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Among the six secretion systems identified in Gram-negative bacteria, the type III secretion system (T3SS) plays important roles
in the disease development of pathogens. T3SS has attracted a great deal of research interests. However, the secretion mechanism
has not been fully understood yet. Especially, the identification of effectors (secreted proteins) is an important and challenging
task. This paper adopts machine learning methods to identify type III secreted effectors (T3SEs). We extract features from amino
acid sequences and conduct feature reduction based on latent semantic information by using latent Dirichlet allocation model.
The experimental results on Pseudomonas syringae data set demonstrate the good performance of the new methods.

1. Introduction

Secretion is an essential mechanism for bacterial adaptation
and survival in their surrounding environment. The secre-
tion process transports effector molecules from the interior
of a bacterial cell to its exterior. Up to now, researchers
have discovered six types of secretion systems. The type III
secretion system is one of the most complex ones, which
allows bacteria to deliver virulence effectors across eukaryotic
cellular membranes [1].

In recent years, significant progress has been made in
our understanding of the structural components of T3SS,
including a needle-like component and bases embedded
in the inner and outer bacterial membranes [2]. However,
the details of the secretion mechanism and defined signals
remain unknown. Identification of the effectors secreted by
the T3SS (called type III secreted effectors, T3SEs) is very
important to the T3SS study. They are believed to have some
unique characteristics that can be recognized by the secretion
system and be delivered into host cells. These characteristics
are hints to uncover the mechanism of T3SS and understand
the role that each component plays in the secretion process.

The amino acid sequences of T3SEs have great sequence
diversity through fast evolution, and many T3SEs have very

few homologous proteins in the public databases. Therefore,
it is notoriously challenging to recognize T3SEs. The plant
pathogen Pseudomonas syringae has been a model for the
research of type III effectors. Thus far, only several hundreds
of T3SEs have been identified and confirmed from all the
bacterial species, and a large portion of them are from P.
syringae strains. It indicates that a vast majority of T3SEs
remain unknown.

This study aims to develop a computational prediction
system, which can help the biologists to obtain the effec-
tor candidates for wet-bench experimental confirmation.
Generally, the computational tools for predicting T3SEs
can be divided into two types: sequence-based and domain
knowledge-based.

The sequence-based methods usually attempt to extract
discriminant subsequence features from amino acid
sequences or nucleotide sequences and perform prediction
based on these features. The features extracted from amino
acid sequences include amino acid composition, K-mer
frequencies [3, 4], and position-specific features [5]. As for
the nucleotide sequences, genes encoding the T3SS apparatus
and T3SEs usually have a conserved regulatory motif in their
promoters [6]. Another sequence-based method, homology
search using known effectors [3], is also often used, but it



cannot identify novel effectors. The domain-knowledge-
based methods include identifying genes in vicinity to chap-
erone homologues [7], predicting instability of N-terminus
and nonoptimal codon usage [8], and using protein
secondary structure and solvent accessibility information
[9]. The domain knowledge is not as available as sequence
data and usually obtained by computational approaches,
which lowers the prediction accuracy.

This paper adopts machine learning methods to predict
type III secreted effectors (T3SEs). The features are extracted
from amino acid sequences. Researchers have detected amino
acid composition biases in T3SEs, especially in the N-
termini. For example, Guttman et al. [10] reported that the
first 50 amino acids of P. syringae effectors have a high pro-
portion of Ser and a low proportion of Asp residues. It should
be noted that these observations only reveal some statistical
biases instead of specific signals/features. Moreover, many
effectors do not fulfill these requirements. In this paper, we
regard the protein sequences as a kind of biological language
and the K-mers as words. The word frequencies compose
the feature vectors. In order to condense the feature space
and improve the prediction accuracy, we propose two feature
reduction methods. Both of them utilize latent semantic
information in the latent Dirichlet allocation model [11].

We have examined the prediction accuracies of these
two methods and compared them with four other methods,
including dimer frequency, trimer frequency, and feature
selection using frequency as well as tf-idf value. The
methods were tested on the Pseudomonas syringae data set
through fivefold cross-validation. The experimental results
demonstrate the effectiveness of the proposed methods.

