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A simulation model for the spread and control of lesions in the brain is constructed using a planar network (graph) representation
for the central nervous system (CNS). The model is inspired by the lesion structures observed in the case of multiple sclerosis
(MS), a chronic disease of the CNS. The initial lesion site is at the center of a unit square and spreads outwards based on the
success rate in damaging edges (axons) of the network. The damaged edges send out alarm signals which, at appropriate intensity
levels, generate programmed cell death. Depending on the extent and timing of the programmed cell death, the lesion may get
controlled or aggravated akin to the control of wild fires by burning of peripheral vegetation. The parameter phase space of
the model shows smooth transition from uncontrolled situation to controlled situation. The simulations show that the model is
capable of generating a wide variety of lesion growth and arrest scenarios.

1. Introduction

MS affects about one million people worldwide and causes
physical and cognitive disability. There are three types of
MS, relapsing-remitting, secondary progressive, and primary
progressive, that differ in the dynamical patterns of disease
progression. There are as yet no known cures for MS. Patients
with relapsing MS are currently treated with drugs that
exert immunomodulatory effects and slow the progression
of the disease; there are no effective treatment options for the
progressive forms of MS [1, 2].

MS is postulated to be a cell-mediated autoimmune dis-
ease directed against myelin components of the CNS. Myelin
is an electrically insulating phospholipid layer that surrounds
the axons of many neurons. The disease is characterized by
both inflammatory immune responses and neurodegenera-
tion. The prevailing hypothesis on MS pathogenesis is that
autoreactive T-lymphocytes, a cell type in the immune sys-
tem, orchestrate a complex cascade of events that cause
blood-brain barrier disruption and invasion of immunologi-
cally aggressive cells into the CNS. However, the exact causes
of MS still remain unknown [3, 4]. The long-term goals
of this research are to develop disease models that can be
used to evaluate therapeutic strategies for this disease and,
in this report, the specific focus is on evaluating a network

model for MS lesion dynamics. Literature survey indicates
that network approaches have not been studied extensively
for disease modeling in MS.

1.1. Previous Work. Conventional models for autoimmunity
are premised on the occurrence of defects in the immune
system that cause it to turn against the host tissue. A defect-
free immune system, in this world view, purportedly only
attacks pathogens, the external agents that cause illness or
disease [5–7]. However, an alternative viewpoint has been
advocated where auto-immunity is seen as the usual immune
response, but directed against those components of the
body which, in normal conditions, are inaccessible to the
immune system [8–14]. For example, in the danger model,
developed by Matzinger [10, 11], it is posited that stressed
and injured tissues can mediate immune responses through
the generation of appropriate “danger” signals. This is as
opposed to the activation through recognition of external
pathogenic cell types from host tissue in the conventional
models. The concept of comprehensive immunity, developed
by Nevo et al. [12, 13] complements this alternate perspec-
tive; experimental results supporting their idea have also
been reported [14]. The present network model is inspired
by the alternative viewpoint.
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The key elements of the model consist of a pathological
process that causes cellular damage and programmed cell
death (apoptosis) initiated through an intercellular signaling
component. The programmed cell death deprives the patho-
logical process of healthy tissue which is necessary for its
propagation in space and time. In this, it resembles the action
of firemen who burn peripheral vegetation to contain forest
fires. Inter-cellular signaling is a key feature of the model that
allow pathologically damaged cells to propagate alarm signals
and initiate programmed cell death.

2. Model

An undirected, fixed radius random graph G(n, r), with n
nodes (vertices) and radius of connectivity, r, is constructed
to represent the CNS in this 2D network model. Fixed radius
implies that nodes are connected only if they are within a
distance of r. Biologically, the nodes of the graph can be
viewed as representing cell bodies or functional units and the
edges (bonds) of the graph can be viewed as axons or the
interconnections between functional units.

