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As computational and mathematical studies become increasingly central to studies of
complicated reaction systems, it will become ever more important to identify the assumptions
our models must make and determine when those assumptions are valid. Here, we examine
that question with respect to viral capsid assembly by studying the ‘pathway complexity’ of
model capsid assembly systems, which we informally define as the number of reaction
pathways and intermediates one must consider to accurately describe a given system. We use
two model types for this study: ordinary differential equation models, which allow us to
precisely and deterministically compare the accuracy of capsid models under different
degrees of simplification, and stochastic discrete event simulations, which allow us to sample
use of reaction intermediates across a wide parameter space allowing for an extremely large
number of possible reaction pathways. The models provide complementary information in
support of a common conclusion that the ability of simple pathway models to adequately
explain capsid assembly kinetics varies considerably across the space of biologically
meaningful assembly parameters. These studies provide grounds for caution regarding our
ability to reliably represent real systems with simple models and to extrapolate results from
one set of assembly conditions to another. In addition, the analysis tools developed for this
study are likely to have broader use in the analysis and efficient simulation of large reaction
systems.
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1. Introduction

The study of viral capsids has attracted considerable attention from the fields of mathematical

and computational modelling, in large part because of capsid assembly’s value as a general

model of the self-assembly of large macromolecular complexes. Capsids are remarkable for the

size, complexity and diversity of the structures they build, as well as the high efficiency and

fidelity of their assembly processes. They therefore serve as an important test of our ability to

understand and predict self-assembly dynamics in both biological and artificial systems. By

learning the principles by which viral capsids assemble so effectively, we hope to learn not only

about viral biology, but also about how similar principles can apply to the many simpler

examples of self-assembly in biology. Likewise, by understanding these principles, we may

learn how to apply them to achieve similarly remarkable behaviours in self-assembling

nanotechnology [15,29,31]. There is currently no feasible experimental method to directly

observe a rapid, nanometer-scale assembly process such as that involved in building a capsid.

Capsid assembly has thus been an important model for numerous simulation studies, where they
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have helped us elucidate general principles that may guide self-assembly [1,4,28,35], map out

parameter spaces of possible assembly products and pathways [6,8,10,11,14,21,26], and perform

model-based interpretation of indirect experimental measures of assembly progress in real virus

systems [3,9,38,39].

One intriguing observation to emerge from many of these computational studies is the fact

that a single assembly system can exhibit very different assembly pathways under only

moderately different assembly conditions. Several simulation studies of capsid assembly have

suggested that changing parameter values (e.g., binding free energies, concentrations or

configurational tolerances of binding) so as to promote more rapid assembly can abruptly shift a

system from a productive nucleation-limited assembly pathway to an unproductive pathway

dominated by kinetically trapped incomplete structures [4,14,17,18,20,21,32,34]. Other studies

have shown that similarly small changes in assembly conditions can shift pathways so as to alter

the morphology of final assembled structures [1,14,17,18,21]. Experimental support from

diverse real viral assembly systems supports these simulation predictions, showing that modest

changes in assembly conditions can indeed shift capsid assembly from productive to kinetically

trapped assembly [4,13,16,24,36], or induce malformations or other altered morphologies

[5,12,19,22,37]. Recent modelling work by Sweeney et al. [26] has further suggested that even a

single end state may be reached by very different pathways depending on small changes in local

binding parameters. They showed that a simple, two-parameter T ¼ 1 icosahedral model could

exhibit three prominent pathways depending on parameter choices: one proceeding by a fifth-

order pentamer nucleation event followed by elongation through successive monomer additions

(monomer pathway); a second proceeding by a rapid accumulation of dimers, a third-order

nucleation through a trimer of dimers and elongation by dimer additions (dimer pathway); and a

third proceeding by rapid accumulation of pentamers, nucleation through a trimer of pentamers,

and elongation by pentamer additions (pentamer pathway). Modest shifts in rates or

concentrations of subunits, within the ranges accessible to in vitro experiments, were sufficient

to shift the system from one pathway to another or to a kinetically trapped region in which all

three pathways converge.

All of these results point to a common conclusion: assembly pathways need not be an

inherent property of a viral assembly system. Rather, the specific pathways used by a capsid

system can shift quite dramatically in response to relatively small changes in assembly

conditions. This conclusion has important implications for the study of viral assembly and for its

use as a model system for complex self-assembly in general. First, it suggests that basic

assembly mechanisms determined from in vitro capsid assembly systems could be quite

different from those used by the same systems in vivo, a potentially serious problem given that

we currently have a very limited ability to monitor capsid assembly in vivo. Accurately

determining the assembly pathways of a given system is important not only as a basic research

question, but also potentially for attempts to manipulate or interfere with those pathways, as in

current attempts to develop capsid-targeted antiviral drugs [23,25,27,36]. Second, the sensitivity

