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Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle.
Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range
synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is
required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation
is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity
across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during
the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between
behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of
temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively
activated across wake-sleep states.

1. Introduction

Although much is known about the functional architecture
of the brain, its large-scale dynamics remain poorly under-
stood. At this macroscopic level, the existence of large-scale
dynamics is confirmed by numerous functional brain map-
ping studies, showing that multiple distributed cortical areas
coordinate their activities during perceptuomotor behavior
[1–3]. Phase synchrony is an important candidate for such
large-scale integration, mediated by neuronal groups that
oscillate in specific bands and enter into precise phase locking
over a limited period of time [4, 5]. It is also known that the
coordination of these large-scale patterns is subject to drastic
changes in different behavioral states, possibly because of
state-dependent shifts in both neuromodulatory balance
and the thalamic gating of sensory inputs [6–8]. A major
challenge is to determine general principles that govern
the spontaneous succession of global brain states across
the entire wake-sleep cycle. Recently, using simultaneous

local field potentials recorded in multiple forebrain areas in
behaving rats, it has been shown that several brain states
(e.g., quiet waking, active exploration, and slow-wave sleep)
can be represented as distinct clusters in a multidimensional
state space representing various levels of local and long
distances synchronization [9]. These results suggest that
major brain states that comprise the wake-sleep cycle can be
identified by a frequency-dependent neuronal cooperativity
that involves different oscillatory levels within individual
brain regions and transient synchronization across brain
areas. Motivated by this study, we investigated the long-
term dynamics of human brain synchronization using
intracranial recordings of epileptic patients. During the
phase of presurgical evaluation, these patients were recorded
for up to 7–14 days in order to capture habitual seizures.
Invasive EEG recording from intracranial electrodes was
required to localize focal epileptic activity and to determine
the exact spatial relationships between centers of epileptic
activity and functionally significant areas. In contrast to scalp



2 Computational and Mathematical Methods in Medicine

EEGs, intracranial recordings provide, temporally distant
from epileptic seizures, episodes of normal brain activity
that are highly differentiated, down to millimeter spatial
resolution. The good spatial resolution and the high signal-
to-noise ratio offered by intracranial electrodes have been
proven valuable in the detection of large-scale dynamical
relationships between cortical networks, in both the time and
frequency domains and allow a reliable separation of local
and long-range mechanisms [5, 10].

2. Methods

2.1. Database. We examined intracranial recordings from 5
subjects with refractory partial epilepsy undergoing presur-
gical evaluation, hospitalized between February 2002 and
July 2007 in the epilepsy unit at the Pitié-Salpêtrière hospital
in Paris. Each patient was continuously recorded during
several days (duration range, 9–20 days; mean duration,
15 days) with intracranial electrodes (Nicolet acquisition
system, CA, USA; 16-bit, bandwidth at 3 dB: 0.1–150 Hz).
Signals were digitized at 400 Hz. Depth electrodes were
composed of 4 to 10 cylindrical contacts 2.3 mm long, 1 mm
in diameter, 10 mm apart center-to-center, mounted on a
1 mm wide flexible plastic probe. Subdural electrodes were
strips with 4 to 8 one-sided circular contacts, 2.3 mm in
diameter and with a center to center separation of and
10 mm. Pre- and post- implantation MRI scans were eval-
uated to anatomically and precisely locate each contact
along the electrode trajectory. The selection of the sites
to implant varied among patients and was made entirely
for clinical purposes. Three patients had bilateral depth
electrodes placed within the hippocampus in combination
with subdural strips added to sample lateral or inferior
cortices of the temporal and frontal lobes; two patients
had only unilateral depth electrodes in various regions of
the neocortex and hippocampus. (Patient 1: 47 channels;
unilateral subdural strip electrodes covering the frontal lobe
and basal regions of the temporal lobe; unilateral depth
electrodes placed in the insula, amygdale, and hippocampus.
Patients 2 and 5: 47 and 50 channels; bilateral subdural
strip electrodes covering the basal regions of the temporal
lobe, lateral, and posterior temporal cortex; bilateral depth
electrodes placed in the hippocampus. Patient 3: 32 channels;
unilateral depth electrodes placed in the basal regions of
the temporal lobe, lateral temporal cortex, and frontal lobe.
Patient 4: 38 channels; unilateral depth electrodes placed in
basal regions of the temporal lobe, lateral temporal cortex,
insula, and amygdala; bilateral depth electrodes placed in the
hippocampus). An epileptologist visually evaluated the EEG
recordings. Electrodes that exhibited interictal epileptiform
discharges (i.e., clearly distinguishable spikes, sharp waves,
or spike-and-waves complexes) were identified and were
removed from the analysis. Waking and sleep stages were
determined by video monitoring and confirmed by the visual
inspection of the corresponding EEG recordings. Sleep was
here mostly defined as nonrapid eye movement (NREM)
periods by the presence of K-complexes (stage 2) or slow
waves (stage 3-4).