Let di be the degree of the ith node, that is, the number of
edges attached to it. The health status of each edge, at time t,
is indicated by its “weight,” w( j, t)( j = 1, . . . ,di), an integer
number ranging from 0 · · ·wmax. Edges with weight wmax

are fully functional or healthy units (as at the beginning of
simulation), and those with weight zero, are dead. Extending
the same logic, the amplitude of the signal propagated along
jth edge is taken to be equal to w( j, t).

In the pathological process, the edges are damaged by
lowering their weight by a single unit. However, in the pro-
grammed cell death process, edge weights are directly re-
duced to zero. In the regeneration process, edge weights are
raised by a unit.

The pathological and regeneration processes are driven
by probabilistic events wherein each edge in the affected
region, in each time unit, has a certain probability pd

i (pr
i ) of

getting damaged (regenerated). In the general case, pd
i (pr

i )
is a column vector of length wmax containing the transition
probabilities from one state of health to another. Probability
of programmed cell death, pp, is independent of the health
status of the edge.

The functional or health status of the ith node is the sum
over its edge weights, si(t) =

∑di
j=1 w( j, t). The maximum

possible value of si is denoted by Si, which is realized when
each w( j, t) = wmax.

A node damaged by the pathological process generates
an alarm signal when the ratio of its health status to the fully
healthy state (si(t)/Si) falls below a threshold, τal. The signals
received at the ith node are summed and propagated further
when the summed signal strength reaches si.

Programmed cell death is initiated at all the nodes where
the propagated signals reach a threshold τb f . The accumu-
lated alarm signals in the region of programmed cell death,
a circular region around the activated node of radius pro-
portional to a parameter Cb f , get reset to zero. No additional
signals are generated at these nodes to the alarm signals gen-
erated in the pathologic process.

The spread of the pathologic process is driven by the
success rate in causing cellular damage. The fraction of edges
(RI(t)) damaged in a particular time step, among the total
number of healthy edges visited, is the rate of damage due to
the pathologic process. The rates of damage due to the patho-
logic and the programmed cell death are computed in terms
of the initial lesion size so that the final results are invariant
with respect to the initial lesion size. Thus, the radius of
the region affected by the pathologic process increased or
decreased according to the formula, α×RI(t)×ROIt=0, where
ROIt=0 is the radius of the region at the center where the
initial lesion is seeded. In a similar fashion, the region of
programmed cell death was computed as Cb f × ROIt=0.

3. Simulation

In the simulations reported here, a two-state model with
wmax = 1 has been employed, that is, there are no interme-
diate states of health, and the edges are either alive or dead.
Additionally, the regeneration probability, pr

i , was set to zero
in order to focus exclusively on the effects of the interplay
between the pathological and programmed cell death pro-
cesses on lesion structure and dynamics. A few preliminary
results using such a configuration was reported earlier [15].

We have set n = 400 and chosen a uniform random
distribution of points in the unit square [0, 1] × [0, 1]. The
radius of connectivity was set to r = 0.2. All the results were
also confirmed on a network of n = 4000, with r = 0.06.
Average degree strengths of the order of 10 are obtained in
these configurations; degree distribution is Gaussian. The
pathological process was initiated at t = 0 in a region with
ROIt=0 = 0.05 around the center at (0.5, 0.5); for n = 4000,
ROIt=0 = 0.015.

A uniform probability of pathologic damage pd = 0.33
was used, with α = 0.12. We varied τal, τb f , and Cb f to
identify the conditions under which the pathological process
could be controlled by the programmed cell death. Larger
values of τb f indicate reduced sensitivity to the alarm signals
whereas a larger value of Cb f indicates that a larger area near
the alerted node is subjected to programmed cell death. In
the case of τal, larger values indicate quicker firing of alarm
signals.

4. Results

Figure 1 shows the time series of damages caused to the
system by both the pathological process and the programmed
cell death process. The first column of panels in the figure
shows the time course of instantaneous damages to the sys-
tem. The middle column of panels shows the time course of
the cumulative damages to the system. The last column of
panels show the final state of the network at the end of the
simulations.

