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In mathematical modeling of economic problems, it is common to assume that economic laws
influence the process and analyze the type of solution obtained. Sometimes these laws have
unknown parameters and they worth studying if these parameters can be determined. In this
paper, a structured system is considered and the identifiability is analyzed. In case the parameters
can be uniquely identified, an algorithm for obtaining the model parameters is presented and,
finally, the existence of a balanced growth solution is studied.

1. Introduction

Linear ordinary differential or difference equations are frequently used in modeling many
engineering, economic, and social processes. These equations describe the system behavior
with a relative degree of accuracy and yet are simple enough to be solved. It is well known
that any differential or difference equation of order n can be written as a system of n first-
order differential or difference equations. This process works for any higher-order equation,
linear or not, and it consists of expressing the top derivative or difference as a function of
the lower ones. An nth order equation gives rise to a first order system in n variables whose
coefficient matrix is called companion matrix. The characteristic polynomial of an nth order
linear equation is the same as the characteristic polynomial of the companion matrix. Then, a
companion matrix

C(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0

0 1
...

...
. . . . . . 0

0 · · · 0 1
α0 α1 · · · αn−2 αn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.1)
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is associated with the monomial characteristic polynomial

p(ζ) = −
n∑
i=0

αiζ
i, with αn = −1. (1.2)

In the last years, the use of dynamical models in economic theory is quite usual,
in stark contrast, with the classical static economic models. Many of these models are
mathematically formulated by higher-order difference equations (see [1]), which derive to
a structured representation, where the companion matrix can be used.

As alreadymentioned, economic problems are usuallymodeled by structured systems,
that is, systems where the matrices have a number of fixed zero entries while the rest of the
entries are not known. This kind of system is widely considered in the literature, than in
control theory (see [2, 3]), as in computing methods to solving it. When the size of the system
is large, for solving these structured systems, fast algorithms are used. In [4] an exhaustive
analysis on numerical properties of several fast algorithms was shown. In [5] an algorithm
for solving dynamic economic models developing first-order and second-order iterations was
studied.

In structured systems, the analysis of the unknown entries plays an important
role. For example, the economic models shown in [1] have a parameterized structure,
where the parameters are given information on the economic process. A first step for
the validation of the model is to identify the parameters that appear in the system.
Before identifying the parameters, it should be examined whether the parameters can
be determined from the data. The identification of parameters allows solving the
model. And finally, it is necessary to analyze the obtained solution. In particular, in
economic models, the existence of a balanced growth solution is interesting. In the
economical sense, balanced growth refers to simultaneous coordinated expansion of several
sectors.

The aim of this paper is to study the identifiability problem and the balanced growth
solution of an economic problem. The structure of the paper is as follows. In Section 2 we
treat the identification problem of a companion structured system. In Section 3, we show a
structured Leontief model associated to a determinate economical process and give some
results about the identifiability of its parameters. This analysis leads us to construct an
algorithm to obtain the parameters of the model. Finally, in the last section we study the
balanced growth solution of an economic model.

2. Identification Problem of a Structured System

In the first part of this paper, we discuss a problem of identifiability for a linear differential or
difference system

x′(t) = C(p)x(t) + b(p)u(t) (2.1)
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or

x(k + 1) = C(p)x(k) + b(p)u(k), (2.2)

where the coefficient matrices have a fixed structure, C(p) is a companion matrix and b(p) is
a monomial vector given by

b(p) =
(
0 0 · · · 0 pbn

)T
, (2.3)

with the parameter vector p = (pn1 · · · pnn pb
n)

T belonging to a subset P ⊆ R
r . Note that,

the matrix C(p) is a companion matrix where the last row is the vector (pn1 · · · pnn)
T .

In general, an interpretation of a structured linear system is a family of linear systems,
with the same structure, together a set of parameters. In this work, this kind of systems is
denoted by

SP (A,B) = {S(p) = (A(p), B(p)),p ∈ P}. (2.4)

A formal definition of structured linear dynamic systems can be found in [6].
Furthermore, io(·) denotes the input-output behavior of the system S(·) ∈ SP (A,B). Note
that, io(p) of the system S(p) can completely be characterized by the Markov parameters,
defined as V (j,p) = Aj(p)B(p), j ≥ 0.

Usually, in the analysis of parametric models, studied two problems can be:
identifiability and estimability. The difference between estimability and identifiability is that
in the identifiability all possible options of the input-output signal are evaluated, while
estimability is the ability to estimate accurately the parameters of a given data set.

A model is identifiable if and only if, for every parameter set there is a unique input-
output behavior. Several papers deal with identification of models describing behavior of
biomedical, chemical, or other systems, [7, 8].

