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We consider in-phase and antiphase synchronization of chaos in a system of coupled
cubic maps. Regions of stability and robustness of the regime of in-phase complete
synchronization was found. It was demonstrated that the loss of the synchronization is
accompanied by bubbling and riddling phenomena. The mechanisms of these
phenomena are connected with bifurcations of the main family of periodic orbits and
orbits appeared from them. We found that in spite of the in-phase synchronization, the
antiphase self-synchronization of chaos is impossible for discrete maps with symmetric
diffusive coupling. For achieving antiphase synchronization we used method of
controlled synchronization by addition feedback. The region of the controlled antiphase
synchronization and phenomena which accompany the loss of the synchronization are

presented.
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1. INTRODUCTION

At present, the synchronization of chaos is in the
center of attention of many researches. There are
several approaches to the term ‘“‘chaotic synchro-
nization”. One of them is the complete synchro-
nization of chaos when coupled oscillators move
identically to each other (x;(f) =x,(?)) (Fujisaka,
1983). The another case of full synchronization is
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when the subsystems oscillate identically but with
opposite signs: x;(f) = —x,(f). This case can be
called as antiphase complete chaotic synchroniza-
tion. The antiphase synchronization of chaos was
considered in the work (Cao, 1998). The authors
investigated ‘“‘master — slave” synchronization
(Pecora, 1990), when one subsystem unidirection-
ally influences on the other one. The possibility
of chaotic antiphase self-synchronization and
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controlled antiphase synchronization in sym-
metrically coupled oscillators takes further
consideration.

As it was shown the in-phase complete synchro-
nization of chaos exists in the determine interval
of the coupling coefficient. With changing the
coupling the regime of synchromization breaks.
This process can be accompanied by the bubbling
phenomenon, the blowout bifurcation and the
riddled basins (Ashvin, 1994; Lai, 1996). A lot of
works considering characteristic bifurcations
which lead to destruction of the regime of synchro-
nous oscillations appear for the last time (Pikovsky,
1991; Astakhov, 1998). There are reasons that
scenarium of loss of chaotic synchronization must
be in close connection with bifurcational mechan-
isms which form the chaotic attractor related to the
synchronous oscillations. One of the typical me-
chanisms for many systems is the period-doubling
cascade. The chaotic attractor formed on the base
of the cascade of subhurmonic bifurcations con-
tains infinite number of saddle cycles which form
the skeleton of the chaotic attractor.

In the works on investigation of synchronization
in the coupled logistic maps (Astakhov, 1997,
Astakhov, 1998) we found that the desynchroniza-
tion of chaos is caused by bifurcations of saddle
periodic orbits of the main family, on the base of
which the chaotic attractor was formed. Consid-
eration of other dynamical systems with the
similar scenarium of the transition to chaos gives
possibility to reveal both the community of the
found laws and differences which are determined
by the dynamics of particular system.

In a system of symmetrically coupled identical
oscillators a limit set relating to synchronous
oscillations locates in the symmetric subspace
(x; =X3,) (for the in-phase synchronization) or in
the antisymmetric subspace (x;= —x,) (for the
antiphase synchronization) of the whole phase
space of the system, where x; and x; are vectors of
identical dynamical variables of interacting sub-
systems. If the chaotic set is attractive in the
normal to the subspace direction, namely when
the largest normal Lyapunov exponent is neg-