of pathway choice has implications for how we can model assembly mathematically and

computationally. Capsid assembly is a complicated and computationally expensive process to

model and there are thus tremendous advantages to working with highly simplified models of the

process, provided such models are accurate. Endres and Zlotnick [6] have shown that just a few

pathways are often adequate to describe almost perfectly the behaviour of a simple capsid model

with hundreds of pathways in principle accessible to it. Likewise, mathematical models of capsid

assembly based on nucleation theory [30] provide a powerful tool for understanding and

predicting capsid behaviour from first principles, provided assembly is under conditions

allowing for a simple nucleation/elongation pathway. Studies from stochastic models have

suggested that even for complicated capsid assembly models, a large fraction of the accessible
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parameter space will fall into one of a small number of distinct parameter domains each

explicable by a simple pathway model [6,11,14,26].

These studies have, however, left open the possibility that pathway complexity might rise

significantly outside of, or between, these discrete domains. It may be the case that as we vary

parameters to move between distinct simple pathway domains, we experience rapid ‘phase

transitions’, with simple models providing accurate explanations for almost all parameter values.

Or it may be the case that the parameter space contains broad border regions between the

domains, in which simple pathway models break down and with them some of our most

powerful simulation and analysis tools. In the present work, we attempt to distinguish between

these two possibilities by examining how pathway complexity varies as we move across the

assembly parameter space. We apply two complementary modelling approaches. First, we use

the ordinary differential equations (ODE) framework developed by Zlotnick and Endres [6,35]

to examine the trade-off between model complexity and accuracy in a fully deterministic, but

relatively simplified setting. This model allows us to follow Endres and Zlotnick in asking

rigorously how effectively one can prune the pathway set from a model without substantially

affecting overall reaction progress. We also conduct a parallel study using stochastic capsid

models [33], which allow us to drop some assumptions of the ODE models and look at a

substantially larger model system, but at the cost of limiting our analysis tools. By examining

intermediate distributions in this model, we distinguish regions of parameter space that appear

well described by simple nucleation–elongation models from those that appear unlikely to be

describable without an extremely large number of distinct pathways and reaction intermediates.

Both lines of inquiry support the conclusion that the ability of a system to be described by a

compact model can vary quite dramatically given relatively small parameter changes, suggesting

that the notion of reaction pathways is not as cleanly defined for complicated assembly systems

as we might hope. Our results provide guidance for issues of model selection and model-based

interpretation of experimental results for capsid assembly and other complicated self-assembly

systems. In addition, the analysis tools developed for this study may have broader applicability

in efficiently modelling complex reaction systems in general.

2. Models and methods

We applied two complementary modelling methods to examine the variability of pathway

complexity across assembly parameter spaces. ODE models [35] allow us to exhaustively

determine fractional pathway usage, but at the cost of requiring highly simplified capsid models

and limiting allowed assembly pathways. Stochastic simulation algorithm (SSA) models [7]

allow us to perform a random sample of pathways accessible to a far more complicated model

system, but their high computational cost and the stochastic noise in their results limit our ability

to perform the kind of exhaustive analysis possible in the ODE case. This section describes each

model type in turn and explains how it was used to examine pathway complexity across the

parameter space.

2.1 ODE models

We began our analysis, using an ODE model based on the approach of Endres and Zlotnick [6].

As in that work, we used a simplified dodecamer capsid model, which can be considered a model

of T ¼ 1 assembly from pentameric capsomer subunits. We applied two variants of this model.

In the first model, the dodecahedral shell is assumed to assemble only through the addition of

single subunits per reaction, each representing one of the 12 faces of the dodecamer. This

assumption of assembly by successive monomer additions is commonly used to counter the
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rapid proliferation in possible oligomer/oligomer binding pathways with structure size, which

would otherwise make the model computationally infeasible. A heuristic justification is

provided by the argument that in typical self-assembly systems the equilibrium concentration of

monomers is much larger than that of the intermediates. However, as has been shown recently

using stochastic methods, there are regions of parameter domain where the intermediate

concentrations can far exceed their equilibrium values during the assembly process. Therefore,

we used a second model, which allowed dimer/oligomer binding also in addition to

monomer/oligomer binding. This allows us to assess the effects of adding more pathways on the

self-assembly kinetics. The distinction is illustrated in Figure 1. Figure 1(a) shows an example of

a monomer addition reaction, where a monomer and an octomer bind to form a 9-mer. This

reaction would be allowed in either model. Figure 1(b) shows a dimer reaction, with a monomer

and a septamer binding to form a 9-mer. This reaction is allowed in the dimer/oligomer pathway

set, but not in the monomer/oligomer pathway set. Figure 1(c) shows binding of a trimer to a

hexamer to build a 9-mer; this reaction would not be allowed in either of the ODE pathway sets

we consider. With either pathway set, we assume that the forward rate constants are identical for

all reactions, in effect ignoring the relative variation in diffusion coefficient with size of the

oligomer.