2.2. Large-Scale Synchronization Analysis. The analysis of
phase synchronization between neuronal signals was intro-
duced by [11] to overcome some limitations of conventional
methods which cannot disentangle instantaneous ampli-
tudes and phases [10]. The term “synchronization” is used in
its strict sense, as a statistical measure of the degree to which
two signals are phase locked during a short-time period.
Recent studies have demonstrated the ability of this measure
to discriminate transient synchronization in intracranial
EEG data [12]. Our analysis followed several steps: first,
signals from nonoverlapping, consecutive 5-second periods
were filtered with a bandpass corresponding to a particular
frequency component. Second, the instantaneous phase of
each filtered window was extracted by means of the Hilbert
transform. Third, the degree of phase locking between a pair
of EEG channels was quantified by the trial average of the
phase differences on the unit circle in the complex plane:
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where n is the number of data points in each time window.
This phase-locking value (PLV) varies between 0 (indepen-
dent signals) and 1 (constant phase lag between the two
signals).

Principal Components Analysis. PCA is a method for identi-
fying patterns in data of high dimension and expressing that
data in such a way as to highlight their similarities and differ-
ences. Since patterns can be hard to find in data of dimension
greater than three, where the luxury of graphical representa-
tion is not available, PCA is a powerful tool for “visualizing”
and “compressing” that data, by reducing the number of
dimensions, without much loss of information. PCA usually
starts with a large number of data or “observation” vectors,
with as many components as system variables. The methods
of linear algebra then allow the selection of a special, ordered
set of basis vectors, the so-called “principal components.”
These vectors are of unit (Euclidean) length and are mutually
orthogonal, with pairwise “dot products” equal to zero. The
first principal component vector represents a single axis
in space. When you project each observation vector onto
that axis, the resulting values form a new variable. And the
variance of this variable is the maximum among all possible
choices of the first axis. The second principal component
represents another axis in space, perpendicular to the first.
Projecting the observations onto this axis generates another
new variable, whose variance is the next largest among all
possible choices of this second axis, and so forth. The full set
of principal component vectors contains as many elements
as the number of original variables. But it is common for the
sum of the variances of the first few principal components to
exceed, say, 80–90% of the total variance of the original data.
By examining plots of these few new variables, researchers
often develop a deeper understanding of the driving forces
that generated the original data. In mathematical terms,
the unordered set of principal component vectors is sim-
ply the set of eigenvectors of the covariance matrix of
the observation vectors. The first principal component is
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Figure 1: After a narrow band filtering of the intracranial EEGs in the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 1 (13–20 Hz),
beta 2 (20–30 Hz), and gamma (30–50 Hz) frequency bands, local- and long-range synchronizations were, respectively, estimated by the
spectral power of each recording contact and by the mean phase-locking values (PLV) between every contact and all the others. This
computation allows the characterization of the multifrequency synchronization patterns of each time window t as a vector S(t). (b) Scatter
and density plots of 4 successive days (i.e., 96 hours, patient 1), in the space of the first principal components. (c, d) Distributions in the state
space across several days and during waking and sleep states. (e) The spectral amplitudes were color coded in the state space, characterizing
three main internal frequencies of individual regions in the delta, alpha, and gamma bands.

the eigenvector with the largest eigenvalue, the second prin-
cipal component corresponds to the next largest eigenvalue,
and so on.

