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Synchronization of chaotic neurons under external electrical stimulation (EES) is studied in order to understand information
processing in the brain and to improve the methodologies employed in the treatment of cognitive diseases. This paper investigates
the dynamics of uncertain coupled chaotic delayed FitzHugh-Nagumo (FHN) neurons under EES for incorporated parametric
variations. A global nonlinear control law for synchronization of delayed neurons with known parameters is developed. Based
on local and global Lipschitz conditions, knowledge of the bounds on the neuronal states, the Lyapunov-Krasovskii functional,
and the L2 gain reduction, a less conservative local robust nonlinear control law is formulated to address the problem of robust
asymptotic synchronization of delayed FHN neurons under parametric uncertainties. The proposed local control law guarantees
both robust stability and robust performance and provides the L2 bound for uncertainty rejection in the synchronization error
dynamics. Separate conditions for single-input and multiple-input control schemes for synchronization of a wide class of FHN
systems are provided. The results of the proposed techniques are verified through numerical simulations.

1. Introduction

The neuron is the fundamental unit of the functioning brain
[1]. Its dynamical investigation, for the purpose of measuring
brain activity and understanding how the neural system
transmits electrochemical signals to the muscles, is one
of the most significant challenges facing brain researchers
[2–8]. Neural-system malfunctions can cause potentially
fatal motor-function-impairment diseases such as Parkin-
son’s, Huntington’s, and epilepsy [9–11]. Synchronization of
chaotic neurons with gap junctions under external electrical
stimulation (EES), one of the most fundamental research
issues, has been relentlessly studied in order to improve
therapy-based treatments of neurodegenerative disorders
[12, 13]. In this respect, the FitzHugh-Nagumo (FHN)
model, which has been applied in other fields (e.g., chemical
reaction kinetics [14]) as well, is one of the most pertinent
neural models utilized in synchronization studies [15–18].

Given the FHN model’s wide applicability, many of
its significant and complex dynamical aspects, including
chaos, bifurcation, synchronization, control, noise effects
and filtering, coupling, and medium effects, not to mention
disturbance rejection, have already been reviewed extensively
in the literature [12–20]. Researchers have applied nonlinear,
adaptive, fuzzy, neural-network-, and observer-based, as well
as robust control methodologies to the synchronization of
FHN neurons under EES [12–14, 16, 21–24]. However,
these traditional conservative synchronization controller
design techniques [12–14, 16, 21–24], which in mathematical
models ignore the time-delay arising due to the separation
between coupled neurons, cannot synchronize distant FHN
neurons. The dynamics of coupled chaotic delayed FHN neu-
rons with gap junctions under EES recently have been inves-
tigated [17, 18], which can be accounted for synchronization
studies.
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In the present work, we examined, preparatory to a brief
numerical simulation study, the dynamics of coupled delayed
FHN neurons in consideration of the model parametric
variations. This parametric-variation-based model, with its
separate visualization of each uncertain component, offers
better insight into dynamical uncertainty in actual neurons;
as such, it is a superior means of control law formulation
for neuronal synchronization. Control law derivation for
synchronization of delayed FHN neurons separated by gap
junctions under EES has remained extremely rare to this
date. In the interests of filling this research gap, we propose a
global synchronization control strategy for identical neurons
with known parameters. To that end, we also propose a
novel local robust control law that guarantees asymptotic
convergence of synchronization errors to zero under time-
delays and parametric uncertainties. This regional control
methodology, which is based on local and global Lipschitz
constraints on nonlinear and uncertain components of
neuronal dynamics, knowledge of state bounds, and the
Lyapunov-Krasovskii (LK) functional, is less conservative
in its performance within the desired locality. Additionally,
we developed conditions under which robust control law
performance bounds, which distinguish our work and enable
the choice of a suitable robust controller, can be determined.
The proposed computationally simple control strategy, with
its easy design procedure, ensures both robust stability and
robust performance in neuronal synchronization. Details on
the robust single-input and multiple-input control strategies
are presented herein to facilitate their application to a wide
class of FHN systems. Finally, the proposed control schemes
are successfully validated by numerical simulations. The
main contributions of this paper are as follows.

(i) The dynamics of coupled delayed FHN neurons
under parametric uncertainties are studied in order
to provide better insight into uncertain coupled neu-
rons.

(ii) Global synchronization control of delayed FHN neu-
rons, with guaranteed convergence of synchroniza-
tion errors to zero, is achieved.

(iii) A less conservative nonlinear control law for local
robust synchronization of delayed FHN neurons
under parametric uncertainties is developed that
ensures asymptotic convergence of synchronization
errors to zero.