2. Methods

Protein sequences are consecutive amino acid residues,
which can be regarded as text strings with an alphabet A
of size |A| = 20. The amino acid composition and K-mer
(subsequence with length of K) frequency can be used as
features for the protein sequence classification. The amino
acid composition does not consider the order of amino
acids, while K-mers retain some sequence order information,
thus the latter method is usually adopted. However, the
dimensionality of K-mer feature space grows exponentially
as K increases. The prediction based on the full K-mer
feature space without any dimension reduction would be
computationally intractable. In fact, lots of K-mers are
irrelevant to the prediction. For example, the K-mers appear
only once or very few times.

In this paper, we propose two feature reduction methods
based on latent Dirichlet allocation (LDA) model [11]. These
two methods utilize the latent semantic information in
different ways. One is to convert the original K-mer space
to topic space, and the other is to use topic information to
select informative K-mers for prediction. These two methods
are introduced in Sections 2.2 and 2.3, respectively.

2.1. Latent Dirichlet Allocation. Latent Dirichlet allocation
(LDA), the most common topic model currently in use, has
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FiGURE 1: An LDA model.

been widely applied in natural language processing, image
classification, social network analysis, and so forth [12, 13].
In LDA model, each document can be viewed as a mixture of
various topics and that each word’s creation is attributable to
one of the document’s topics.

Figure 1 shows a graphical model representation of LDA.
(Here we consider the smoothed LDA.) The square frames
represent replicates. There are D documents in the corpus,
N words, and K topics. In this LDA model, a document is
generated as the following steps.

Draw 0 from the Dirichlet prior:

0 ~ Dir(«). (1)

For each word w,, pick a topic z, from multinomial(8),
and then pick w, from p(wy, | z,, ), which is a multinomial
probability conditioned on the topic z,:

Z, ~ Mult(6)
(2)
Wn ~ p(Wn | 20, B).

The likelihood of generating a corpus D is defined in the
following equation:

(@ 1an) = || TIp(B I 0] Tpu 1@
k=1 d=1

X (l_[ > (2 | 0)p(w, | zn,ﬁ))dedﬁ.

n=1 z
(3)

In this model, only w, is fully observable. Inference of
the hidden variables often adopts Gibbs sampling [14] or
variational algorithms [15]. Since LDA is a generative model,
with limited discriminative ability in classification tasks, we
only use it for feature creation.

2.2. Prediction of T3SEs in the Topic Space. In LDA model,
each document is represented by a posterior Dirichlet over
the topics. This is a much lower dimensional representation
compared with using word frequency. Therefore, in this
method, we create feature vectors by using the topic repre-
sentation.

We regard protein sequences as text, and the K-mers are
words. We would like to use LDA model to catch the latent
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topic information. Since the LDA model cannot be used
directly on the protein sequences, we need first convert the
protein sequences to a kind of biological language, whose
words are the K-mers. Similar to Chinese sentences, we
segment the amino acid sequences to nonoverlapping K-
mers without spaces between words. After that, the LDA
model can be applied on the sequences.

All the natural languages have predefined dictionaries.
However, protein sequences are written in an unknown
language to us at the present state, whose words are not
delineated. Any combination of letters with arbitrary length
may be a word. So we first need to build a dictionary, which
is the basis of segmentation. Therefore, the whole process of
this method consists of three steps: (1) construct a dictionary,
that is, word set; (2) segment the protein sequences by
matching the words in the dictionary, that is, K-mers; (3) run
LDA model on the segmented sequences and create feature
vectors.

We have tried two measures to determine the words to be
included in the dictionary. One is word frequency, and the
other is t f-idf value. They are defined in the following.

2.2.1. Frequency. In natural language, words are generally
the combinations of characters that frequently appear in the
text. According to this observation, the amino acid substrings
with high frequencies can be regarded as words, which
should be segmented out and used as features. The unusual
strings are noninformative for classification and have little
influence on global performance. We record the appearance
time for each K-mer in the training sequence set and preserve
a predefined proportion of the most frequent K-mers.