ative, the synchronous oscillations are observed
in experiment. When the exponent changes its sign
to the positive, the chaotic attractor becomes non-
attracting in the normal direction and transforms to
the chaotic saddle. The synchronous oscillations
lose its stability and they are not observed in
experiment further. However, it is possible that the
largest Lyapunov exponent on the chaotic attractor
is negative, but the exponents on some limit sets
encapsulated in the attractor are positive. In this
case the synchronous regime remains stable but
becomes unrobust. Any infinitesimal noise or the
parameters mismatch can lead to the bubbling of
attractor. The time-series of the difference between
oscillations in the subsystems (x; — x,) is intermit-
tency process when the phase point moves in
vicinity of the symmetric subspace for a long time
(laminar phase) and leave away from it from time to
time (turbulent bursts) (Platt, 1993). The bubbling
of attractor is the first step to the desynchroniza-
tion of chaos. Then, with changing of the control-
ling parameters more quantity of encapsulated
cycles lose their stability in the normal direction.
This enforces the process of bubbling and then the
averaged on the attractor highest normal Lyapunov
exponent can become positive. As a result, the
chaotic set in the symmetric subspace becomes non-
attractive. This phenomenon is called the blowout
bifurcation (Ashvin, 1994). The bubbling of attrac-
tor can be followed by the riddling of its basins
when “holes” from the basins of another attractor
appear in infinitesimly small vicinity of the attrac-
tor. In this case, the presence of small noise or the
parameters mismatch leads to leaving of the phase
point to the another attractor. Regimes which
accompany the process of chaotic synchronization
loss in the coupled logistic maps were described
in works (Fujisaka, 1985; Kuznetzov, 1985).
Mechanisms of the synchronization loss in the
coupled logistic maps is described in detail in
(Astakhov, 1997; Astakhov, 1998; Maistrenko,
1998; Maistrenko, 1999).

In the present work we hold bifurcational
analysis of the system of coupled cubic maps and
consider observable phenomena which accompany
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the investigated bifurcations. The obtained results
are compared with the results for other systems.
We consider the case of antiphase synchronization
of chaos and demonstrate that in similar systems
the self-synchronization is impossible. To achieve
regime of the chaotic antiphase synchronization
we apply method of feedback chaos control. We
show that loss of this type of synchronization is
also accompanied by the bubbling and the riddling
phenomenon and by the blowout bifurcation.

2. THE IN-PHASE
AND THE ANTIPHASE
SYNCHRONIZATION
IN DIFFUSIVELY COUPLED MAPS

Let’s consider a system of two identical discrete
maps with symmetrical diffusive coupling:

F(xn) +9(f(n) = f(xn)) (1)
Y1 = f(yn) + v (Xn) = f(¥n)) 2)

Xn+1 =

It is seen, that this system is invariant to the
transformation x < y and therefore the subspace
(x=y) is invariant to the operator of the evolution
of the system. For investigation stability properties
of the symmetric solutions it is convenient to use
“normal” variables:

_x+y
“=7

XYy
L)

Adding and subtracting Egs. (1) and (2) and
then linearizing results in the vicinity of the
symmetric subspace we get:

Uni1 = f (tn) ()
Vart = (1 = 29)f (tn) vn 4)

The Eq. (3) describes the dynamics inside the
symmetric subspace. It is evidently the equation of
the single map. The tangent stability of the

synchronous solution is described by the tangent
Lyapunov exponent:

A .
A; = lim N;h‘ If (un)| ()

The Eq. (4) describes the dynamics in the
normal direction to the symmetric subspace in its
small vicinity. The normal stability of the syn-
chronous solution is described by the normal
Lyapunov exponent:

, . i ,
&y = fim &3 |1 =20 )] (©

Comparing (5) and (6) we see that the tangent
and the normal Lyapunov exponents satisfy the
relation:

A=A +In|l - 29| (7)

If we use small positive coupling (0 <~ <0.5)
the normal Lyapunov exponent is smaller than the
tangent one. Hence, any in-phase regular oscilla-
tions are normally stable and in-phase chaotic
oscillation are stable only at sufficient coupling.

Now let’s consider the antiphase synchroniza-
tion. In this case we’ll also use normal variables.
The equations in the small vicinity of the anti-
symmetric subspace have the form:

Uit = f (Vu)tiy (®)

Va1 = (1 = 27)f (v) ©)

In this case the dynamics inside the antisym-
metric subspace is described by the Eq. (9). In spite
of the case of the in-phase synchronization it
depends on the coupling coefficient +. Stability of a
antisymmetric solution to the tangent perturba-
tions is determined by the tangent Lyapunov
exponent:

= lim — Zln|1—2~y f'(va)|  (10)

N—roo

The Eq. (8) determines dynamics in the normal
direction to the antisymmetric subspace in its