2.1.1 Defining the ODE pathway set

Each species in the assembly tree is identified by two indices (size, type), where size is the

number of subunits in the species and type is an arbitrary assignment used to distinguish two

sister species. Let us represent the molar concentrations of each species (j,k) as [ j, k ] and the

degeneracy of forward reaction (monomer/dimer addition) between (j, k) and (m, n) as a
m;n
j;k :

Similarly, the backward reaction degeneracy is represented by bj;km;n· a
m;n
j;k and bj;km;n capture the

reaction degeneracies produced by symmetries of the structures, a topic explained in greater

detail when we describe our protocol for testing graph isomorphism below. The relative stability

of each species is determined by the Arrhenius factor exp (2G/RT), where G is the molar free

Figure 1. An example of three out of several possible ways to form the species (9,2) in the ODE
dodecamer model. (a) Monomer binding to the 8-mer (8,1). (b) Dimer binding to the 7-mer (7,1). (c) Trimer
(3,1) binding to the 6-mer (6,4). The two ODE models implemented in this paper allow either only pathway
[(a); monomer model] or both [(a) and (b); monomer/dimer model]. Pathway (c) is disallowed in both the
models. An analogous dodecamer model conducted with the SSA simulator described in Section 2.2 would
have allowed all three pathways, as well as many other possible oligomer/oligomer reactions.
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energy of the structure, R is the gas constant and T is the absolute temperature. Our model

assumes that each bond contributes the same amount of molar free energy, denoted by DG.

If species (j,k) has cj,k contacts or bonds, the relative stability of (j,k) with respect to (m,n) is

sj;km;n ¼ exp ð2DG*ðcm;n 2 cj;kÞ=RTÞ:

The forward reaction rate also depends on the symmetry of the binding unit (monomer or dimer),

denoted by O(n), {n ¼ 1, 2}. The constant forward reaction rate kon is then irrelevant to the

kinetics and only sets the overall time scale. In terms of these quantities the set of kinetic

equations can be written as:

d½ j; k�

dt
¼ kon

X
m;n

b j;k
m;ns

j;k
m;n½m; n�2 a

m;n
j;k Oðm2 jÞ½ j; k�½m2 j�

� �

2 kon
X
p;q

b
p;q
j;k s

p;q
j;k ½ j; k�2 aj;k

p;qOð j2 pÞ½ j2 p�½p; q�
� �

; ð1Þ

where (m 2 j) represents either the monomer or the dimer.

The primary task in constructing the assembly tree is identifying all distinct intermediate

oligomers and computing the forward and backward degeneracies for each reaction pair. Since

the dodecahedral structure can be projected onto a unit sphere as 12 symmetrically placed points,

each of the 12 sites are identified by their spherical-polar coordinates {ui, fi} and nearest

neighbour locations can be stored as an incidence matrix. Our procedure represents graphs for

any species G by a density distribution: rGðu;fÞ ¼
P

i[Gd ðu2 uiÞd ðf2 fiÞ where {ui, fi} is

the representation of the ith site. In graph theoretical terms, each intermediate can be represented

by a planar graph. Our representation of binding sites suggests a natural definition for

distinguishing species, in analogy with rigid body transformations: if two species can be

translated over the unit sphere and rotated about their centre of mass in such a manner that their

configurations overlap then they are non-distinct. We iteratively construct the state space by

successively adding a subunit to each available binding site of each species identified and testing

the resulting oligomers for isomorphism. Each time a species is repeated, the forward

degeneracy for the corresponding reaction is incremented by one. We are now in a position to

give a precise definition of which graphs are identical:

Definition 1. Two graphs G1 and G2 are non-distinct iff ’t [ SO(3) such that the corresponding

density functions satisfy: rG1
(r) ¼ rG2

(tr).

Here, t stands for both a member of SO(3) and its 3D representation in terms of the Euler

matrices.

We have devised an algorithm to test planar graphs for isomorphism under this restricted set

of transformations. The algorithm works in worst case time, O
�
N 2

*min {N;N
1=2
capsid}

�
, but takes

O
�
N*min {N;N

1=2
capsid}

�
steps for most pairs. We now give an outline of the algorithm used:
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(1) Compute the centroid of this density distribution:

kulG ; arccos kcos ulG ¼ arccos

P
i[Gcos ui

N

kflG ; arctan
ksin u sinflG
ksin u cosflG

¼ arctan

P
i[Gsin ui sinfiP
i[Gsin ui cosfi

:

(2) Given the orientation of the centroid nGi
¼ {kulGi

, kflGi
} and their radial magnitudes

krlGi
; i ¼ {1, 2}, check a necessary condition for isomorphism: krlG1

¼ krlG2
.

(3) If krlG1
¼ krlG2

¼ 0, check the graphs separately (using a routine to be described later).