Hierarchical Clustering. Hierarchical clustering uses a so-
called “agglomerative” approach, in which individual items,
perhaps patterns, are joined to form larger groups. These
groups are then joined again and again, until the process
has been carried to completion, forming a single hierarchical
“tree.” This hierarchical clustering proceeds in a simple
manner from an initial state, in which each cluster consists
of a single item. First, having selected a metric or distance
function d, the matrix of distances between all possible pairs
(r, s) of clusters (d(r, s)) is formed, and the two closest (or
“most similar”) clusters are chosen. This is the first true
stage in the “clustering” process. If several pairs of clusters
have the same separation distance, a predetermined rule is
used to decide between alternatives. Second, the two selected
clusters are merged to produce a new, larger cluster. Third,

the distances are calculated between this new cluster and all
remaining clusters. Fourth, this process continues iteratively,
until a single cluster, consisting of all the individual items,
remains. Whenever it is necessary to determine the two
“closest”, most similar clusters, Ward’s method is used: for
every cluster pair (r, s), the sum of the squares of the
distances between all items in their composite cluster and
the mean (or centroid) of that cluster is computed [13].
The pair which achieves the minimum of this measure is
then selected as the pair to be combined, thus maximizing
within-cluster homogeneity. Spurious, small sized clusters
were removed. The optimum grouping was defined as the
one that minimized the ratio between intracluster and
intercluster distance measures, producing the used value
for the expected number of clusters. Several other distance
measures between clusters (e.g., average, centroid, median
distances) were tested with qualitatively similar results. We
use the implementations from the Matlab’s Statistics Toolbox
(The Mathworks, Natick, MA).
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Figure 2: Correlation matrix showing the similarity of all the
windows compared with each other over 4 successive days (upper
map) and during one day (lower map).

State-Space Representation. Following previous work [12],
consecutive 5-second EEG recording periods were quantified
by a synchronization vector (S) that characterizes the
multifrequency synchronization patterns in the delta (0.5–
4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta 1 (13–20 Hz),
beta 2 (20–30 Hz), and gamma (30–50 Hz) frequency bands.
Higher frequency bands >50 Hz were not considered here
because the corresponding activities mainly reflect short-
lasting (<100 msec) and low-voltage events, having only
a small implication in average synchronizations computed
over windows of a few seconds. For every window of time
and every frequency band, S quantified two different types of
synchronization [5] (Figure 1(a)): (i) local synchronization,
estimated by the spectral power of each recording contact
and reflecting the frequency-specific summation of coherent
currents in a sufficient number of cells that generate
externally detectable local field potentials [5] and (ii) long-
range synchronization, estimated by the phase-locking values
(PLV) for every possible combination of different contacts,
characterizing the temporal relationships between different
brain regions in a particular frequency band [11]. On the
basis of all pairwise computations, we computed for each

contact the average synchronization, defined as the mean
PLV between a given contact and all the others. Furthermore,
separately for each frequency band, all the values of local
and long-range synchronization were normalized by the
minimum and maximum over all the recording contacts to
produce normalized values bounded between 0 and 1. This
normalization factor is used to adjust the data to compensate
for experimental variability and to “balance” the values from
the local and long-range synchronizations being compared.
For 50 channels, the dimension of S is 50 × 6 × 2 = 600,
we typically analyzed ∼5 × 104 time windows (2–4 days).
To reduce this high-dimensional and possibly redundant
data to a lower dimensional space and to reveal hidden
underlying factors controlling the dynamics, we used the
principal components analysis (PCA). PCA of S led to the
determination of the underlying modes that characterize the
network states, rank-ordered by their importance, allowing
the representation of these states as distinct clusters in a
low-dimensional state space [9]. The first three principal
components (PCs) of S were used, typically representing
around 90% of the total variance. In order to reduce the
small-scale variability and to average over microstructures
to yield large-scale temporal structures, resulting PCs were
further smoothed with a moving average filter of one minute
width.