218 A. SHABUNIN

vicinity. It has no obvious dependence on the
coupling coefficient ~ but it depend on it through
the variable v,, which is determined by the Eq. (9).
The normal Lyapunov exponent which determines
transversal stability of the antiphase oscillations
has the form:

1
A‘1=,3930;,§ In|f'(vs)| (11)
n=1

It is seen that the normal and tangent Lyapunov
exponents are connected with each other:

A% =A% +1n|l - 24| (12)

This relation is the opposite to the in-phase case.
Here A2 <A9 and hence the every antiphase
oscillating regime firstly loses its stability in the
normal to the antisymmetric subspace direction
and secondly in the tangent direction. Because of
relation (12) the antiphase self-synchronization of
chaos is impossible in the considered systems. For
a chaotic attractor A?>0 and therefore the
normal Lyapunov exponent must be positive.
Hence chaotic antiphase oscillations couldn’t be
transversally stable.

For stabilization of antiphase chaotic oscilla-
tions it is possible to use feedback controlling in-
fluence. We wanted to find the controlling function
in the form which does not change the form of
antiphase oscillations, but changes their stability.
Hence, the controlling function ¥(x,y) must be
equal to zero inside the antisymmetric subspace,
namely: ¥U(x, —x)=0. In our work we suggest the
function in the form: ¥(x, y)=r(f(x)+f(»)). The
controlling term is added to the right side of
the first equation of the system (1), (2):

Xni1 = f(Xn) +Y(F () = F(xn)) +r(f(xn) +f(¥n))
(13)

Yner =fOn) +7(F (%) = fOn))  (14)

The term r(f(x,)+f(y,) can be considered as
another coupling loop with coupling coefficient r.

The equations in the normal variables for the
system with the control have the form (near the
antisymmetric subspace):

tng1 = (14 7)f (v )un (15)
Var1 = (1= 27)f (va) + 1f' (V) thn (16)

In the case of antiphase oscillations u, =0 and
Eq. (16) transforms to the (9). The normal
Lyapunov exponent for the system with the
control is:

1
Al contr = nglgoﬁn;lnl(l + 7)f' (vn)| (17)

and hence:
Aﬁ_contrzAJ—+ln|1+rl (18)

Choosing r sufficiently close to — 1, we can achieve
any small value for the normal Lyapunov
exponent and hence can stabilize antiphase
oscillations.

3. THE SYSTEM UNDER
CONSIDERATION

Let’s consider a system of diffusivelly coupled
cubic maps in the form:

Xn+1 :f(xn) + W(f(yn) _f(xn))
Y+t =Fn) + 9 (xn) = F(¥n)), (19)

where flx)=(a—1)x—ax>, a is the parameter of
the subsystem, -y is the coefficient of coupling.
The single cubic map:

Xnp1 = (@ — 1)x, — ax) (20)

has a symmetry to transformation of the coordi-
nate:

I: x & —Xx,

Therefore all its limit sets are self-symmetric to this
transformation or they have symmetric ones.
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At any values of the parameter g in the phase
space of the system there is a period-one fixed
point. At 0 < a <2 this point is stable, at a=2 its
multiplier 4 =a— 1 becomes equal to 1. As a result
the point becomes unstable and in its vicinity a
pear of symmetric to each other period-one points
appears:

a—2 a—2

a

Ci: x= Cy: x=-—

With increasing of the parameter a a cascade of
the period-doubling bifurcations takes place on
the base of these points C; and C, which leads to
formation of chaotic attractors. At a=3.6 they
merge to a single attractor.

A system of the coupled maps posses the
symmetric property of the single map to the
transformation:

I: x & —x, y & —y,

and due to the symmetric coupling and identity of
the subsystems it also posses symmetry to trans-
formation:

R: x = y.

Because I and R commutate with each other, their
combination is also a symmetric transformation
for the system (1):

IoR: x &= —y, y < —x.

Consequence of the symmetry of the system to the
transformation R is a possibility of existence there
in-phase oscillations, which are satisfied condition
x =y. Consequence of the symmetry of the system
to the transformation Rol is a possibility of
existence there anti-phase oscillations, which are
satisfied condition x= —y.