Assuming these are non-vanishing, perform Euler rotations ti, i ¼ {1, 2} on both graphs,

such that the centroid coincides with the north pole or u ¼ 0, f ¼ 0 point on the sphere.

If G1 and G2 are non-distinct as in Definition 1, the transformed density distributions rGi

can only differ under the group of transformations S such that ;t [ S

tnG1

� �
¼ nG1

� �
¼ nG2

� �
: ð2Þ

This is just the SO(2) subgroup of SO(3). In terms of polar coordinates, this implies that

the graphs differ only in rotations around the Z-axis.

(4) Since any t [ SO(2) leaves the {ui}, i [ G unchanged, the lists {ui1} and {ui2} (i1 [ G1

and i2 [ G2) are identical after sorting. The corresponding fi, however, need not be,

since there might exist sites i, j [ G such that ui ¼ uj and fi – fj. This degeneracy du is

maximal for ui ¼ p/2, in which case du &
p
Ncapsid, since

du

Ncapsid

&
circumference

surface area
,

1

radius
,

1
p
Ncapsid

:

(5) If we choose any u ¼ ui i [ G1, then assuming it has a degeneracy du, it has du possible

candidates for its image in G2. Sequentially, test each of these cases. Let the set of

possible images of i be Ii U {j1; . . . jdu} , G2. Perform a rotation Ri,j on G2, by an angle

dfj U fi 2 fj, for each j [ Ii. If j is the image of i then the transformed Graph ~G2 fulfils

the identity ~G2 ¼ Ri;jG2 ¼ G1. If this condition is not met for any j [ Ii then the graphs

cannot be related by an element of SO(3) and hence by Definition 1 are distinct.

(6) We now address the exceptional case of graphs where the centroid is located at the

origin. Here, we make use of the fact that if two graphs of size N (Gi,N with i ¼ {1, 2})

are isomorphic then their parent graphs G1,N21 and G2,N21 must differ in only two sites

(call them b1 and b2):

Gi;N ¼ Gi;N21 < {bi}; ð3Þ

for i ¼ {1, 2}. If G1,N21 and G2,N21 are non-distinct, then G1,N and G2,N are trivially so.

Consider the case where the parent graphs are distinct. Referring back to our Definition 1,

the graphs are isomorphic iff ’t [ SO(3) such that:

G1;N ¼ RtG2;N ; ð4Þ

which implies that ’n1 [ G1,N21 and n2 [ G2,N21 such that

R21
t n1 ¼ b2; ð5Þ

Rtn2 ¼ b1: ð6Þ

N. Misra et al.282



Search for this transformation t by searching for the image of b1 in G2,N and of b2 in G1,N.

To this end, sequentially choose n [ G1,N 2 {b1} and construct a new graph

Gn ¼ G1,N 2 {n}. Then, Gi,N are isomorphic iff Gn and G2,N21 are isomorphic for some

n [ G1,N. Since the centroid of either of these does not coincide with the origin, we can

check them for isomorphism by the usual procedure.

Once all the distinct species of a given size are identified, the backward reaction degeneracy

can be computed using the principle of detailed balance. For example, monomer additions

follow

b
j21;n
j;k

Oð j; kÞ
¼

a
j;k
j21;n

Oðj2 1; nÞ
; ð7Þ

where O( j, k) is the order of the symmetry group of species (j, k). A simple way to compute

O( j, k) is to sum over all n in the previous equation. The right-hand side of the equation is

already known in terms of the symmetry groups and forward degeneracies of the parent, while

the left-hand side is 1/O( j, k) times the total number of ways (j, k) can decay,
P

nb
j21;n
j;k , which

equals the size j minus the number of articulation points of (j, k). We used depth-first search to

compute the articulation points, which eventually allows us to compute each individual

degeneracy b
j21;n
j;k using Equation (7). An analogue of the previous equation for dimer–oligomer

reactions allows us to compute b
j22;n
j;k from a

j;k
j22;n.

A subset of the experiments were run using a pruned version of the ODE tree. We used a

landscape approach similar to that of Endres and Zlotnick [6] to prune the assembly tree. The

controlling parameter for the identification of intermediates to prune is the following

probability-like quantity:

Pð j; kÞ ¼

P
la

j;k
j21;lPð j2 1; l Þmj;k

j21;lP
k;la

j;k
j21;lPð j2 1; l Þmj;k

j21;l

; ð8Þ

where m
j;k
j21;l is a control parameter used to assign relative weights to different reactions. One

choice that, though ad hoc, has proven useful is to choose m ¼ 0.1 for reactions that proceed by a

single subunit addition and 1 otherwise. We have tried to use a similar choice, but for a broader

concentration regime, specifically those where the probability distribution among the

intermediate states is expected to be more uniform.