The problem of the structural identifiability of the model consists of the determination
of all parameter sets which give the same input-output structure. The structural identifiability
of SP (A,B) depends on the number of solutions of io(p) = io(q). If the parameters can be
determined uniquely from the data, that is, the equation io(p) = io(q) has only the solution
p = q, then the system SP (A,B) is structurally globally identifiable. On the other hand, if there
exists a finite or contable number of solutions for the parameters, the system SP (A,B) is
structurally locally identifiable. Otherwise, the system SP (A,B) is structurally unidentifiable ( see
[9, 10]).

Now, we consider the system SP (C, b), with C(·) and b(·) given by (1.1) and (2.3). In
order to analyze the identification problem of this system, we use the Markov parameters to
know its input-output behavior io(p). By the structure of the companion matrix C(·) and by
a technical process, we have the following result.
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Proposition 2.1. Consider the structured system SP (C, b). The Markov parameters V (k,p) =
(v(k)

i (p))
i=1,...,n, k ≥ 0, are given by

i = 1, . . . , n − 1, v
(k)
i (p) =

⎧
⎨
⎩
0, k = 0,

v
(k−1)
i+1 (p), k = 1, . . . , n − 1,

i = n, v
(k)
n (p) =

⎧⎪⎪⎨
⎪⎪⎩

pbn, k = 0,
n∑

j=n−k+1
pn,jv

(k−1)
j (p), k = 1, . . . , n − 1.

(2.5)

Directly from the above result, we obtain the following proposition which gives a
condition to solve the identification problem for the system SP (C, b).

Proposition 2.2. The structured system SP (C, b) is globally identifiable.

In the next section, we analyze the identification problem for economic models.

3. Economic Dynamic Model

First, we consider the nonlinear discrete-time dynamic model given in [1]

y(t) = α1 + (α2 − α3)y(t − 1) + α3y(t − 2) − α4
(
y(t − 1) − y(t − 2)

)3
, (3.1)

where y(t), t ∈ N, is the income at time t. Parameters used in this model have the following
economic interpretation: the parameter α1 represents the autonomous expenditures, the
parameter α2 ∈ (0, 1), and represents the consumer’s reaction against the increase or decrease
of his income. Finally, the investment is described using parameters α3 and α4, where α3

represents the difference between the control and the investment function.
This model is interesting because for different values of parameters we obtain well-

known linear dynamic models as Hick-Samuelson, Keynes, and the nonlinear dynamic Puu
model (see [11]).

In particular, for α1 = α4 = 0, α2 = 1 − β, with β ∈ (0, 1) and α3 = −γ , γ > 0, we obtain
the Hick-Samuelson model

y(t) =
(
1 + γ − β

)
y(t − 1) − γy(t − 2), (3.2)

which matrix expression is given by the companion matrix

(
0 1
−γ 1 + γ − β

)
. (3.3)

If we do not have investment, that is, α3 = β ∈ [0, 1], we obtain the Keynes model

y(t) = β
(
y(t − 2) − y(t − 1)

)
+ α1 + α2y(t − 1), (3.4)
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which has the following coefficient matrix

(
0 1
β α2 − β

)
. (3.5)

Note that these models are structured systems of the kind SP (C, b) where the
coefficient matrix depends on a vector of parameters which could be identified to analyze
its solution. Then, by Proposition 2.2 these models are globally identifiable.

Now, we consider the Leontief model. In the Leontief economic process is assumed
that there is a market for different goods in which each industry has only one production
process. Assuming that x(k) is the production level vector and u(k) is the demand level
vector, the control process (see, e.g., [12, 13]), the system has the structured representation
given by

Cx(k + 1) = (I − P(p) + C)x(k) −D(p)u(k), (3.6)

where C is the capital coefficient matrix, P(p) is the technological coefficient matrix, and
D(p) is the demand coefficient matrix (excluding investment). The (i, j)-entry of the matrices
P(p) and C represent the amounts of material input and capital of the ith good necessary
for the production of one unit of the jth industry, respectively. Since the Leontief model is
an economic model, C ≥ 0, P(p) ≥ 0 and D(p) ≥ 0. This kind of systems is a dynamic
generalized system because the capital coefficient matrix C can be or not be singular. The
singularity of this matrix arises because no output from one sector is used in the production
of some products.