4. INVESTIGATION OF THE IN-PHASE
SYNCHRONIZATION
IN THE SYSTEM

In the system of coupled maps with changing of
the controlling parameter a transition to chaos

occurs through the period-doubling bifurcations
cascade. As a result near the points 1CY and 1CY
chaotic attractors which relate to synchronous
oscillations are formed. They locate in the sub-
space x=y. The Figure 1 demonstrates bifurca-
tional lines which correspondent to bifurcations in
the symmetric subspace: I);,12,, 1%, 13, (the upper
index is the periodicity of the orbit) are lines of
period-doubling bifurcations of periodic orbits
°,2¢°, 4¢°, 8C° (the first index denotes the perio-
dicity of the orbit, the upper index is the time delay
between oscillations of the subsystems) respective-
ly. The largest multiplier becomes equal to —1
and correspondent eigenvector directs tangentially
to the symmetric subspace. As a result these orbits
become saddles and in their vicinity, in the same
subspace stable periodic orbits of double periods
appear. This cascade of sub-harmonic bifurcations
leads to formation of a chaotic attractor in the
symmetric subspace. This chaotic attractor relates
to the regime of in-phase synchronization of
chaos. Over the line /8, synchronous oscillations
become chaotic. In the chaotic region under the
line /2, (this line is the bound-merging bifurcation
for the two-bound chaotic attractor) there are
bound-merging bifurcations of chaotic attractors
2V 4° which exist in the symmetric subspace. Over
the line /2, in the subspace there are one-bound
attractors A ,. On the line /}, these attractors unite
and the united synchronous chaotic attractor is
formed. Locations of the periodic orbits C°, 2¢C°
and 4C° are presented in the Figure 2 for the
values of the parameters: a=3.65, y=0.15. The
symmetric subspace is marked by dashed line.
Now, let’s consider bifurcations which lead to
appearance of new limit sets outside the symmetric
subspace. On the line /!, (Fig. 1) the saddle fixed
point C° undergoes the second period-doubling
bifurcation. The second multiplier becomes equal
to —1 and the correspondent eigenvector is
directed normally to the subspace x=y. As a
result the fixed point loses its stability in the
normal to the symmetric subspace direction and
becomes repeller. A saddle period-two orbit 2C"
appears in its vicinity outside the symmetric sub-
space (Fig. 2). On the line llf its largest multiplier
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FIGURE 1 Bifurcational lines of symmetric periodic orbits and boundaries of unrobust (o) and robust (<) in-phase

synchronization of chaos on the pane of the parameters v— a.

becomes equal to +1 (the pitchfork bifurcation),
as a result this orbit becomes stable. On the line /2,
the saddle period-two orbit 2C° undergoes the
second period-doubling bifurcation. The second
multiplier becomes equal to —1. As a result the
saddle becomes a repeller and in its vicinity outside
the symmetric subspace a saddle period-four orbit
4C* (Fig. 2) appears. This orbit becomes stable on
the line /7.

On the line /3) the fixed point in the origin of the
coordinates Cyo(x =0, y=0) loses its stability via
the bifurcation of symmetry breaking (the multi-
plier is equal to +1) in another direction. As a
result in its vicinity a pair of symmetric to each
other saddle fixed points C; C,o appear, which are
located in the other symmetric subspace x= —y
(we’ll call it as “antisymmetric subspace’”). On the
line /,, these fixed points become stable.

Every second period-doubling bifurcation for
periodic orbits 2VC° located in the symmetric
subspace, which is accompanied by transforma-
tions their to repellers adds points of local
transversal instability to the chaotic attractor 4°.
From these points phase trajectory leaves the
symmetric subspace at determine perturbations.
For some systems it was demonstrated (Ashvin,
1994; Sushchik, 1997; Astakhov, 1997) that pre-
sence of such limit sets in the attractor leads to the
bubbling phenomenon. In this case the regime of
synchronous oscillations becomes unrobust. Any
small noise and mismatch of the subsystems lead
to destruction of the complete synchronization.
The time-series of the difference x,—y, is inter-
mittency process (on-off intermittency), when
motion in the symmetric subspace is intermittent
by bursts from it. As a result a boundary of the
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FIGURE 2 Location of periodic orbits taking part in the
destruction of the in-phase chaotic synchronization: C° (Q),

