on points and blocks of the design.
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Proof. Clearly, the number of points is v = n, since the point set is P = Ω2. Further, each
element of B consists of k = |Δ2| elements of Ω2.

The set Δ2 is a union of Gα-orbits, so Gα ⊆ GΔ2 , where GΔ2 is the setwise stabilizer
of Δ2. Since G is primitive on Ω1, Gα is a maximal subgroup of G, and therefore GΔ2 = Gα.
The number of blocks is

b = |Δ2G| = |G|
|GΔ2 |

=
|G|
|Gα| = |Ω1| = m. (2.4)

Since G acts transitively on Ω1 and Ω2, the constructed structure is a 1-design, hence
bk = vr, where each point is incident with r blocks. Therefore,

|Ω1||Δ2| = |Ω2|r, (2.5)

and consequently

|G|
|Gα|

s∑

i=1

|Gα|∣∣(Gα)δi
∣∣ =

|G|
|Gδ1 |

r. (2.6)

It follows that

r =
s∑

i=1

|Gδ1 |∣∣(Gα)δi
∣∣ =

s∑

i=1

|Gδi |∣∣(Gδi)α
∣∣ =

s∑

i=1

|αGδi |. (2.7)

Remark 2.4. In the construction of graphs described in Theorem 2.1, we can define the set of
edges E as a union

⋃s
i=1{{α, δi}g : g ∈ G}.

The construction described in Corollary 2.3 gives us all designs that admit primitive
action of the group G on points and blocks.

Corollary 2.5. If the group G acts primitively on the points and the blocks of a 1-design D, then D
can be obtained as described in Corollary 2.3, that is, such that Δ2 is a union of Gα-orbits.

Proof. Let α be any block of the design D. G acts transitively on the block set B of the design
D, hence B = αG. Since G acts primitively on B, the stabilizer Gα is a maximal subgroup of G.
Gα fixes α, so α is a union of Gα-orbits.

We can obtain a 1-design by defining the incidence in such a way that the point δg is
incident with the block αg ′ if and only if

Gαg ′ ∩Gδg
∼= Gi, i = 1, . . . , k, (2.8)

where {G1, . . . , Gk} ⊂ {Gαx ∩Gδy | x, y ∈ G}.
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Let G be a simple group and H1 and H2 be maximal subgroups of G. The stabilizer of
any elementHx

i ∈ cclG(Hi), i = 1, 2, is the maximal subgroupHx
i , hence G acts primitively on

the class cclG(Hi), i = 1, 2, by conjugation and

|cclG(H1)| = [G : H1] = m,

|cclG(H2)| = [G : H2] = n.
(2.9)

Corollary 2.3 allows us to define a 1-design on conjugacy classes of the maximal sub-
groups H1 and H2 of a simple group G. Let us denote the elements of cclG(H1) by H

g1
1 ,

H
g2
1 , . . . ,H

gm
1 and the elements of cclG(H2) byHh1

2 ,Hh2
2 , . . . ,Hhn

2 .
We can construct a 1-design such that

(i) the point set of the design is cclG(H2),

(ii) the block set is cclG(H1),

(iii) the blockH
gi
1 is incident with the pointH

hj

2 if and only ifH
hj

2 ∩Hgi
1
∼= Gi, i = 1, . . . , k,

where {G1, . . . , Gk} ⊂ {Hx
2 ∩H

y

1 | x, y ∈ G}.
Let us denote a 1-design constructed in this way by D(G,H2,H1;G1, . . . , Gk).
Similarly, from the conjugacy class of a maximal subgroup H of a simple group G, one

can construct regular graph in the following way:

(i) the vertex set of the graph is cclG(H),

(ii) the vertexHgi is adjacent to the vertexHgj if and only ifHgi ∩Hgj ∼= Gi, i = 1, . . . , k,
where {G1, . . . , Gk} ⊂ {Hx ∩Hy | x, y ∈ G}.

We denote a regular graph constructed in this way by G(G,H;G1, . . . , Gk).