In this paper, the system (3.6) is a structured linear dynamic system where the capital
matrix C is a nonsingular diagonal matrix, C = diag(c1, c2, . . . , cn), and the matrix P(p) has a
companion matrix structure. By the nature of the technological matrix P(p), 0 < p

p

nj < 1, and

n∑
j=1

p
p

nj < 1, (3.7)

where the unknown demand D(p)with almost one column of type (2.3)exists.
Since capital matrix C is invertible, the structured generalized system (C, I − P(p) +

C,D(p)) can be transformed into a structured standard system

x(k + 1) = A(p)x(k) + B(p)u(k), (3.8)
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where

A(p) = I + C−1(I − P(p)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

pa11 pa12 0 · · · 0

0 pa22 pa23 · · · 0

...
...

...
. . .

...

pan1 pan2 pan3 · · · pann

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.9)

B(p) = −C−1D(p) (3.10)

is such that it has almost one monomial column of kind (2.3), with P = {p ∈ R
3n−1, p/= 0)}.

An important point to note here is the structure of matrix A(p). In the literature,
this kind of matrix is known as the modified Leslie (Lefkovitch) matrix, which appears in
different areas such as the study of recruitment, survival and population growth rate (see,
e.g., [14, 15]). For example, in [16] it is used to describe a discrete age-structured population
model where no emigration during harvesting is considered.

Some properties of the spectrum of A(p) are given in the following result, which are
useful to study the stability of the system SP (A,B).

Proposition 3.1. Consider the matrix A(p) given in (3.9).

(i) If pai0,i0+1 = 0 or pan1 = · · · = pani0 = 0, with i0 > n − 1, then

{
pa11, p

a
22, . . . , p

a
i0,i0

}
⊆ σ(A(p)). (3.11)

(ii) If pan−1,n = 0 or pan1 = · · · = pan,n−1 = 0, then

{
pa11, p

a
22, . . . , p

a
n,n

} ⊆ σ(A). (3.12)

Proof. If we structure A(p) as
(

A1(p) A2(p)
A3(p) A4(p)

)
, with A1(p) ∈ R

n−1×n−1, A2(p) ∈ R
n−1×1, A3(p) ∈

R
1×n−1, and A4(p) ∈ R, then

|λI −A(p)| = |A1(p)|
∣∣∣A4(p) −A3(p)A−1

1 (p)A2(p)
∣∣∣

= |A1(p)|

∣∣∣∣∣∣∣
λ − pann −

⎛
⎜⎝pan1

pa12 . . . p
a
n−1,n

|A1| + · · · + pan,n−2
pan−2,n−1p

a
n−1,n(

λ − paxn−2,n−2
)(

λ − pan−1,n−1
)

+pan,n−1
pan−1,n

λ − pan−1,n−1

⎞
⎟⎠

∣∣∣∣∣∣∣
.

(3.13)
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(i) If pai0,i0+1 = 0 or pan1 = · · · = pani0 = 0, with i0 > n − 1, then we simplify

|A(p)| = (λ − pa11
) · · ·

(
λ − pai0,i0

)
qn−i0(λ), (3.14)

where qn−i0(λ) is a polynomial of degree n − i0.

Hence, {pa11, pa22, . . . , pai0,i0} ⊆ σ(A(p)).

(ii) By (i) it is straightforward.

In order to solve the identifiability problem of a family of structured systems of kind
(3.6), we show some results on structured standard system SP (A,B).

The system (3.9)-(3.10) belongs to a kind of structured systems. In particular, the
identifiability of the parameters of a standard system SP (A,B) is concerned with the
determination of them from the external behavior of the system. That is, to determine
the input-output behavior (io) of a model SP (A,B), we can use the Markov parameters
associated to the system SP (A,B).

The parameter identification process for the structured system is followed from the
structure of the vectors obtained in the following proposition.

Proposition 3.2. Consider the structured system SP (A,B). The Markov parameters V (k,p) =
(v(k)

i (p))
i=1,...,n, k ≥ 0 are given by

k = 0, v
(0)
n (p) = pbn,

k = 1, . . . , n − 1, v
(k)
i (p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 1, . . . , n − k − 1,

1∑
j=0

pai,i+jv
(k−1)
i+j (p), i = n − k, . . . , n − 1,

n∑
j=1

pa
i,i−k+jv

(k−1)
i−k+j(p), i = n.

(3.15)

We solve the identification problem for the system SP (A,B) in the next result.

Proposition 3.3. The structured system SP (A,B) where A(p) and B(p) are defined by (3.9) and
(3.10) with p ∈ P is globally identifiable.