2C° (o), 4C° (V), 2C" (%), 4C* (O).

synchronous region in the system with any small
noise is shifted relatively to one in the system
without noise. In our work we hold numeric
investigations on determination of the boundary
of the synchronization region. In these investiga-
tions we suppose oscillations as synchronous if
the time-series of the subsystems are equal with
precision of ¢ during the whole time interval of
observations:

maxlxn —)’nl <g, n= 1727 37 -+« y Nobserv. -

This value was chosen: £=0.0001, Ngpsery. =
2000000 iterations. In the Figure 1 (o) mark the
experimentally determined boundary of the robust
synchronization region (this region is marked
by grey color). From the right side of it stable
synchronous chaotic oscillations take place. Under
the line /2, the system demonstrates many-band
synchronous chaotic attractors 2V 4°, between the
lines /2, and I}, there is one-band synchronous
chaotic attractor 4°, over the line [} there is a
united synchronous chaotic attractor which
appeared as a result of merging chaotic sets on
base of the fixed points CY and CJ. Adding small

noise with intensity ~ 0.00001 to the system
doesn’t lead to desynchronization.

From the left side of this boundary and from the
right side of the boundary marked by () there
is a region of unrobust synchronous chaos (this
region is marked by light grey color). The
synchronous regime is observed only in the
absence of any noise. The transition process to
this regime has the form of intermittency. Its
duration depends on the chosen initial conditions.
Adding very small noise to the system destructs the
synchronous regime. The system demonstrates
bubbling behavior. In the Figure 3 there are the
phase portraits of chaotic attractor in the system
without noise (Fig. 3a) and with noise (Fig. 3b).
The Figure 3c demonstrates the time-series of the
bubbling behavior.

In the region from the left side of the boundary
(&) synchronous oscillations are absent. The
phase trajectory transits to another stable oscillat-
ing regime, which exists in the system at these
parameters values. Lower the point of crossing of
the lines /> and I} the trajectory transits to the out-
of-phase orbit 2C". Over this point till the line 7,
they are the orbits 4C? or 2C". Over the lines I,
and l}p in the case of the united chaotic attractor,
with the losing of normal stability the trajectory
can transit to one of the fixed points Cjg 2o located
in the antisymmetric subspace x = —y.

Near the line II% the phenomenon of riddled
basins is observed in the system. In the nearest
vicinity of the attractor A° there are regions from
basins of other attractors. In the Figure 4 there is
basins of the attractor 4° which contains regions
from the basins of the periodic orbit 2C! (black
color). Adding of small noise destructs the basins
of A° trajectory leaves to the orbit 2C' at any
initial conditions near the A°. But the time of the
transient process depends essentially on the initial
conditions.

Evidently the described picture of the region of
synchronization is not detailed. The region con-
tains also windows of periodicity and regions of
attractors originated from these periodic regimes.
Therefore the boundary of the synchronization
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FIGURE 3 The phase portrait of the in-phase oscillations without noise (a) and with noise (b); time-series x, — y, of the bubbling
attractor (c). The phase portrait of the bubbling united chaotic attractor (d).

region must be very complex. In our work we give
the synchronization region only for chaotic
attractors originated on the base of the main
family of the periodic orbits 2VCP.

Comparing experimental observations and re-
sults of the bifurcational analysis we can clear the
mechanism of destruction of chaotic synchroni-
zation. Unlike some described cases (see for
example (Sushchik, 1997; Astakhov, 1997) the lost

of normal stability of the fixed point C° doesn’t
lead immediately to the bubbling attractor. The
bubbling phenomenon appears at lower coupling,
near the parameter points when other saddle
orbits of the main family: 2C° 4¢°, 8¢, ...
undergo the correspondent bifurcations. Hence,
though in the chaotic attractor there are ‘“‘defect
points”, bursts from the symmetric subspace are
not observe in experiment for finite, but long time.
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FIGURE 4 Basins of the chaotic attractor in the symmetric
subspace (white color) and of the periodic orbit 2C' (black
color). a=3.5, v=0.17.