2.2.2. tf-idf Value. Considering that the frequency measure
is apt to select the overrepresented words in the text, which
may have little discriminant ability, we also use the ¢ f-idf
value. According to its definition in text categorization,
tf-idf is calculated for a term in a single document. The
value is in proportion to the number of occurrences of the
term in the document, that is, the tf (term frequency) part;
and in inverse proportion to the number of documents in
the training set for which the term occurs at least once, that
is, the idf (inverse document frequency) part.

Here we redefine it as the following equation. Let wy
be the tf-idf value for a K-mer t in sequence s, f;s be the
frequency of K-mer ¢t in sequence s, N be the size of the
training set, and 7, be the number of sequences in which ¢
appears:

N
Wis = fos x log . )
t

To avoid encountering unknown words, all 20 amino acids
are included in the dictionary.

In the second step, we used the segmentation method
proposed in [16]. This segmentation method has two criteria
in searching the best way of segmentation. One is that the
number of segments is the smallest. The other is that the
product of the weights of the words segmented out is the
biggest.

If the frequency measure is used in dictionary construc-
tion, the weight of word t is defined by frequency as follows:

N
Wy = th,s- (5)
s=1

Or else, if the  f-idf measure is used, the weight of word
is defined as the maximum value of w;,, which is the ¢ f-idf
value for a K-mer t in sequence s:

Wi = Max W, (6)

where 7 denotes the whole data set.

After segmentation, we run LDA model on the sequences.
Then we obtain a sparse D X T matrix A, where D is the
number of sequences and T is the number of topics. A(d, j)
contains the number of times a word token in document d
has been assigned to topic j. The row vectors are the feature
vectors used in the classification. Here, we classify the protein
sequences in the topic space instead of word space. Thus
the dimensionality of the feature set can be greatly reduced
because the number of topics are much less than that of
words.

2.3. Prediction of T3SEs in the Reduced Word Space. In this
method, the feature representation is totally different from
the first method. Here we still use K-mer frequencies as
features. Instead of using all the K-mers in the dictionary, we
select informative ones according to the topic information.

The feature reduction process also consists of three steps.
The first two steps are the same as in Section 2.2, while the
third step needs certain strategies for selecting words.

Actually, the dictionary construction can be regarded
as the initial screening procedure for word selection. The
appearance times of the words in the dictionary can be
recorded and compose the feature set. In the experiments,
we examined the prediction accuracies of these two kinds of
feature sets using frequency and tf-idf for word selection,
respectively, and find that the frequency is better than ¢ f -idf
in this study (see the results shown in Table 2). Thus we
conduct the third step based on the dictionary constructed
by the criterion of word frequency.

Here we perform a further selection using topic infor-
mation. We examine the number of times that words are
assigned to topics and set a threshold m. If a word is not
assigned to any topic at least m times, this word is discarded.
In this way, we could remove the words which are either
unusual words or not specific to any topic.

2.4. Complexity Analysis. The computational time is mainly
spent on sequence segmentation and LDA model. The
segmentation algorithm [16] regards each amino acid as a
check point. At each point, the algorithm conducts pruning
by keeping only the optimal segmentation which has the least
number of segments up to the current point, and search
words by matching the subsequences next to the point with
the words in the dictionary. Suppose that the dictionary size
is S, the number of protein sequences in the data set is D,
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TaBLE 1: Data distribution.
Dataset Number
Positive set 108
Negative set 760
Total 868

the average sequence length is L, and the maximum length of
words is M, matching a word in the ordered dictionary has a
cost of O(log2S) by binary search. Thus, the computational
complexity of the segmentation method is O(DLM log2S)
(M = 3 in the experiments). As for the LDA model, suppose
there are K topics, the complexity is O(DKL) using Gibbs
sampling technique for parameter estimation and inference.
And in the second feature selection method, the complexity
of selecting words is O(KS).