Remark 2.6. Let φ be an automorphism of a finite group G. Then, the design D(G,H2,H1;
G1, . . . , Gk) is isomorphic to D(G, (H2)φ, (H1)φ;G1, . . . , Gk), and the graph G(G,H;G1, . . . ,
Gk) is isomorphic to G(G, (H)φ;G1, . . . , Gk).

3. Block Designs on 31 Points Constructed from the Group L(3, 5)

Let G be a group isomorphic to the linear group L(3, 5).
Using GAP (see [13]), one can check thatHx

2 ∩H
y

1
∼= (Z2 ·A5) : Z4 or ((Z5 ×Z5) ·Z5) :

(Z4 × Z4) for all x, y ∈ G. Further, for every Hx
2 ,

∣∣∣
{
H

y

1 | y ∈ G, H
y

1 ∩Hx
2
∼= ((Z5 × Z5) · Z5) : (Z4 × Z4)

}∣∣∣ = 6. (3.1)

Let us define sets S(1)
i = {Hgj

2 ∈ cclG(H2) | Hhi

1 ∩Hgj
2

∼= ((Z5×Z5) ·Z5) : (Z4×Z4)}, 1 ≤ i

≤ 31. For every 1 ≤ i, k ≤ 31, i /= k, the set S(1)
i ∩ S

(1)
k has exactly one element. That proves that

the incidence structure D1 = D(L(3, 5),H1,H2; ((Z5 × Z5) · Z5) : (Z4 × Z4)) is the unique
symmetric 2 − (31, 6, 1) design (see [14]), that is, the projective plane PG(2, 5). The full
automorphism group of the design D1 has 372000 elements, and it is isomorphic to the group
L(3, 5).
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Let H3
∼= S5 be a maximal subgroup in G. The conjugacy class cclG(H3) has 3100

elements. One can verify using GAP thatHx
1 ∩H

y

3 is isomorphic toD8,D12, or Z5 : Z4, for all
x, y ∈ G. Using GAP (see [13]), we obtain the following:

(1) |{Hhi

1 ∈ cclG(H1) | Hhi

1 ∩H
gj
3

∼= Z5 : Z4}| = 6, for all H
gj
3 ∈ cclG(H3), 1 ≤ j ≤ 3100,

(2) |S(2)
i ∩ S

(2)
k | = 100, for all i, k ∈ {1, 2, . . . , 31}, i /= j, S(2)

i = {Hgj
3 cclG(H3) | Hhi

1 ∩H
gj
3

∼=
Z5 : Z4},

(3) |{Hhi

1 ∈ cclG(H1) | Hhi

1 ∩H
gj
3

∼= D12}| = 10, for all H
gj
3 ∈ cclG(H3), 1 ≤ j ≤ 3100,

(4) |S(3)
i ∩S(3)

k
| = 300, for all i, k ∈ {1, 2, . . . , 31}, i /= j, S(3)

i = {Hgj
3 ∈ cclG(H3) | Hhi

1 ∩Hgj
3

∼=
D12},

(5) |{Hhi

1 ∈ cclG(H1) | Hhi

1 ∩H
gj
3

∼= D8}| = 15, for all H
gj
3 ∈ cclG(H3), 1 ≤ j ≤ 3100,

(6) |S(4)
i ∩S(4)

k
| = 700, for all i, k ∈ {1, 2, . . . , 31}, i /= j, S(4)

i = {Hgj
3 ∈ cclG(H3) | Hhi

1 ∩Hgj
3

∼=
D8}.

It follows from (1) and (2) that the structure D2 = D(L(3, 5),H1,H3;Z5 : Z4) is a block
design 2 − (31, 6, 100). The blocks of D2 are conics in PG(2, 5).

(3) and (4) imply that the structure D3 = D(L(3, 5),H1,H3;D12) is a block design
2 − (31, 10, 300). The blocks of D3 are interior points of conics in PG(2, 5).

Further, (5) and (6) show that the structure D4 = D(L(3, 5),H1,H3;D8) is a block
design 2 − (31, 15, 700). The blocks of D3 are exterior points of conics in PG(2, 5).