They appear after bifurcations of sufficient num-
ber of the other saddle orbits inside 2VC° the
attractor.
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FIGURE 5 Transversal “size” of the bubbling attractor

(max|x,—y,|) in dependence on the value of the coupling.
a=3.4.

Transversal size of the appeared bubbling
attractor is determine by the location of the points
of the saddle periodic orbit 2C' (in the Fig. 3b
these points are marked by x). Therefore this
orbit and its manifolds must play important role in
the formation of the bubbling attractor. The
further decreasing of the coupling enforces the
phenomenon of bubbling. The bursts appears
more often and their amplitude increases. The
dependence of the ‘“‘thickness” of the bubbling
attractor (max |x,,— y,|) on the coupling coefficient
is presented in the Figure 5. The parameter a was
chosen in the value 3.4. Oscillations in the system
were investigated during interval of ~ 107 itera-
tions. From the figure it is seen that the beginning
of the bubbling appears until the points of
bifurcations of the saddle orbits 2C°—8C° but
these bifurcations enforce this phenomenon.

5. ANTIPHASE REGULAR REGIMES
AND CONTROLLED ANTIPHASE
CHAOTIC SYNCHRONIZATION

Antiphase regimes are formed on the base of the
fixed points Cyg and Cyg. Limit sets formed on the
base of these points are identical up to symmetry
transformation. Therefore we’ll consider only one
family of the regimes (for example, near the point
Cro).

The saddle fixed point Cjo appears from the
saddle fixed point Cy in the result of the symmetry
breaking bifurcation. It is unstable to the pertur-
bations directed transversally to the antisymmetric
subspace. On the line lt‘p (Fig. 6) it becomes stable
through pitchfork bifurcation. With changing of
the parameters a and «y on the base of this fixed
point there is a cascade of the period doubling
bifurcations which leads to formation of a chaotic
set inside the antisymmetric subspace. The every
orbit undergoes the period-doubling bifurcation
twice in the cascade. Firstly, as stable orbit on the
first multiplier, secondly as saddle orbit on the
second multiplier. As a result of the first period
doubling the orbit loses its stability in the normal
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orbits on the pane of the parameters y—a.

to the subspace direction. In its vicinity, outside
the antisymmetric subspace a stable orbit of
double period appears. As a result of the second
period doubling the saddle orbit loses stability in
the tangent direction and becomes repeller. In
its vicinity, inside the antisymmetric subspace a
saddle periodic orbit of double period appears. In
the Figure 6 the lines of the first period doubling
bifurcations are denoted: /., (for the orbit of the
period-one), /2, (for the orbit of the period-two),
l:‘d (for the orbit of the period-four), and the lines
of the second period doubling bifurcations as
11,,2,,1%, respectively. Then, with further para-
meters changing, the appeared saddle antisym-
metric orbits become stable through the subcritical
pitchfork bifurcations. In the Figure 6 these lines
are denoted as lﬁ, and Ig,. Therefore, on the
parameters plane in the region between the lines
I, and I, there is a stable antiphase period-one
orbit, between the lines /7, and [} there is a stable
antiphase period-two orbit and between the lines

I} and I}, there is a stable antiphase period-four
orbit. We didn’t consider bifurcations of the orbits
of larger periods but one can conclude that they
occur by the same way. Hence, on the plane of the
parameters there are bounds of stability for
regular antiphase regimes, between which bounds
of transversal instability exist.

The considered bifurcational scenarium is very
similar to the one for in-phase orbits. However, in
the case of in-phase synchronization the bifurca-
tions inside the symmetric subspace precede the
bifurcations in the normal direction. Therefore, in
the case of antiphase synchronization, contrarv to
the in-phase synchronization:

e regions of transversal stability are divided by the
regions of transversal instability;

e in the symmetrical subspace the transversally
stable chaotic attractor is not formed.