3. Results and Discussion

3.1. Data Set. Since Pseudomonas syringae has been used as
a model organism in the study of T3SEs, it has the most
effectors that have been confirmed. Therefore, we collected
data from this species. To our knowledge, there is a total
of 283 effectors, have been confirmed, from P. syringae pv.
tomato strain DC3000, P. syringae pv. syringae strain B728a,
and P. syringae pv. phaseolicola strain 1448A. However, a
large portion of them are homologs, that is, the sequence
similarity is very high. This is because the homology-based
search is still the major means to discover novel effectors.
Considering that the redundancy of the data set would
result in overestimation on the accuracy of the classifier, we
eliminated the samples with sequence similarity over 60%.
By removing the redundant sequences, we get a positive set
of 108 samples.

The negative data set was extracted from the genome of
P. syringae pv. tomato strain DC3000. We excluded all the
proteins related to T3SS, as well as the hypothetical proteins.
(Note that this set may still contain some unknown effec-
tors.) And then we selected randomly from the remaining
samples to constitute the negative set, since if we use all
of them, the data set would be too much imbalanced. The
numbers of the data sets are listed in Table 1.

3.2. Experimental Settings and Evaluation Criteria. The clas-
sifier is built using the state-of-the-art supervised learning
machinery, the SVM, which is widely used in bioinformatics.
Our implementation of the SVM adopted LibSVM version
2.8 [17]. We considered polynomial, sigmoid, and RBF
kernels for the SVM and observed that the RBF kernel has
the best classification accuracy.

We used LDA model in the Matlab Topic Modeling
Toolbox 1.4 [18]. As in LDA, the number of topics has
great impact on its performance. The optimum number of
topics was searched as described in Section 3.3. The other
parameters used in the LDA model are set as follows: f =
0.01, @ = 50/T, where T is the number of topics, and the
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number of iterations is 500. The threshold m is set to be 40
according to the statistics of word occurrence times.

Multiple measures were used to assess the performance of
our proposed method, including sensitivity, specificity, and
total accuracy (TA). The sensitivity and specificity can be
defined in terms of the number of true positives (TPs), the
number of false positives (FPs), the number of false negatives
(FNs) and the number of true negatives (TNs) as follows. We
define

e TP
Sensitivity = TP+ TN

™~ (7)
Speciﬁcity = m

These two measures examine the ability of the correct
classification for positive and negative samples, respectively.
TA is the ratio of the samples classified correctly compared to
the total size of the data set, which is calculated as follows:

TP+ TN

A = P TR+ INT EN'

(8)

Considering that the maximal secretion or translocation
may require the first 100 amino acids [19-21], in our
experiments, the first 100 amino acids were used.

3.3. Number of Topics. The number of topics is a key param-
eter in LDA model because it directly influences the per-
formance of the model. The perplexity is frequently used
to assess the performance of LDA models. It measures the
performance of the model, which is defined by [11]:
ity log p(wa) } ©)

perplexity (Dyest) = exp{
test z{d\il Nd

This measure decreases monotonically in the likelihood
of the test data; thus lower values indicate better modeling
performance.

We calculated the values of perplexity on a held-out
dataset. Figure 2 shows the perplexity plotted against the
number of hidden topics, from 5 to 100. It can be observed
that the perplexity decreases with an increasing number of
topics. From 5 topics to 40 topics, the perplexity drops
rapidly. When the number of topics is bigger than 40, the
perplexity is almost constant. In our experiment, we set the
number of topics to be 50.

3.4. Experimental Results. We have conducted a series of
experiments to examine the performance of these two fea-
ture reduction methods and compared them with four
other methods. Table 2 lists the number of dimension,
total accuracy (TA), sensitivity, and specificity of these six
methods. The method abbreviations and their corresponding
description are in the following:

(1) dimer: using all the dimers without feature reduction;