There are three typical scenarios which are illustrated in
Figure 1, in the three rows from top to bottom. Figures 1(a)–
1(c) show a scenario where the programmed cell death is
not of sufficient strength to significantly affect the patho-
logical process. Note that the instantaneous damages from
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Figure 1: Time course of damages to the system by the pathological and programmed cell death processes. The first column of panels shows,
separately, the instantaneous damages due to both the processes; dotted lines with asterisks indicate the damages due to the pathological
process, and bold lines with filled circles indicate damages due to programmed cell death. The second column of panels shows the cumulative
damages with time. Again, the damages effected through both the processes have been separately shown (same symbols as earlier), as also
the sum total damages to the system (square symbol). The last column of panels (color online) show the state of the network at the end of
the simulations; the dotted lines indicate healthy edges (axons), full (blue) lines indicate edges damaged due to programmed cell death, and
dark (red) lines indicate edges damaged due to the pathological process. For all the panels, τb f = 0.5 and τal = 0.7, while the Cb f values, for
each row, top to bottom, are 0.2, 0.8, and 1.5, respectively.

programmed cell death are hardly ever above zero. Also, it is
seen from Figure 1(b) that the contribution of programmed
cell death to the sum total of damages is insignificant. This
situation occurs with a suitable combination of low τal, high
τb f , and low Cb f values. Figures 1(d)–1(f) show a slightly
more complex situation. In this case, programmed cell death
is clearly the dominant effect. The instantaneous damages
caused by both the processes are consistently nonzero
(Figure 1(d)) and the cumulative damages (Figure 1(e)) con-
tinue to grow. The total damage, thus, continues to spread.
In Figures 1(g)–1(i), the pathological process has been well
controlled. The instantaneous damages have fallen to zero in

Figure 1(g), and the cumulative damages (Figure 1(h)) have
leveled off. The final state of the network (Figure 1(i)) shows
that the damage is also minimal in terms of the fraction of
edges damaged.

As seen from Figures 1(a), 1(d), and 1(g), the time series
is stochastic. There are essentially two sources of randomness
in the model. Firstly, the pathological process is simulated
by a binomial process wherein each edge visit will lead to
successful damage if the generated random number falls
below the value in pd

i for that edge. Secondly, the random
network itself is generated by the random distribution of the
n points in the plane. The complete picture of the transition
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Figure 2: Phase portraits of the dynamics. The y-axes in Figures 2(a)-2(b) and the gray (color online) scale in Figures 2(c)-2(d) indicate the
fraction of the total number of simulations where the pathological process was successfully arrested. In Figure 2a, τal has been held fixed at
the shown value while the different curves are, from left to right, for τb f = 0.1, 0.3, 0.5, 0.7, and 0.9. In Figure 2(b), the different curves,
from right to left, are for τal = 0.9, 0.7, 0.5, 0.3, and 0.1; τb f = 0.5 is held fixed. The S-curves that result with increasing Cb f values indicate
the smooth nature of the transition in dynamical behavior in the parameter space.

from uncontrolled growth of the pathological process to
the situation where the pathological process has been well
arrested is seen in the parameter phase space graphs shown
in Figure 2, where an averaging has been effected over the
two sources of randomness. The phase space diagrams are
the results of averaging over ten different networks, with the
dynamics averaged over a thousand iterations.

From Figure 2, we see that the transition from uncon-
trolled pathological process to arrested pathological process
is smooth as Cb f is varied from low to high values. In
Figure 2(a), τal has been held fixed and the different curves,
from left to right, are for different τb f values, from 0.1 to
0.9 in steps of 0.2. In Figure 2(b), τb f has been held fixed
and the different curves are, from right to left, for τal values
ranging from 0.1 to 0.9, in steps of 0.2. We shall denote by
Ccr
b f (τal, τb f ) the critical value of Cb f at which these S-curves

attain a value of 1, that is, all instances of simulations result
in the growth of pathological process being arrested. The

combined picture in the three parameter space is presented in
Figures 2(c)-2(d), from two different perspectives. The three
different scenarios presented, from top to bottom, in Figure 1
indicate, respectively, the three different parts, from left to
right, of a typical S-curve of Figures 2(a)-2(b).