2.1.2 ODE experimental design

We first carried out a series of experiments to determine how the efficiency of landscape pruning

varies with the initial monomer concentration for a simple pathway model. These experiments

were conducted allowing for monomer accretion reactions, such as that in Figure 1(a), but

excluding dimer accretion reaction such as that in Figure 1(b), as well as interactions of higher-

order oligomers as in Figure 1(c). Simulations were conducted for eight values of the pruning

parameter: 1 (unpruned), 0.999, 0.995, 0.987, 0.975, 0.95, 0.90 and 0.75. These values yield,

respectively, 73, 65, 55, 47, 39, 34, 29 and 21 intermediate states, out of the 73 present in the full

model. These values were repeated for three concentrations – 10mM, 100mM and 1 mM –

intended to approximately span the range from the lowest concentrations likely to produce

assembly in vitro to the largest concentrations likely to be found in vivo. All simulations were

conducted assuming a free energy of binding of DG ¼ 23.5 kcal/mole. Simulations were
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carried out by numerically integrating the ODE models using an adaptive step size embedded

Runge–Kutta 4–5 method with relative error ¼ 1029.

We next conducted simulations to estimate the contribution of oligomer/oligomer

interactions to pathway kinetics. For each of the following five concentration levels – 10mM,

100mM, 200mM, 500mM and 1 mM – we conducted an additional simulation permitting

reactions of dimers with arbitrary oligomers. That is, the simulations permit the reactions of both

Figure 1(a) and (b), although, they still exclude higher-order reactions such as those of Figure

1(c). These simulations were likewise conducted with a free energy of binding of DG ¼ 23.5 -

kcal/mole and were carried out by numerically integrating the ODE models using an adaptive

step size embedded Runge–Kutta 4–5 method with relative error ¼ 1029.

For each of the 24 comparisons of pruned to unpruned models and five comparisons of

monomer to monomer/dimer models, we examined the deviations in capsid concentrations vs.

time between each pruned model and the full model. To perform this comparison, we define the

quality factor (Qr), a measure of error of the restricted model r with respect to the complete

model c, as follows:

Qr ¼
1

T

ðT
0

½capsid�r 2 ½capsid�c

½capsid�c

� �2

dt

 !1=2

: ð9Þ

The quality factor is meant to capture the average fractional deviation between the two models

across the time to equilibration. We use a relative measure of deviation normalized by capsid

count to account for the fact that deviations between the models tend to have a large proportional

difference, but a small absolute difference, early in their execution and to converge to the same

equilibrium late in their execution. Qr provides a sensitive measure of these large proportional

changes early in simulations that would otherwise be difficult to detect. In the case of landscape

pruning, the eventual equilibrium concentration depends on the model used, although, the

difference is negligible under the experimental conditions examined here. In such cases, we

defined the cut-off time T as the point at which the concentrations for the complete model had

equilibriated to within 2%, i.e., ð½capsid�eqb 2 ½capsid�cÞ=½capsid�eqb & 0:02, where [capsid]eqb

is the equilibrium concentration of the fully formed capsid. This cut-off definition allows us to

compare Qr values for different pruning schemes.

2.2 Stochastic models

Stochastic simulations were conducted using the simulator of Zhang et al. [33], which

implements a SSA model [7] of capsid assembly. The SSA model allows us to test the scaling of

pathway control to larger structures and larger pathway spaces than we can explore with the

ODE model. In an SSA model, the assembly system proceeds by the activation of successive

reaction events. For the models constructed here, each reaction event consists of either

the binding of two structures to form a larger structure or the breakage of a structure into two

smaller substructures. Binding is controlled by a local rule model [1], which specifies allowed

reactions through a set of ‘local rules’ that define how each subunit can bind to its neighbours in

any capsid or substructure. The model allows for any binding reaction of either monomers or

oligomers provided the product of the reaction is a subset of a correctly formed capsid. So, for

example, an analogous SSA model of a dodecamer would allow all of the reactions depicted

in Figure 1(a)–(c). The model does not, however, allow for the production of malformed

structures. Reverse reactions are allowed by breaking any single bond that results in a separation

of a current assembly into exactly two sub-assemblies. The simulator disallows reverse reactions

that would require the simultaneous breaking of two or more binding interactions.
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For the present simulations, we used a 60-subunit icosahedral model originally described in

Ref. [34], representing a full T ¼ 1 capsid assembly system at the monomer level. This model

constructs icosahedrally symmetric 60-mers from an assembly subunit with three binding sites,

two that bind to copies of one another to form pentamers of coat protein (capsomers) and one

that binds copies of itself to link together capsomers to form the complete icosahedron. We refer

to the former as intra-capsomer interactions and the latter as inter-capsomer interactions. We

chose this model in part because it allows us to explore a model size beyond what we can

feasibly simulate with the ODE approach and in part because the asymmetry of the assembly

subunits makes it possible to independently vary two binding free energies to produce distinct

productive assembly pathways, a capability that was previously exploited in Sweeney et al. [26].