Proof. We consider two structured systems S(p) and S(q) defined by (3.9)-(3.10) with
p input-output behavior (io) V (k, p) = V (k,q), k ≥ 0 and we shall prove that p = q. By
the structure of the Markov parameters obtained in Proposition 3.2, for i = 1, . . . , n, it is show
that

A(p)kB(p) = A(q)kB(q) =⇒ pak,k = qak,k, pak,k+1 = qak,k+1. (3.16)

Moreover, the rest of unknown entries of B(p) are identified from the first equality B(p) =
B(q). Hence, p = q.
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Consider the associated standard Leontief model (3.8), in this case given by

A(p) = I + C−1(I − P(p))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 +
1 − p

p

11

c1
−p

p

12

c1
0 · · · 0

0 1 +
1 − p

p

22

c2
−p

p

23

c2
· · · 0

...
...

...
. . .

...
−ppn1
cn

−ppn2
cn

−ppn3
cn

· · · 1 +
1 − p

p
nn

cn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(3.17)

and B(p) = −C−1D(p) has the column

(
0 0 · · · 0

−pdn
cn

)T

. (3.18)

By Proposition 2.2 the entries of these matrices are identified and hence we can also identify
the initial parameters of the vector p. Thus, the initial Leontief model is globally identifiable.

Proposition 3.4. The Leontief economic model given by (3.6) where C is a non-singular diagonal
matrix, C = diag(c1, c2, . . . , cn) and P(p) is a companion matrix, is globally identifiable.

The following algorithm allow us determine the parameters p of the Leontief model.

Algorithm

Step 1. Introduce the size of the state vector: n. Introduce the capital matrix C. Introduce the
matrices {V (k,p), k = 0, . . . , n} that determine the known external behavior of the system
SP (A,B)with the structure (3.9)-(3.10). And introduce the position of the monomial column
of matrix V (0,p): j, for k = 0, . . . , n − 1.

Step 2. Choose the jth column of V (k,p) and denote it as v(k).

Step 3. Introduce v(k−1)
n+1 = 0.

Step 4. Construct the following system:

v
(0)
n = pbn,

v
(k)
i (p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1∑
j=0

pai,i+jv
(k−1)
i+j (p), i = n − k, . . . , n − 1,

n∑
j=1

pa
i,i−k+jv

(k−1)
i−k+j(p), i = n.

(3.19)
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Step 5. Solve the above system and obtain the parameters pan,n−k+j for j = 1, . . . , n and pbn and
pai,i+j , for j = 0, 1, and i = n − k, . . . , n.

Step 6. Use the parameters obtained in Step 5 and construct the matrices (3.17)-(3.18) and
from them obtain pdn and p

p

i,i+j , j = 0, 1, and i = 1, . . . , n.
With this process, we have determinate all parameters of the system.

Step 7. Finally, construct the matrices of the system (3.6).

Note that, this algorithm can also be applied when the Hick-Samuelson and the
Keynes models are considered, that is, when paii = 0 and pai,i+1 = 1, i = 1, . . . , n − 1.

Next we present an academic example to clarify the above algorithm. The model
considers a number of consumers such that at any given time t each consumer holds
quantities of different services or activities. We assume that this kind of market can be
modeled by a structured Leontief model. Using the data, the problem is to assure the
uniqueness in the parameter of the dynamical model. In this example to determine these
parameters we use the above algorithm.

Example 3.5. Tourism demand in a country involves different activities. In this example the
external behavior of the foreign demand for tourist services during a period of years is known
and we want to apply the algorithm in order to identify the structured model.

The external behavior of the foreign demand for tourist services during a period of
four years is given by

V (0) =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

0.4000

⎞
⎟⎟⎟⎟⎟⎠

, V (1) =

⎛
⎜⎜⎜⎜⎜⎝

0

0

−0.0400
0.4214

⎞
⎟⎟⎟⎟⎟⎠

, V (2) =

⎛
⎜⎜⎜⎜⎜⎝

0

0.0049

−0.0861
0.4445

⎞
⎟⎟⎟⎟⎟⎠

,

V (3) =

⎛
⎜⎜⎜⎜⎜⎝

−0.0013
0.0160

−0.1392
0.4695

⎞
⎟⎟⎟⎟⎟⎠

, V (4) =

⎛
⎜⎜⎜⎜⎜⎝

−0.0058
0.0349

−0.2001
0.4964

⎞
⎟⎟⎟⎟⎟⎠

(3.20)

and consider that the capital coefficient matrix (given in thousands)

C = diag(3.8, 8.2, 10, 12.5). (3.21)

Then we apply the above algorithm.

Step 1. Introduce n = 4, the matrices C, {V (k), k = 0, . . . , 4} and j = 1, for k = 0, . . . , 3.