(iv) A robust performance assessment tool, in terms of
the robustness bound, is provided for evaluation of
the performance of a local controller.

(v) Single-input and multiple-input synchronization
control laws that select specific and different objective
functions for robust performance in their respective
case, are derived in order to broaden the scope of the
proposed schemes.

This paper is organized as follows. Section 2 provides
a brief overview of two identical coupled chaotic FHN
neurons with gap junctions, delays, and parametric uncer-
tainties. Section 3 proposes a nonlinear control law for

global synchronization of neurons with delays. Section 4
addresses the issue of local robust synchronization of delayed
uncertain FHN neurons. Section 5 provides and discusses the
simulation results for the proposed schemes. Section 6 draws
conclusions.

Standard notations are used in this paper. The L2 norm

of a vector z is defined as ‖z‖2 = (
∫∞

0 ‖z‖2dt)
1/2

, where
‖z‖ denotes the Euclidian norm of z. A positive definite
symmetric matrix X is denoted as X > 0. For xi with the
ith diagonal entry and i = 1, 2, . . . ,n, diag(x1, x2, . . . , xn)
represents a diagonal matrix.

2. Model Description

Consider two identical uncertain coupled chaotic FHN neu-
rons with time-delays under EES:

dx1

dt
= x1(x1 − 1)(1− (r + Δr)x1)

− y1 −
(
g + Δg

)
(x1 − x2(t − τ)) + s1(t),

dy1

dt
= (b + Δb)x1 − (v + Δv)y1,

dx2

dt
= x2(x2 − 1)(1− (r + Δr)x2)

− y2 −
(
g + Δg

)
(x2 − x1(t − τ)) + s2(t),

dy2

dt
= (b + Δb)x2 − (v + Δv)y2,

(1)

where x and y represent the states of a neuron in terms
of activation potential and recovery voltage, respectively;
(x1, y1) and (x2, y2) represent the states of the master and
slave FHN neurons, respectively; g describes the strength of
the gap junctions between neurons; the parameter τ > 0
indicates the time-delay due to separation between neurons.
The master and the slave neurons are under external
electrical stimulation with currents s1(t) = (a1/ω1) cosω1t
and s2(t) = (a2/ω2) cosω2t, respectively. Here, ω1 = 2π f1
and ω2 = 2π f2 are dimensionless angular frequencies, a1/ω1

and a1/ω1 are stimulation amplitudes, and t denotes time.
In biological models, we often know only the estimated

or nominal values of parameters, not the exact or true values.
Thus, in synchronizing identical neurons, the exact values of
the model parameters, unlike the cases in scenarios examined
in previous studies [12, 13, 21, 22], are unknown. In contrast
to the literature [12–18, 21, 22], the terms Δg, Δr, Δb, and
Δv, representing the parametric variations in g, r, b, and
v, respectively, are added to the FHN neurons (1). Another
reality of biological models is that the two neurons cannot
be at all identical. Certainly, synchronization of identical
coupled chaotic systems [25, 26], such as delayed FHN
neurons under parametric uncertainties, has remained as a
complex, challenging, and nontrivial problem. This problem
can be resolved by utilization of adaptive control that is
computationally complex [27, 28], and indeed especially
complex when adaptation laws are required for a number of
parametric variations. In order to resolve this problem, we
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Figure 1: Chaotic behavior of nonsynchronous coupled delayed FHN neurons with parametric variations under EES. (a) Phase portrait of
x1 and y1; (b) phase portrait of x2 and y2; (c) synchronization error e1 = x1 − x2 versus t; (d) synchronization error e2 = y1 − y2 versus t.

now address the issue of robust nonlinear controller design.
The model parameters selected are

r = 10, g = 0.1, f1 = f2 = 0.138, b = 1,

a1 = a2 = 0.1, τ = 20, v = 0.1
(2)

along with the parametric uncertainties

Δg = 0.1, Δr = 1, Δb = −0.1, Δv = −0.01. (3)

Figure 1 shows phase portraits and synchronization
error plots for FHN neurons. These chaotic neurons are
not synchronous, as the synchronization errors in Figures
1(a) and 1(b) do not converge to zero. We develop a
control strategy utilizing two control inputs, u1 and u2, for

synchronization of the slave neuron with the master neuron.
The FHN model with control inputs, then, is given by

dx1

dt
= x1(x1 − 1)(1− (r + Δr)x1)− y1

− (g + Δg
)
(x1 − x2(t − τ)) + s1(t),

dy1

dt
= (b + Δb)x1 − (v + Δv)y1,

dx2

dt
= x2(x2 − 1)(1− (r + Δr)x2)− y2

− (g + Δg
)
(x2 − x1(t − τ)) + s2(t) + u1,

dy2

dt
= (b + Δb)x2 − (v + Δv)y2 + u2.