3. Results

We analyzed long-term intracranial recordings of 5 epileptic
patients, continuously recorded with a EEG-video monitor-
ing system for successive days (duration ranging from 38 to
103 hours), one day after the implantation of the electrodes
and several hours before the first seizure (separated from 10
to 48 hours, depending on the data set). Patients continued
taking their standard doses of anticonvulsant medications
during this period. The patients had been implanted with
both depth electrodes and subdural electrodes distributed
over subcortical and neocortical regions. The positioning
of electrodes varied among patients (see Section 2.1). We
observed that the first three principal components were able
to identify and characterize several distinct groups of states
across the wake-sleep cycle. While the number of possible
synchronization patterns can be very large, we found that
most of them occupy an L-shape structure, as can be seen
in scatter and density plots (Figure 1(b)). Distributions in
the state space were quantitatively similar across several days
(Figure 1(c)). Comparative analyses of the behavioral states
of the patients showed that the waking and sleep states
occupied different regions in the state space (Figure 1(d)).
When pooled spectral amplitudes were color coded on this
space [9], it was possible to characterize three segregated
regions with internal dominant frequencies (Figure 1(e)).
The higher gamma power values were observed within a
specific region of the state space, mostly associated with
the waking state. This observation supports previous reports
showing that gamma synchronizations seem to be essential
for waking-state information processing. Clearly separated,
higher delta powers were exclusively localized in the deep
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Figure 3: (a) Same correlation matrix as in Figure 2, now sorted in order of similarity by the clustering algorithm. (b) Dendrogram of
correlation matrix. Levels of the dendrogram correspond to different sets of clusters in the correlation matrix. At the top of the dendrogram,
a single branch signifies that all avalanches are in one cluster. Just below this, the dendrogram divides into two branches, representing a set of
two clusters. Branching continues further down the dendrogram until every window is in its own family. The red line crosses the dendrogram
at minimum of the ratio between intracluster and intercluster distances and indicated that 5 clusters can be identified (note here that one
small sized cluster was removed). The 5 corresponding clusters were reported in the sorted correlation matrix (a). (c) The corresponding 5
clusters were reported in the state space, coded by different colors. The probabilities of transition between the different clusters are depicted
using different arrow sizes (small: 0.2 < P < 0.4 and large: P > 0.4). Direct cluster-to-cluster transitions were mostly identified between
proximal modes in the state space. (c) Matrices of transition probabilities between the characteristic modes defined by clustering, for both
the actual and shuffled data.

sleep region, also reflecting a maximal distance to the
spectral-coded gamma region. Finally, a distinct frequency
region in the range of sleep spindles (12–15 Hz, alpha band
in Figure 1(e)) was localized near the region associated
with delta/slow oscillations [14]. This remarkable frequency
segregation of three domains in the state space confirms that
distinct synchronization modes mapped different behavioral
states [9]. Similar patterns were not observed using only local
synchronizations (i.e., spectral powers), suggesting that long-
range synchronizations between distant regions are required.

To investigate these recurrent structures more precisely,
all the windows were checked against each other for simi-
larity via the euclidian distance in the PC space (Figure 2).
Visual inspection of correlation matrices revealed a large
number of positive correlations, suggesting that many of

the windows produced were recurrent over successive days.
Hierarchical clustering algorithms were used to rearrange a
correlation matrix from temporal order to order of similarity
(Figure 3(a)). When presented in order of similarity, several
large squares of high-correlation values appeared on the
diagonal of the matrix, suggesting that the windows could
be grouped into several clusters that were highly similar
within themselves. Within several of the large cluster in
a sorted matrix, there were smaller subclusters with even
greater correlations (Figure 3(a)). The relationships between
these clusters and subclusters could be succinctly described
by a dendrogram (Figure 3(d)). Each line that cut across the
dendrogram at a different level represented a different way
of grouping the windows into clusters. The best clustering
was defined at the minimum value of the ratio between
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intracluster and intercluster distances. We found that most
synchronization patterns can be reasonably fit into 3–5
characteristic modes (Figures 3(d) and 3(c)).

To further investigate their global dynamic structures,
we explored possible causal relationships by deducing the
matrix of transition probabilities between the characteristic
modes within a time period under 2 minutes (Figure 3(d)).
Concerning the inner stability of individual modes, sleep
states represent the most stable dynamics, with the strongest
probability to remain in the same mode (P ≈ 0.6). In
contrast, we observed a significantly greater inner instability
for the modes associated with wakefulness (P ≈ 0.3).
Direct cluster-to-cluster transitions were mostly identified
between proximal modes in the state space, those with
high probabilities (see the transition matrix in Figure 3(d)
and arrows in Figure 3(c) for P > 0.2). Direct cluster-to-
cluster transitions between nonadjacent modes are rare (P <
0.1). Thus the most frequent trajectories are surprisingly