The full automorphism group of designs D2, D3, and D4 has 372000 elements and is
isomorphic to the group L(3, 5).

LetH4
∼= (Z4 ×Z4) : S3 be a maximal subgroup in G. The conjugacy class cclG(H4) has

3875 elements. Using GAP (see [13]), one can check thatHx
1 ∩H

y

4 is isomorphic to S3,Z2×Z4,
or (Z8 : Z2) : Z2, for all x, y ∈ G. In the similar way as above, we obtain the following results:

(i) D5 = D(L(3, 5),H1,H4; (Z8 : Z2) : Z2)) is a 2− (31, 3, 25) design. D5 is isomorphic to
the design constructed from the symmetric 2−(31, 6, 1) designD1 in such a way that
the blocks are all triples of noncollinear points.

(ii) The incidence structure D6 = D(L(3, 5),H1,H4;Z2 × Z4) is a block design 2 − (31,
12, 550). The blocks of D6 are unions of sides of triangles in PG(2, 5).

(iii) D7 = D(L(3, 5),H1,H4;S3) is a block design 2 − (31, 15, 875). The blocks of D7 are
unions of sides of triangles in PG(2, 5), including the corners.

The full automorphism group of D5, D6, and D7 is isomorphic to L(3, 5).
Six designs isomorphic to D2, D3, D4, D5, D6, and D7 can be obtain in the same way as

described in this paper using the maximal subgroup H2 instead of H1. This is a consequence
of the Remark 2.6 and the fact that there exists an automorphism of L(3, 5) which fixes
cclG(H3), cclG(H4) and cclG(H5), setwise and acts as a transposition which maps cclG(H1)
onto cclG(H2).

We thank an anonymous referee of an earlier version of this paper for suggesting the
construction of the designs D2, D3, D4, D6, and D7 from triangles and conics in PG(2, 5).

4. Strongly Regular Graphs Constructed from the Group U(5, 2)

In this section, we describe structures constructed from a simple group isomorphic to the uni-
tary group U(5, 2).
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The intersection of two different elements Kx
i ,K

y

i ∈ cclG(Ki), i = 1, 2, 3, 4, denoted by
Gk

i,i, is isomorphic to

(i) G1
1,1

∼= ((Ex+
27 : Z2) · Z4) : Z3 or G2

1,1
∼= ((E8 × Z4) · E8) : E9,

(ii) G1
2,2

∼= (E8 : Z12) : Z6 or G2
2,2

∼= (((Ex+
27 : Z2) · Z4) : Z3) : Z3,

(iii) G1
3,3

∼= A5 × Z3 or G2
3,3

∼= Ex−
128 : E9,

(iv) G1
4,4

∼= D6, G2
4,4

∼= S3 × S3, G3
4,4

∼= (A4 : Z2) : Z3, G4
4,4

∼= A5 : Z2, or G5
4,4

∼= (Ex+
27 :

Z2) × S3.

Applying the method described in Section 2, we obtain the following results:

(i) the graph G1 = G(U(5, 2), K1;G1
1,1) is a strongly regular graph with parameters

(165, 36, 3, 9),

(ii) the graph G2 = G(U(5, 2), K2;G2
2,2) is a strongly regular graph with parameters

(176, 40, 12, 8),

(iii) the graph G3 = G(U(5, 2), K3;G2
3,3) is a strongly regular graph with parameters

(297, 40, 7, 5),

(iv) the graphG4 = G(U(5, 2), K4;G2
4,4, G

3
4,4, G

4
4,4) is a strongly regular graphwith param-

eters (1408, 567, 246, 216).

The full automorphism groups of the graphs G1, G2, and G3 are isomorphic to the
group U(5, 2) : Z2

∼= Aut(U(5, 2)). U(5, 2) is a rank 3 group on 165, 176, and 297 points, and
G1, G2, and G3 are rank 3 graphs of the group U(5, 2).