(4)

Now, the design of control inputs u1 and u2 for synchroniza-
tion of the FHN neurons will be addressed.
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3. Global Nonlinear Control

The traditional control techniques have not clearly addressed
synchronization of delayed FHN neurons, not even in the
absence of uncertainty. Indeed, delayed neuronal models
recently have been analyzed [17, 18], and their synchroniza-
tion remains an open problem. We therefore develop a global
nonlinear control strategy to address this issue. The proposed
nonlinear control law for the synchronization of both FHN
neurons is given by

u1 = C0(x1 − x2) + C1(x1(t − τ)− x2(t − τ))

− ((1 + r)x2
2 − rx3

2

)
+
(
(1 + r)x2

1 − rx3
1

)
+s1(t)−s2(t),

u2 = C2
(
y1 − y2

)
,

(5)

where C0, C1, and C2 are the controller gains. The term
C0(x1 − x2) in the control law is required for convergence
for the activation potential of the slave neuron to the
corresponding state of the master neuron. The delayed
term C1(x1(t − τ) − x2(t − τ)) provides an extra degree
of freedom for convergence of the activation potential.
Identical behavior of recovery variables of the two neurons
can be achieved by application of C2(y1− y2). The nonlinear
components −((1 + r)x2

2 − rx3
2) and ((1 + r)x2

1 − rx3
1)

are used to cancel the effect of known nonlinear parts
in the synchronization error dynamics, which is required
to simplify the controller design (see, e.g, [23, 24] and
references therein). To overcome the effect of difference
in stimulation signals for the master and the slave FHN
neurons, the term s1(t) − s2(t) is used in the control law
(5).

Remark 1. The proposed control law is computationally
simpler than the so-called traditional synchronization tech-
niques [12, 13, 21–23], despite the fact that it deals with FHN
neuron dynamics that are more complex owing to delays
and parametric uncertainties (discussed below). Moreover,
to further reduce control workload and memory utilization,
the parameters C1 and C2 can be selected as zero. These
parameters are included in the control law to make it
more general and, thus, applicable to other complex chaotic
systems as well. Selection of C2 = 0 makes the controller
input u2 = 0, which is desired for synchronization of FHN
neurons. The techniques presented in this study, then, are
useful for designing either a single-input or a multiple-input
controller according to the given requirement.

To address the synchronization of neurons in the absence
of uncertainties, we make the following assumption.

Assumption 2. The parametric uncertainties Δg, Δr, Δb, and
Δv are zero.

The following theorem provides the sufficient condition
for global synchronization of delayed chaotic FHN neurons.

Theorem 3. Suppose that the FHN neurons (4) satisfying
Assumption 2, the nonlinear control law given by (5), synchro-
nizes the coupled neurons asymptotically with proper selection
of parameters C0, C1, and C2, if the matrix inequalities

P > 0, Q > 0, Ω =
[
ATP + PA +Q PA1

∗ −Q
]

< 0

(6)

are satisfied, where

A =
[
−(1 + C0 + g

) −1
b −(v + C2)

]

,

A1 =
[
−(C1 + g

)
0

0 0

]

.

(7)

Proof. Using the control law (5) in (4) under Assumption 2,
the overall closed-loop system becomes

dx1

dt
= x1(x1 − 1)(1− rx1)

− y1 − g(x1 − x2(t − τ)) + s1(t),

dy1

dt
= bx1 − vy1,

dx2

dt
= − rx3

1 + (1 + r)x2
1 − x2 − y2

− g(x2 − x1(t − τ)) + s1(t)

+ C0(x1 − x2) + C1(x1(t − τ)− x2(t − τ)),

dy2

dt
= bx2 − vy2 + C2

(
y1 − y2

)
.

(8)

Defining the synchronization errors as

e1 = x1 − x2, e2 = y1 − y2, (9)

the error dynamics are

de1

dt
= −(1 + C0 + g

)
e1 − e2 −

(
C1 + g

)
e1(t − τ),

de2

dt
= be1 − (v + C2)e2.