To stabilize previously unstable regime of anti-
phase chaotic synchronization we used the con-
trolled term r(f(x)+f(»)) which was added to the
right side of the first equation of the system (19):

Xpp1 = (@ — 1)x, — axi+
vl(a — )y, — ay} — (a — 1)x, + ax’]
+r(f(xn) +f(m))
yur1 = (@ = V)yn — ayy+
vl(a — 1)x, — ax® — (a — 1)y, + ay’]
@)

Choosing r is close to —1 it is possible to make
the normal Lyapunov exponent sufficiently small
and hence, the synchronous chaotic regime trans-
versally stable. In the Figure 7a we plotted the
dependences of the normal Lyapunov exponent on
the controlling parameter r. Values of the other
parameters corresponds to the regime of the united
chaotic attractor: a=3.8, y=0.04. To transit to
the regime of antiphase synchronization we used
the following procedure: We chosen initial condi-
tions from the basins of the united chaotic
attractor. In the every moment of time we
appreciated the distance between the phase point
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FIGURE 7 Dependence of the normal Lyapunov exponent
for antiphase chaotic attractor on the controlling parameter r
(a) at a=3.8, y=0.04. Dashed line denotes the values of the
tangent Lyapunov exponent. In the (b) this dependence is
presented in larger scale with regions of the antiphase con-
trolled synchronization.

and the antisymmetric subspace: p=|x,+y,|. The
distance was compared with the chosen value 6. If
p > 06, the phase point is far from the subspace
and the controlling influence is switched off. The
trajectory evolves on the unsynchronous chaotic
attractor. When phase point appears near the
antisymmetric subspace (p <§), the controlling
influence is switched on. If the controlling param-
eter r locates in the interval where A | conr <O the
chaotic set inside the antisymmetric subspace
becomes stable to transversal perturbation and
the trajectory is attracted to the subspace. After
this the controlling influence tends to zero. In our
numerical experiments we chose §=0.01. In the

Figure 8 phase portraits of the oscillations without
control (a), with control (c,e) and correspondent
time-series of x,+y, (b,d,f) are presented. The
original chaotic attractor (Fig. 8a) corresponds to
the regime of awfully unsynchronous chaos. The
phase trajectory draws the square like region. With
applying small controlling influence the diagonal
line x= —y appears on the region (Fig. 8c). The
time-series has interval of synchronous behavior
(Fig. 8d). With further changing r the intervals of
synchronous behavior grow and as a result the
system transits to awfully synchronous oscillations
(Fig. 8e,f). In this case the resulting chaotic
attractor is a one-band attractor located in the
antisymmetric subspace. In the Figure 7b the
intervals of the parameter r sufficient for complete
synchronization at different intensities of noise are
presented. The more dark color corresponds to
larger noise. Without noise the interval of the
synchronization coincides with the interval of r
where the normal Lyapunov exponent is negative.
With noise the controlled synchronization region
becomes more narrow (Fig. 7b).

The process of the in-phase synchronization loss
is accompanied by the bubbling phenomenon and
riddled basins. It is reasonable question: Do these
phenomena exist in the case of antiphase synchro-
nization loss. To answer this question we con-
sidered the evolution of the chaotic attractor with
changing of the coefficient r. In the numerical
experiments we chose initial values near the
antisymmetric subspace and the controlling influ-
ence was switched on not depending on nearness
p of the phase point to the subspace. At
—1.46 <r < —0.525 the chaotic attractor inside
the antisymmetric subspace is stable to transversal
perturbations. The synchronous regime is robust.
Adding noise of small intensity (~0.00001)
doesn’t lead to visible changing in the system’s
behavior. With increasing of the controlling
parameter at r> —0.525 a bubbling attractor is
observed in the system. The chaotic attractor
remains stable to transversal perturbations but the
time of transient process becomes extremely large
(hundreds of thousands iterations) and it sensibly



226 A. SHABUNIN

1
-1 -0,5 0 0,5 1 0 200 400 800 1000
X (b) n

-1 -0,5 0 0,5 1 0 200 400 600 800 1000
(©) X (d n
r=-0.5
1 T T 1 T T 1 2 T | T T T 7 T
0,5 — - 1 —(
o
Yy 0 — £ 0
B 7 B .
-0,5 - — -1 —
1 I N N N S B 2 1 | 1 | 1 | 1 | 1
-1 -0,5 0 0,5 1 0 200 400 600 800 1000
(e X ® n