The full automorphism group of the graph G4 is of order 18393661440 and is iso-
morphic to the groupU(6, 2) : Z2

∼= Fi21 : Z2. AlthoughU(5, 2) acts as a rank 7 group on 1408
points, the graph G4 can be constructed as a rank 3 graph from the Fischer group Fi21.

5. Structures Constructed from the Group S(6, 2)

In this section, we consider the structures constructed from a simple group isomorphic to the
symplectic group S(6, 2).

The intersection of two different elements Mx
i ∈ cclG(Mi) and M

y

j ∈ cclG(Mj),

denoted byGk
i,j , is isomorphic to (we introduce only the intersection of elements of conjugacy

classes that give rise to a strongly regular graph or a block design)

(i) G1
1,3

∼= E16 : S5 or G2
1,3

∼= A6 : E4,

(ii) G1
1,6

∼= ((E8 · Z12) : Z6) : Z2 or G2
1,6

∼= S4 ×D8,

(iii) G1
1,7

∼= E27 : (D8 × Z2) or G2
1,7

∼= S5 : Z2,

(iv) G1
2,3

∼= A6 : E4 or G2
2,3

∼= (S4 × S4) : Z2,

(v) G1
2,5

∼= E8 : L(2, 7) or G2
2,5

∼= E16 : S4,

(vi) G1
2,6

∼= E16 : S4 or G2
2,6

∼= S4 ×D8,

(vii) G1
2,7

∼= S5 × S3 or G2
2,7

∼= E9 : (D8 × Z2),

(viii) G1
3,3

∼= Ex+
32 : (D12 × Z2) or G2

3,3
∼= S6,

(ix) G1
4,4

∼= (Ex+
27 : Z2) · Z4 or G2

4,4
∼= (Z4 × Z4) : D12,

(x) G1
5,5

∼= L(2, 7), G2
5,5

∼= E16 : D12, or G3
5,5

∼= Ex+
32 : (A4 : Z2).
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Applying the method described in Section 2, we obtain the following results:

(i) the incidence structure D8 = D(S(6, 2),M1,M3;G1
1,3) is a block design with param-

eters 2 − (28, 12, 11),

(ii) the incidence structure D9 = D(S(6, 2),M1,M6;G1
1,6) is a block design with param-

eters 2 − (28, 4, 5),

(iii) the incidence structureD10 = D(S(6, 2),M1,M7;G1
1,7) is a block design with param-

eters 2 − (28, 10, 40),

(iv) the incidence structureD11 = D(S(6, 2),M2,M3;G1
2,3) is a block design with param-

eters 2 − (36, 16, 12),

(v) the incidence structureD12 = D(S(6, 2),M2,M5;G1
2,5) is a block design with param-

eters 2 − (36, 8, 6),

(vi) the incidence structureD13 = D(S(6, 2),M2,M6;G1
2,6) is a block design with param-

eters 2 − (36, 12, 33),

(vii) the incidence structureD14 = D(S(6, 2),M2,M7;G1
2,7) is a block design with param-

eters 2 − (36, 6, 8),

(viii) the incidence structure D15 = D(S(6, 2),M3,M3;G1
3,3,M3) is a block design with

parameters 2 − (63, 31, 15),

(ix) the graph G5 = G(S(6, 2),M3;G1
3,3) is a strongly regular graph with parameters

(63, 30, 13, 15),

(x) the graph G6 = G(S(6, 2),M4;G1
4,4) is a strongly regular graph with parameters

(120, 56, 28, 24),

(xi) the graph G7 = G(S(6, 2),M5;G1
5,5) is a strongly regular graph with parameters

(135, 64, 28, 32).

The full automorphism groups of designs D8,D9,D10, D11,D12,D13, and D14 and the
full automorphism group of the graph G5 are isomorphic to S(6, 2).

Graphs G6 and G7 haveO+
8 (2) : Z2

∼= AutO+
8 (2) as the full automorphism group.O+

8 (2)
acts as a rank 3 group on 120 and 135 points, and graphs G6 and G7 can be constructed as
rank 3 graphs from the orthogonal group O+

8 (2). On the other hand, the group S(6, 2) acts as
a rank 3 group on 120 points and as a rank 4 group on 135 points. Therefore, the graph G6 can
also be constructed as a rank 3 graph from the S(6, 2).