simple, showing, on average, a tendency to follow a flow
visiting successively adjacent characteristic modes across
wake-sleep states. To measure the statistical significance of
these dynamical structures, it is necessary to compare the
actual data to what would be caused by chance. We used a
shuffling to permute the temporal sequence, preserving the
original spatial structures in the PC space, but destroying
all dynamical structures. Transition matrices of 50 shuffled
data were generated, and a maximum matrix was constructed
for each patient. As expected, this transition matrix obtained
from the shuffled data hinted that preferred cluster-to-cluster
transitions between proximal modes could only be found in
the actual data (Figure 3(d)). Surprisingly, although a con-
siderable degree of interpatient variability is to be expected
from the different electrode implantations, the L-shaped
distributions in the state space were quantitatively similar
across the five patients (Figure 4). Furthermore, we found
a remarkable similarity in the spectral-coded state space,
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including three segregated regions in the delta, alpha/beta,
and gamma bands. Finally, the global dynamic structures
governing the trajectories between proximal modes are
conserved among the different patients.

4. Discussion

Regardless of the relatively small sample size used in the
present study, replicability of the results across subjects
leads us to believe that global brain states can be mapped
into a low-dimensional space based on the degree of local-
and long-range synchronization between multiple cortical
areas. Automatic cluster analysis made it possible to quan-
titatively assess the similarities between these different syn-
chronization patterns and to identify functional categories
and natural transitions between them. Using this compact
representation, we report, with a remarkable similarity across
the patients with different locations of electrode placement,
that the complex patterns of brain synchrony during the
wake-sleep cycle can be represented by a small number
of characteristic clusters in which cortical network can
dynamically operate. These regimes correspond to distinct
global brain states and are correlated with the occurrence of
major wake-sleep states.

Although our state-space framework obtained encour-
aging results, future work should address several issues. In
particular, we have mainly studied the ability of a state-
space representation in tracking global brain dynamics at
low temporal resolution and operating within a few clusters,
quantitatively inferred by hierarchical clustering algorithms.
One difficulty here is the determination of the minimal
number of physiologically meaningful clusters. The problem
of dimension reduction is very difficult, especially when
the target categories for classification remain unknown. It
remains possible that other dimension reduction techniques
might provide useful physiological features and identify
more dynamic states. Especially, future methods could
improve upon the poor temporal resolution in the state-
space method because of the smoothing procedure. However,
given the relatively slow temporal evolution of behavioral
states, such slow temporal dynamics are likely well captured
by the state-space framework.

How can this description be useful? The state-space
framework proposed here may be helpful for sleep stage
scoring (i.e., the process of classifying the different stages
of the sleep). Indeed, it is known that most of the current
stage-coding approaches, both manual and automatic, face
several important limitations [15]. Furthermore, our state-
space representation may help to better describe transitions
between different sleep stages. Indeed, according to the
recommendations of Rechtschaffen and Kales [16], most
algorithms to identify wake-sleep states based on EEG
features implicitly assume that the wake-sleep cycle consists
of several categorically different and stable states. This
approach tends to characterize the wake-sleep cycle as a
stair case process, jumping back and forth between a set of
state. This stair case representation of states promotes the
unrealistic view that state transitions occur instantaneously,

with no intermediate periods between them, even when
the dynamics of the system do not clearly resemble any
predefined states [9]. Finally, in the context of neurology,
disturbances of large-scale synchronized networks have been
implicated in several brain disorders, such as epilepsy,
schizophrenia, autism, and Parkinson’s disease [17]. Our
state-space representation of global brain dynamics may help
to identify pathological alterations in large-scale patterns. In
particular, this representation may be helpful in identifying
dynamic state fluctuations of the epileptic brain and possibly
characterizing long-term pathological transitions to seizures
[12, 18].

Overall, our present results strengthen the recent obser-
vations in rats that behavioral states and their transitions
can be identified by synchronizations across/within forebrain
areas [9]. Additionally, our results support the role of
oscillation-mediated temporal links, activated differently
depending on the ongoing behavioral state, in the coor-
dination of specific information transfer between distant
brain regions [19]. Furthermore, following earlier proposals
[20, 21], our descriptions make explicit generic structures of
large-scale brain dynamics, that is, characteristics that are
observed independently of the particular variation of the
network under consideration. Together, these results provide
new insights into the neurophysiological correlates of state-
dependent aspects of human brain synchronization. We
anticipate that this type of comprehensive quantification will
have powerful applications in the development of automatic
recognition of behavioral states [22].
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