All icosahedral assembly simulations were run with a fixed population of 6000 coat

monomers. Binding kinetics in the model are parameterized by four rate constants: a forward

binding rate for binding interactions within pentamers (the intra-capsomer association rate, kaþ),

a reverse binding rate for interactions within pentamers (the intra-capsomer dissociation rate,

ka2), a forward binding rate for binding interactions between pentamers (the inter-capsomer

association rate, krþ), and a reverse binding rate for interactions between pentamers (the inter-

capsomer dissociation rate, kr2). ka2 and kr2 were fixed at 1023 for all simulations. The two

forward rates were varied independently to produce a total of 378 simulations, spanning a range of

18 inter-capsomer binding rates (krþ from 1022.8 to 101.2 in factors of 100.2) and 21 intra-capsomer

binding rates (kaþ from 1022.6 to 100.8 in factors of 100.2). These values were chosen based on an

analysis of data from Sweeney et al. [26] indicating that this region would include examples of all

three simple pathways (monomer, dimer and pentamer) and extend into the kinetically trapped

region in which the three pathways merge with one another. Each simulation was run for sufficient

time to reach a pseudo-equilibrium, as verified by manual examination. Numbers of monomers,

dimers, pentamers and 60-mers were recorded vs. simulator time across each simulation.

For each of the 378 simulations, we assessed fractional usage of the three pathway types

based on the total mass fraction of the major assembly intermediate of each pathway (monomers

for the monomer pathway, dimers for the dimer pathway and pentamers for the pentamer

pathway), integrated over the course of the simulation. While all three pathways would be

expected to exhibit some transient appearance of each of the three key intermediates, each

should have a dominant presence of a single intermediate until the pool of small oligomers is

exhausted into capsids or large kinetically trapped forms. Integrated mass fractions of monomers

(C1), dimers (C2) and pentamers (C5) were computed by the following formulas:

C1 ¼
X ðh1i þ h1ðiþ1ÞÞðTiþ1 2 TiÞ

T50

; C2 ¼
X 2ðh2i þ h2ðiþ1ÞÞðTiþ1 2 TiÞ

T50

;

C5 ¼
X 5ðh5i þ h5ðiþ1ÞÞðTiþ1 2 TiÞ

T50

;

where hji is the count of assemblies of size j at time step i and Ti is the simulator time at time

step i. T50 is the amount of simulator time required to reach 50% of the final yield for a given

simulation, which we use as a normalizing constant to correct for varying timescales of different

assembly reactions. We assessed fractional usage of the three pathways (P1 for monomer

fraction, P2 for dimer fraction and P5 for pentamer fraction) as follows:

P1 ¼
C1

C1 þ C2 þ C5

; P2 ¼
C2

C1 þ C2 þ C5

; P5 ¼
C5

C1 þ C2 þ C5

:
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3. Results

3.1 ODE simulation results

We first examined the complexity of pathway space in the ODE model allowing assembly only

by accretion of successive monomers. Figure 2 shows the relationship between quality factor Qr

and degree of pruning for three concentration values. At all concentrations, we observe

increasing Qr and thus, decreasing quality of fit, as we prune increasingly more common

intermediates. The effect is more pronounced the higher the concentration, suggesting that in

high concentration domains a larger number of intermediates and pathways contribute

significantly to the overall assembly kinetics. Note that the absolute magnitude of the deviation

is small at all points, consistent with the observations of Endres and Zlotnick [6]. The highest

total deviation observed, for a 21-intermediate model at 1 mM concentration, is approximately

4.5%. Furthermore, under all parameter conditions examined here, the final equilibrium

concentration was not noticeably different between pruned and full models. Rather, deviations

appear to predominantly take the form of large relative shifts in concentrations early in the

assembly process. The difference in Qr values between high and low concentration conditions

appears to be predominantly a result of a slower rate of convergence of the pruned models with

respect to the unpruned model when concentration is higher, as opposed to a greater amount of

separation prior to convergence. Figure 3 illustrates these early deviations, showing the relative

deviation as a function of time for a high-Qr condition (1 mM, Figure 3(b)), with a low-Qr

condition (10mM, Figure 3(a)) provided for comparison. Collectively, the data show that highly

pruned models do provide very good fits over a broad parameter range, although they often

produce large proportional deviations early in assembly. Furthermore, the deviations they

produce vary significantly with assembly conditions, increasing approximately 20-fold between

Figure 2. Variation in quality factor Qr as a function of degree of pruning for the ODE model. The figure
shows three curves, representing three simulation concentrations (10mM, 100mM and 1 mM), with each
curve plotting Qr across a range of pruning parameters. The X-axis is labelled with pruning parameter used,
as well as the number of intermediates (from 73 possible) retained with that pruning parameter value.
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a typical in vitro assembly concentration (10mM) and a value not far above likely in vivo

concentrations (1 mM).