The design D8 is a quasi-symmetric SDP design isomorphic to the design described in
[15, 16]. Its block graph is isomorphic to the complement of the graph G5.

Furthermore, from the design D9 on 28 points, one can construct two designs on 28
points, one isomorphic to the design D8 and one isomorphic to the design D10. The design
on 28 points, whose blocks are unions of three disjoint blocks of the design D9 such that
stabilizer of that union under the action of the automorphism group Aut(D9) is isomorphic
to the maximal subgroup M3, is isomorphic to the design D8. On the other hand, unions of
three blocks intersecting in exactly one point of the designD9 such that stabilizer of that union
under the action of the group Aut(D9) is isomorphic to the maximal subgroupM7 are blocks
of a design isomorphic to the design D10.

The design D11 is also a quasi-symmetric design, isomorphic to the design described
in [15, 16]. Its block graph is isomorphic to the graph G5.

The ovals (sets of 6 points, no three collinear) of the design D12 form a block design
with parameters 2 − (36, 6, 8) isomorphic to the design D14. Furthermore, the group S(6, 2)
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Table 1: Maximal subgroups of the group L(3, 5).

Maximal subgroup Structure Order Index
H1 E25 : GL(2, 5) 12000 31
H2 E25 : GL(2, 5) 12000 31
H3 S5 120 3100
H4 (Z4 × Z4) : S3 96 3875
H5 F93 93 4000

Table 2: Maximal subgroups of the groupU(5, 2).

Maximal subgroup Structure Order Index
K1 (E64 : Z2) · (E9 : Z3) · SL(2, 3) 829444 165
K2 Z3 ×U(4, 2) 46080 176
K3 (E16 : E16) : (Z3 ×A5) 77760 297
K4 E81 : S5 9720 1408
K5 (S3 × (E9 : Z3)) : SL(2, 3) 3888 3520
K6 L(2, 11) 660 20736

Table 3:Maximal subgroups of the group S(6, 2).

Maximal subgroup Structure Order Index
M1 U(4, 2) : Z2 51840 28
M2 S8 40320 36
M3 E32 : S6 23040 63
M4 U(3, 3) : Z2 12096 120
M5 E64 : L(3, 2) 10752 135
M6 ((E16 : Z2) × E4) : (S4 × S4) 4608 315
M7 S3 × S6 4320 336
M8 L(2, 8) : Z3 504 960

has a subgroup H isomorphic to the group PG(2, 8). The group H acts on the set of all ovals
of the design D12 in four orbits of size 84 and one of these orbits forms the block set of a block
design with parameters 2 − (36, 6, 2) having Aut(PGL(2, 8)) as the full automorphism group.
The design D12 is isomorphic to the 2 − (36, 8, 6) design described in [17].

Unions of four disjoint blocks of the designD14 such that stabilizer of that union under
the action of the automorphism group Aut(D14) is isomorphic to the maximal subgroup M6

are blocks of a design isomorphic to the complement of the design D13.
The designD15 is the point-hyperplane design in the projective geometry PG(6, 2), and

its full automorphism group is isomorphic to PG(6, 2). D15 possesses a symmetric incidence
matrix with 1 everywhere on the diagonal, and therefore it gives rise to a strongly regular
graph with parameters (63, 30, 13, 15) which is isomorphic to the graph G5.

The graph G7 can also be constructed from the designD12. Any two blocks ofD12 inter-
sect in 1, 2, or 4 points. The graphwhich has as its vertices the blocks ofD12, two vertices being
adjacent if and only if the corresponding blocks intersect in one point, is isomorphic to G7.

Let U ∼= U(3, 3) be a subgroup of the group S(6, 2) and let cclU(M1) and cclU(M6)
be conjugacy classes of maximal subgroups M1 and M6 under the action of the group
U. The intersection of Mg

1 , g ∈ U, and Mh
6 , h ∈ U, is isomorphic either to G1

1,6 or G2
1,6.
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Table 4: Structures constructed from L(3, 5), U(5, 2), and S(6, 2).