As seen from Figure 2, pathological process is always
controlled if Cb f > Ccr

b f . Nevertheless, the sum total damage
to the system is not the same for all values of Cb f > Ccr

b f ;
in fact, the damage is greater, the larger the value of Cb f .
Clearly, it is desirable to effect control of the pathological
process with the least sum total damage to the system. With
this in mind, average fractional damages at different Cb f

values have been plotted in Figure 3. Three different curves
for three different τb f values are shown in this figure; similar
graphs can be constructed for different τal values as well (not
shown here; see [16]). These averages have been taken at
t = 20 in each case. For Cb f < Ccr

b f values, the damages
due to the pathological process as well as sum total damage
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Figure 3: Optimality in sum total damage to the system while ef-
fecting arrest of pathological process is shown here. With increasing
Cb f values the minimum in sum total damage to the system occurs
at about the same value as the critical value at which the fraction
of simulations in which the pathological process is arrested attains
unity (cf. Figure 2(a)). This minimum occurs at higher values of
Cb f with larger τb f , and the minimum value also shifts upward. A
similar situation occurs with different τal values (not shown here).
Note that the y-axis values have been taken at t = 20.

are still growing and have not become stationary at t = 20;
for Cb f > Ccr

b f values, the averages have become stationary.
Nevertheless, these curves indicate that the least sum total
damage to the system, with pathological process arrested, is
obtained at Cb f = Ccr

b f . For Cb f > Ccr
b f , the programmed cell

death is clearly effecting more damage than is necessary to
arrest the pathological process. Since Ccr

b f depends on τb f and
τal, it is not surprising to see that (cf. Figures 2(a) and (3))
lesser damage results when τb f is small.

From the above, it is clear (cf. Figures 1(d)-1(e)) that
arrest of the pathological process does not necessarily occur
if the damage due to the programmed cell death process
is greater than the pathological process. What is necessary
[16] is that the programmed cell death process be able to
encircle the region affected by the pathological process, and,
furthermore, be able to create an envelope region of sufficient
thickness to offset its likely growth factor, α×RI(t)×ROIt=0.
This is achieved in all instances of simulation when Cb f >
Ccr
b f . Currently, mathematical analysis of this feature is being

carried out to establish the relationship of Ccr
b f with τal and

τb f , and the results will be reported soon.

5. Conclusions

A physically motivated 2D network model was developed
for the CNS and employed to study the process of lesion
formation and spread in MS. Intercellular signalling of
distress by the damaged cells is a key feature of the model
which leads to programmed cell death getting activated in

an attempt to arrest the lesion progress. The model demon-
strates that the spread of the pathologic process can be
arrested by programmed cell death when the geometry of
the damage inflicted by the latter leads to an envelope, of
sufficient thickness, being created encircling the area of
pathological process. Such an envelope of dead cells deprives
the pathological process of healthy cells which can sustain its
growth. The model shows a smooth transition, as parameters
are varied, from the situations of run-away pathological
process, through aggravated damage to the system caused by
unsuccessful firing of programmed cell death, to the creation
of successful envelope around the pathological process.

The model complements the alternate viewpoint on
autoimmunity which posits that cells and tissues signal dis-
tress and activate the immune system. Such a viewpoint cir-
cumvents the need for the immune system to store infor-
mation about likely pathogens and, also, makes it capable
of acting in instances of cellular damage resulting from
nonpathogenic causes. Further study of the model along with
identification of the possible biological constituents should
enable comparisons with experiments and a more detailed
exposition.
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