The minimal effect of pruning away the less stable intermediates on the kinetics at late stages

of assembly is to be expected as the ODE model can be reduced to a linear ODE model whose

Figure 3. Examples of fractional error Fr ¼ ([capsid]r 2 [capsid]c)/[capsid]c as a function of time during
the early stages of assembly for full vs. pruned models. Both results were obtained at pruning parameter
m ¼ 0.1 and DG ¼ 3.5 kcal/mole (a) Error vs. time for a model exhibiting low-Qr (high accuracy) defined
by concentration 10mM. (b) Error vs. time for a model exhibiting high-Qr (low accuracy) defined by
concentration 1.0 mM.
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slowest relaxation rate is bounded from above by the decay rate of the most stable intermediate.

Introducing unstable intermediates with large decay rates would not affect the slowest relaxation

rate appreciably. In that sense, kinetics in the late stages is primarily controlled by the

equilibrium concentration. If a pruned model does not change the equilibrium distribution

appreciably, it will display similar relaxation kinetics to the complete model. The value of the

fully nonlinear ODE model is, then, for studying the kinetics at the early stages. As we examine

early time scales, the unstable, fast decaying intermediates contribute more and more to the

kinetics and any pruning strategy is bound to be inaccurate. This observation is clearly seen in

Figure 3. The effects of pruning at extremely early times (,10 units of time as opposed to the

time scale over which the system equilibriates, ,105 units of time) are almost identical for the

10mM and 1 mM concentrations. The difference lies only in the rate at which the fractional

errors decay in time. Note that the actual units of the time scale are arbitrary, since the shape of

the curves depends on the ratio of the forward and reverse rates and the time axis can be scaled

arbitrarily without altering that ratio.

While, the ODE approach does not allow us to feasibly examine the full ensemble of

oligomer/oligomer pathways, we can estimate the effects of pruning out oligomer/oligomer

reactions by adding in the subset of dimer/oligomer reactions. Figure 4 shows deviations

between simulation progress by monomer reactions only vs. those allowing monomer and dimer

reactions as a function of concentration, as assessed by the Qr measure. The figure shows a rapid

rise in Qr from 10 to 100mM, followed by a more gradual increase across the rest of the

concentration range. We attribute the value at 10mM to the fact that that simulation is below the

critical concentration of the system and therefore exhibits minimal growth under either model.

The other data points show that pruning of oligomer/oligomer pathways does produce a

noticeable error in results, although this error like those above, is small in absolute magnitude

and large predominantly at the earliest stages of assembly.

Figure 4. Estimated error induced by eliminating dimer–oligomer reactions as a function of
concentration. The figure shows Qr values plotted vs. concentration for comparisons of an ODE model
allowing all 73 intermediates but only monomer-accumulation and loss reactions vs. a model allowing
reactions involving accumulation or loss of either monomers or dimers.
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3.2 Stochastic simulation results

We next examined how these results would apply to a more complicated but realistic system,

defined by a 60-subunit T ¼ 1 stochastic model allowing for independent variation of two

distinct binding rates. We assessed pathway usage in this system by monitoring concentrations

of key intermediates over time across the simulation. Figure 5 shows mass fractions of the three

intermediates – monomer, dimer and pentamer – for the T ¼ 1 capsid model as we vary intra-

capsomer and inter-capsomer binding rates over a parameter range of 3.4 orders of magnitude

in inter-capsomer binding rate and 4 orders of magnitude in intra-capsomer binding rate.

Figure 5(a) shows the mass fraction of monomers for each point in parameter space, Figure 5(b)

the mass fraction of dimers and Figure 5(c) the mass fraction of pentamers.

Collectively, the images confirm the existence of the three distinct pathway regions

identified in Sweeney et al. [26]. In the bottom left of each image, corresponding to low rates of

binding for both interaction types, we see simulations dominated by monomers with minimal

appearance of dimers or pentamers, as we would expect for the monomer pathway. In the upper

left, corresponding to a high rate of inter-capsomer binding and a low rate of intra-capsomer

binding, we see simulations dominated by dimers, as we would expect for the dimer pathway.

In the lower right, corresponding to high intra-capsomer binding rate and low inter-capsomer

binding rate, we see simulations dominated by the appearance of large numbers of pentamers, as

we would expect for the pentamer pathway.

The majority of Figure 5 does, however, appear to show significant hybrid use of multiple

pathways. The upper left half of each figure shows significant usage of both monomers and

dimers, while the lower right half shows significant usage of both monomers and pentamers.

The figure therefore, supports the conclusion that there are sizable border regions between

discrete pathway domains in which neither pathway alone provides a valid description of the

overall pathway space. We observe a steady, continuous shift in mass fractions of the

intermediates as we interpolate between different pathway domains, as opposed to a sudden

phase transition. It is therefore difficult to define exact boundaries of the border regions.