Combinatorial structure The full automorphism group
2 − (31, 6, 1) design L(3, 5)
2 − (31, 6, 100) design L(3, 5)
2 − (31, 10, 300) design L(3, 5)
2 − (31, 15, 700) design L(3, 5)
2 − (31, 3, 25) design L(3, 5)
2 − (31, 12, 550) design L(3, 5)
2 − (31, 15, 875) design L(3, 5)
2 − (28, 12, 11) design S(6, 2)
2 − (28, 4, 5) design S(6, 2)
2 − (28, 10, 40) design S(6, 2)
2 − (36, 16, 12) design S(6, 2)
2 − (36, 8, 6) design S(6, 2)
2 − (36, 12, 33) design S(6, 2)
2 − (36, 6, 8) design S(6, 2)
2 − (63, 31, 15) design PGL(6, 2)
2 − (28, 4, 4) design U(3, 3) : Z2

2 − (28, 4, 1) design U(3, 3) : Z2

SRG(63, 30, 13, 15) S(6, 2)
SRG(120, 56, 28, 24) O+

8 (2) : Z2

SRG(135, 64, 28, 32) O+
8 (2) : Z2

SRG(165, 36, 3, 9) U(5, 2) : Z2

SRG(176, 40, 12, 8) U(5, 2) : Z2

SRG(297, 40, 7, 5) U(5, 2) : Z2

SRG(1408, 567, 246, 216) Fi21 : Z2

Let D′ be an incidence structure whose points are labeled by the elements of the class
cclU(M1) and whose blocks are labeled by the elements of the class cclU(M6), point and
block being incident if and only if the intersection of corresponding elements of conjugacy
classes is isomorphic to the group G1

1,6. The structure D′ is isomorphic to the block design
with parameters 2 − (28, 4, 4) having AutU(3, 3) ∼= U(3, 3) : Z2 as the full automorphism
group. Further, let M = M

g

6 , g /∈ U, be an element of the class cclS(6,2)(M6). The incidence
structureD′′ whose points are labeled by the elements of the class cclU(M1) andwhose blocks
are labeled by the elements of the class cclU(M), point and block being incident if and only
if the intersection of corresponding elements of conjugacy classes is isomorphic to the group
G1

1,6, is isomorphic to the Hermitian unital with parameters 2 − (28, 4, 1) having AutU(3, 3)
as the full automorphism group. We conclude that the designs D′ and D′′ are subdesigns of
the design D9. One can construct from the group U(3, 3) the design D(U(3, 3), (E9 : Z3) :
Z8, Z4 · S4;Z3 : Z8) isomorphic to the design D′′ (see [15]).

The Hölz design H(q) of order q is a design with parameters 2 − (q3 + 1, q +
1, q + 2) which is a union of the Hermitian unital with parameters 2 − (q3 + 1, q + 1, 1)
and a 2 − (q3 + 1, q + 1, q + 1) design whose blocks are arcs in the unital. To prove
that design D9 is isomorphic to the design H(3), we constructed design H(3), by the
method described in [18], as the support design of the dual code of the code spanned
by the incidence vectors of the design D8. Constructed design is isomorphic to the design
D9.
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From

(i) |cclS(6,2)M1| = |cclUM1|,
(ii) |cclS(6,2)M2| = |cclUM2|,
(iii) |cclS(6,2)M3| = |cclUM3|,
(iv) |cclS(6,2)M7| = |cclUM7|,

one can conclude that, in order to construct designs D8, D10, D11, D14 and D15, corresponding
maximal subgroups need not to be conjugate by the elements of the whole group S(6, 2). The
conjugation by the elements of the subgroup U is sufficient to obtain the desired structures.

In Table 4 we give a list of the constructed designs and strongly regular graphs and
their full automorphism groups. Table 1, Table 2, and Table 3 give a list of maximal subgroups
of the groups L(3, 5), U(5, 2), and S(6, 2), respectively.
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