(2) trimer: using all the trimers without feature reduc-
tion;
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TaBLE 2: Result comparison.
Method Dimension TA (%) Sensitivity (%) Specificity (%)
Dimer 400 94.2 91.4 94.5
Trimer 8000 90.4 100.0 90.2
Frequency 220 95.3 92.4 95.6
tf-idf 220 94.7 88.8 95.3
FRI 50 91.2 83.3 91.7
FRIT 184 95.0 94.5 95.1
(3) frequency: using the dictionary words selected by 25
word frequency;
(4) tf-idf: using the dictionary words selected by ¢ f -idf 20k
value;
(5) FRI: using topic information as features;
> 15F
(6) FRII: using the feature set which is based on (3) but g
further condensed by topic information. =
L
~ 10 +
From Table 2, we can find that all the six methods obtain
total accuracies over 90%, which indicates that the amino
acid patterns are competent for discriminating effectors and 5t
noneffectors.
In this study, long K-mers have little advantage for the
e : 0 . . . .
classification. The dimer method has better performance o 2 20 P %0 100

than tri-mer method. Although the trimer method obtains
a sensitivity of 100%, its total accuracy and specificity are
much lower than other methods. That is because its false
positive rate is very high. Since the prediction system aims
to provide a reliable prediction result of effector candidates,
the high false positive rate is not allowed.

Basically, all the new methods have satisfying perfor-
mance. The feature selection methods using the dictionary
words selected by frequency or ¢ f-idf value achieve the best
specificities and have overall better performance than the
original dimer and trimer methods. It demonstrates that
the strategy of dictionary construction and segmentation
is successful in the protein sequence classification. The
numbers of dimensions of these two methods are 220,
including 20 amino acids, 150 dimers, and 50 trimers. The
measure of frequency is better than ¢ f-idf value, since the
latter has a lower sensitivity. That may because the tf-idf
value prefers to select some unusual words, which are not
helpful for classification.

Obviously, the proposed feature reduction method I
(FRI) has the smallest number of dimensions, but its
accuracy is relatively low. FRII has 184 dimensions, including
20 single amino acids, 137 dimers, and 27 trimers. More
trimers are discarded than dimers, because the frequencies
of trimers are much lower and only a few of them can pass
the criterion of word selection in Section 2.3. Actually, more
trimers cannot improve the accuracy as we have mentioned
before.

FRII achieves good results, even better than using all the
dictionary words. The sensitivity of FRII is 2% higher than
that of the frequency method, and the total accuracy and
specificity are also comparable or better than other methods.
These results indicate that although the topic space is not

The number of topics

FIGURE 2: Perplexity under different numbers of topics.

enough for the classification, the latent topic information is
effective in selecting features.

4. Conclusions

This paper focuses on the feature reduction methods for
identifying proteins secreted via the type III secretion system
using machine learning approaches. Our goal is to extract
features from N-terminal amino acid sequences and use the
classifier to discriminate the input feature vectors as secreted
or nonsecreted proteins.

We have compared six methods including the K-mer
methods without feature reduction and other methods
with different feature reduction approaches. Computational
experiments were conducted on Pseudomonas syringae data
set. The cross-validation tests on the P. syringae data set show
that our methods achieve high accuracies.

We observe that, while long K-mer features have little
contribution in discriminating effectors and noneffectors,
conducting feature reduction can improve the prediction
accuracy. The methods using frequency and tf-idf value
for word selection achieve better accuracies than K-mer
methods, and the further feature selection using topic
information can improve the performance and condense the
feature space at the same time.

Thus far, a large portion of T3SEs in Gram-negative
bacteria still remain unknown. The bioinformatics tools are



of great importance. We believe that the new computational
methods will contribute to the identification of novel type I1I
secreted effectors and advance our understanding on TTSS.

As for the future work, the latent semantic information
revealed by the topic models will be further investigated. LDA
introduces a latent layer, which represents topic/subject in
documents, or scene in images. For protein sequences, the
latent layer could be secondary or spatial structure, function
domain, or other biochemical properties. Since it is not as
easy as images for proteins to visualize the sequences after
running LDA, it is hard to define the specific corresponding
concept of latent topic in the protein sequences. We will keep
exploring the connection between biological characteristics
and topics and incorporate other available information
to discover the underlying mechanisms of the secretion
system.
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