We can somewhat arbitrarily define a border region to be a region of parameter space in

which the dominant intermediate type has less than an 80% mass fraction of all three. Using

that definition, we find that the border region between monomer and dimer pathways has a

width of approximately 1.5 orders of magnitude change in either binding rate and the border

between monomer and pentamer pathways has a width of approximately 1.0 orders of

magnitude. The more rapid shift from monomer to pentamer vs. monomer to dimer may

reflect the comparatively high effective reaction order of pentamer formation relative to

dimer formation. The two borders also have very different slopes, approximately 0.4 for the

monomer/dimer border and 1.7 for the monomer/pentamer border. We attribute the 0.4 slope

to the competition between second-order dimerization needed by the dimer pathway and fifth

order pentamer formation needed for the monomer pathway. The 1.7 slope may be explained

by the balance between the fifth-order effective rate of pentamer formation, needed by both

monomer and pentamer pathways, vs. the third order formation of trimer-of-pentamer nuclei

needed by the pentamer pathway. The nature of the model type makes it computationally

infeasible to rigorously determine how many intermediates are actually necessary to the

model, as we did in the ODE case. Nonetheless, we can reasonably expect that regions in

which two small oligomers coexist at high concentrations during most of the assembly will

be characterized by an exponential explosion in the number of distinct reactions being used,

due to the numerous ways we can get from nucleus to complete capsid by combinations of

additions of two sub-assemblies. The figure thus supports the conclusion that border regions

are both sizable and are characterized by high pathway complexity.
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Figure 5. Fractional pathway usage as a function of two binding rates for a 60-mer icosahedral system.
(a) P1, showing the fractional monomer pathway usage. (b) P2, showing the fractional dimer pathway
usage. (c) P5, showing the fractional pentamer pathway usage.
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It is possible that the wide border regions in the figure in part reflect the fact that the

simulations were conducted close to the region in which kinetic trapping becomes significant,

approximately corresponding to the upper limits of concentrations examined in the ODE

simulations. Based on the analysis of Sweeney et al., we would expect this region to

correspond approximately to assembly at likely in vivo concentrations of subunits (roughly

500mM). We can observe kinetic trapping becoming prominent in the upper right portions of

the images, where all three intermediate types begin to appear with high frequency. We do not

observe any appreciable change in the width of the border regions over the parameter range

examined here, suggesting that a similarly wide border may extend much further into the low-

rate domain than we can feasibly examine. Nonetheless, we cannot be certain that the border

region does not become thinner at lower rates more typical of in vitro concentrations.

Computational resources required for a simulation increase rapidly with reduced binding rate

beyond the region shown here because nucleation rates fall with the third order or fifth order of

binding rate, depending on the pathway used. A high-precision examination of the parameter

space beyond that shown here to more likely in vitro values would therefore not be possible

with current computational tools.

4. Discussion

We have used a combination of ODE and stochastic models to explore how pathway

complexity varies across a space of binding rate parameters for simple models of virus capsid

assembly. Simulations reveal that pathway complexity can vary substantially with relatively

small changes in model parameters. ODE simulations using a simplified dodecamer model

show that the number of intermediates, and thus pathways, we must consider to achieve high

model accuracy substantially increases in high vs. low concentration domains. Likewise, the

contribution of dimer/oligomer reactions to the assembly kinetics goes up by a significant

fraction as concentration varies from levels typically used in vitro to levels likely to be

feasible at sites of virus assembly in vivo. Stochastic models allow us to test how pathway

complexity behaves in a more complicated model defined by a 60-mer icosahedron with two

independently varying binding rates. In this system, we can map out a pathway space that

exhibits not only several distinct simple pathways, but also broad border regions where

hybrids of the simple pathways appear to operate. It therefore appears that in a large fraction

of the parameter space, no single pathway operates in isolation. Such border regions can be

expected to require a large number of distinct reactions in order to adequately describe their

kinetics.

This work may also have relevance beyond capsid assembly. Our observations of the ease

of shifting pathways between in vitro and in vivo models may help in interpreting in vitro

assembly studies of many important self-assembling systems in biology. The same questions

are also of relevance in understanding how we might prototype, model and optimize assembly

reactions for self-assembling nanotechnology. The methods developed here may also be more

broadly applicable to modelling complex reaction systems. We have developed an efficient

algorithm for testing planar graph isomorphism for a general class of chemical species that

works in time O
�
N 2

*min{N;N
1=2
capsid}

�
and shown its utility for efficiently enumerating the

pathway space of a complicated assembly model. This method can be extended to include

structures with multiple types of bonds, which is one of the directions for further exploration

using the ODE model. A similar method may also prove useful for hybrid discrete/stochastic

models, a possible avenue for overcoming some of the limits of each of the two model types

examined here.
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