FIGURE 8 The phase portraits and time-series of the oscillating regimes without control (a,b), with partial control (c,d) and in the
regime of the complete antiphase synchronization (e,f).

depends on the initial values. Adding noise of  gets finite transversal size. Phase point begins to
small intensity leads to essential rebuilding of the  visit neighborhoods of the both fixed points Cj,
phase portrait of the oscillations. The attractor  and Cyy. The corresponding time-series of x,,+ y, is
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FIGURE 9 The phase portraits and time-series of antiphase oscillations without noise (a,b) and with noise (c,d). In (e,f) there is

chaotic oscillations resulted from the blowout bifurcation.

the on-off intermittency process (Platt, 1993). The
Figure 9 presents phase portraits of the attractor
without noise (a) and with small noise (c). In the
(b,d) there are corresponding time-series. With
small noise phase point moves along the antisym-
metric subspace for a long time. Then, it is short
burst apart from the subspace, after which the
phase point return to the vicinity of the antisym-
metric subspace. The averaged frequency of the

bursts increase with increasing of the parameter r.
Finally, at »r= —0.406 the blowout bifurcation
(Ashvin, 1994) takes place when the chaotic
attractor is not already stable in the normal
direction and it transforms to the chaotic saddle.
The synchronous oscillations are not observed
further in the system both with noise and without
it. The phase portrait of oscillations looks like the
bubbling attractor in presence of noise (Fig. 9¢).
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FIGURE 10 A part of the basins of the chaotic attractor inside the antisymmetric subspace (white color) at r = — 1.485. The black
color denotes regions relating to the basins of the attractor in the infinite.

With decreasing r from the synchronization
region, at r < —1.46 we observed the transition
from the robust stable synchronous regime to the
bubbling behavior. Then, at r < — 1.472 the basins
of the synchronous attractor is riddled by holes of
the basins of the attractor in the infinity. In the
Figure 10 we present a fragment of the basins of the
chaotic attractor in the antisymmetric subspace
(white color) with holes from the basins of the
infinity attractor (black color) wedged in it. This
basins is represented in the normal coordinates u
and v, the antisymmetric subspace is marked by
the dashed line. The results were obtained for the
parameters values: a=3.8, v=0.04, r= —1.485.

6. CONCLUSION

We considered in-phase and antiphase complete
chaotic synchronization in the system of coupled
cubic maps. The in-phase self-synchronization of
chaos is possible for sufficiently large coupling
coefficient. We investigated bifurcational mechan-
isms which lead to destruction of the regime of
robust synchronization in a system of coupled
cubic maps. As for other coupled systems with

period-doublings, exit from the regime of synchro-
nous chaos is accompanied by the bubbling of the
attractor and then by the riddling of its basins.
Our investigations of coupled logistic maps
(Astakhov, 1997; Astakhov, 1998) and this work
demonstrate that bifurcations of saddle orbits of
the main family 2VC° inside the attractor play the
main role in this process. Nevertheless, unlike the
other similar systems, experimentally observed exit
from the regime of robust synchronization takes
place at smaller value of the coupling that the first
bifurcation of the saddle orbit in the attractor.
We demonstrated that bifurcational mechan-
isms inside the antisymmetric subspace are similar
to ones in the symmetric subspace except the order
of bifurcations taking place tangiently and nor-
mally to the subspace. The antiphase self-synchro-
nization in similar systems is possible only for
regular regimes. The chaotic synchronization can
be achieved with applying methods of chaos
control. In the work we used the control method
for antiphase chaotic synchronization in the form
of additional feedback loop. We demonstrated that
the process of loss of this type of synchronization
can be similar to the case of in-phase synchroniza-
tion. It demonstrates bubbling behavior, riddled
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basins and blowout bifurcation. The bifurcational
mechanisms of the loss of antiphase synchroniza-
tion is the subject for future consideration.
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