Steps 2-3

Denote V (k) as v(k) and introduce v(k−1)
5 = 0.
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Steps 4-5

Solving the system

v
(0)
4 = pb4 ,

v
(k)
i (p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1∑
j=0

pai,i+jv
(k−1)
i+j (p), i = n − k, . . . , n − 1,

n∑
j=1

pa
i,i−k+jv

(k−1)
i−k+j(p), i = n,

(3.22)

obtain
pb4 = 0.4000, pa34 = −0.1000, pa44 = 1.1000, pa23 = −0.1220,
pa33 = 1.1000, pa43 = −0.0139, pa12 = −0.2632, pa22 = 1.1220,
pa42 = −0.0114, pa11 = 1.2632, pa42 = 0.1430, pa43 = 0.1740,

pa41 = −0.0249, pa14 = 0, pa24 = 0, pa13 = 0,
pa32 = 0, pa21 = 0, pa31 = 0.

(3.23)

Steps 6-7

From (3.17)-(3.18) the system is identifiable and its coefficient matrices are

C = diag(3.8, 8.2, 10, 12.5),

P =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0

0 0 1 0

0 0 0 1

0.3111 0.1430 0.1740 0.3310

⎞
⎟⎟⎟⎟⎟⎠

, D =

⎛
⎜⎜⎜⎜⎜⎝

0

0

0

5

⎞
⎟⎟⎟⎟⎟⎠

.
(3.24)

An interpretation of these results can be, for example the following. It seems
reasonable that the fact that capital matrix is diagonal implies that to obtain one unit
of production in each industry, an investor is only necessary. On the other hand, the
technological matrix is determined as each service depends on one material input except
the last service, which needs a part of all material input involved in the process. Finally, the
structure of the demand matrix indicates that only the last service has consumers, given in
thousands. This service includes all others.

4. Balanced Growth Solution

In economic problems it is important to assure the existence of a solution which output of
each sector increases by a constant percentage per unit of time. This kind of solution is called
balanced growth solution, and it satisfies

x(k) = (1 + δ)kx0 � 0 (4.1)

with the balanced growth rate δ > 0.
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The balanced growth problem is solved in [17] for autonomous systems. The interest
in obtaining balanced growth solutions for some dynamic model has to do the following
question: is it possible to obtain a feedback such that the closed-loop system has a balanced
growth solution? A first approximation of the solution to this problem has been given in
[18]. In this work a characterization to the existence of a balanced growth solution has been
obtained. This characterization is based on the existence of a feedback such that the closed-
loop system has a positive eigenvalue with a positive eigenvector.

To analyze the balanced growth solution of the system (3.6), we consider the associated
system SP (A,B) given by

x(k + 1) = A(p)x(k) + B(p)u(k). (4.2)

The balanced growth problem for Leontief structured model is treated in the following
result.

Proposition 4.1. The balanced growth problem for Leontief structured model (3.6) is solvable.

Proof. Note that technological matrix P(p) is an irreducible matrix, that is, its associated
directed graph is strongly connected, which follows by the companion matrix structure of
P(p). Moreover, as 0 < p

p

nj < 1, and
∑n

j=1 p
p

nj < 1, we can assure that ρ(P(p)) < 1. These

conditions on P(p) lead us to the fact that matrix (I − P(p))−1 is positive. If we construct a
feedback u(k) = δFx(k) with F > O, then (C +D(p)F) ≥ 0. Therefore, the coefficient matrix
(I − P(p))−1(C − D(p)F) of the closed-loop system is positive. Hence, there exists a positive
eigenvalue λwith a positive eigenvector x0, that is,

(
λI − (I − P(p))−1(C +D(p)F)

)
x0 = 0, (4.3)

and taking δ = 1/λ we have

((I − P(p)) − δ(C +D(p)F))x0 = 0,
(
−δI + C−1(I − P(p)) − δC−1(D(p)F)

)
x0 = 0,

(1 + δ)x0 =
(
I + C−1(I − P(p)) − δC−1(D(p)F)

)
x0,

(1 + δ)x0 = (A(p) − δB(p)F)x0,

(1 + δ)k+1x0 = (A(p) − δB(p)F)(1 + δ)kx0.

(4.4)

Considering the state-feedback u(k) = −δFx(k), we show that x(k) = (1 + δ)kx0 is
a solution of the system (3.6). Thus, the balanced growth problem for Leontief structured
model (3.6) is solvable.

The economic meaning of the existence of a positive eigenvector can be given, for
instance, when there is one economywhere each sector of this economy depends on all others
directly or indirectly for either its intermediate product or its capital. We refer to [17] for more
details for it and in the case when the economy can be divided into several sub-conomies.
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