(10)

The error dynamics can be written as

de

dt
= Ae + A1e(t − τ), (11)

where e = [e1 e2]T , e(t − τ) = [e1(t − τ) e2(t − τ)]T ,
and matrices A and A1 are given by (7). Now consider the
Lyapunov functional

V(e, t) = eTPe +
∫ t

t−τ
eT(ζ)Qe(ζ)dζ , (12)

such that P > 0, Q > 0. The derivative of (12) along (11) is

V̇(e, t) = eT
(
ATP + PA +Q

)
e + eT(t − τ)AT1 Pe

+ eTPA1e(t − τ)− eT(t − τ)Qe(t − τ).
(13)
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For stability, V̇(e, t) < 0, that is, Ω < 0, which completes the
proof of Theorem 3.

Remark 4. Traditional studies on control and synchroniza-
tion of FHN models for a variety of applications ignored
the factor of time-delays, which can produce unrealistic
outcomes. In the present study, the consideration of time-
delays due to separation between FHN systems such as
neurons makes the synchronization problem more realistic
than the classical schemes [12, 13, 21–23].

Remark 5. The proposed nonlinear control strategy utilizing
matrix inequalities, derived by employing the LK functional,
guarantees global asymptotic synchronization of delayed
FHN neurons. These inequalities can be resolved, for a selec-
tion of control parameters, by using linear matrix inequality
(LMI)-based tools. This makes the computation of matrices
P and Q easier and hence helpful for selection of control
parameters. It is also possible to incorporate additional LMI
constraints for better performance, for instance to fix the
upper bound on the synchronization error convergence rate.

4. Local Nonlinear Control

In the previous section, all parameters of FHN neurons were
assumed to be known, with zero variations. In this section,
we derive a sufficient condition for the synchronization
of both FHN neurons under time-delays and parametric
variations. Additionally, we provide sufficient conditions for
the robust performance of single-input and multiple-input
controllers. It is not always necessary to synchronize two
identical oscillators globally. If the regional bounds on the
states of the oscillators are known, a local controller can be a
better choice. In reality, local controllers are less conservative,
due to easy management of performance, robustness, and
computation reduction for a given specific region (rather
than emphasizing the whole space) [14, 29, 30]. Before
delving into design methodology, we will review some basic
definitions from the literature [31, 32].

Definition 6. The L2 gain of a system from signal d to e is said
to be less than a positive scalar γ if ‖e‖2 < γ‖d‖2 + β, where
β is a small positive constant [31].

Definition 7. A function f (x) is said to be Lipschitz if it
satisfies the Lipschitz condition

∥∥ f (x)− f (x)
∥∥ ≤ ‖L(x − x)‖, (14)

where x, x,L ∈ R. Moreover, the Lipschitz nonlinearities also
satisfy

∥∥
∥
∥∥
∂ f

∂x
(x)

∥∥
∥
∥∥ ≤ ‖L‖, (15)

which is an inequality useful in determining L, by application
of numerical algorithms.

Definition 8. A function f (x) is said to be locally Lipschitz
for x ∈ R if it satisfies the conditions (14)-(15) locally for a

bounded region {x, x ∈ [xmin, xmax] : xmin, xmax ∈ R}, where
xmin and xmax are the minimum and maximum limits on x
(or x), respectively.

From Definition 8, it can be seen that

∥
∥−x3

1 + x2
1 + x3

2 − x2
2

∥
∥ ≤ ‖La(x1 − x2)‖,

∀x1, x2 ∈
[
x min , xmax

]
,

(16)

where La is the Lipschitz constant for the local region, which
can be selected by solving (15). To address the issue of the
synchronization of neurons under parametric uncertainties,
we make the following assumption.

Assumption 9. The parametric uncertainties are bounded by
‖Δg‖ ≤ gm, ‖Δb‖ ≤ bm, ‖Δr‖ ≤ rm, and ‖Δv‖ ≤ vm.

It is clear from (16) that the nonlinearity present in the
FHN model satisfies the local Lipschitz condition. It has
been reported previously [14, 29, 32] that a local controller
can be designed for locally Lipschitz nonlinear systems if
the bounds on the states of the system are known. Thanks
to case studies, it is in fact well known that the states of a
real neuron are always bounded in terms of the limits on
activation potential and recovery voltage. This fact can be
observed also in the simulation results shown in Figure 1 (see
[12, 13, 17, 18, 21–24] as well). Therefore, by incorporating
the knowledge of the minimum and maximum values of the
states of neurons, the idea of bounds gm, bm, rm, and vm, and
by noting the fact that the nonlinear part of the dynamics is
locally Lipschitz, a regional robust controller can be designed
for synchronization of FHN neurons.

Theorem 10. Suppose that the FHN neurons (4) satisfy
Assumption 9 with states bounded by a region x1, x2 ∈
[xmin, xmax]. The nonlinear control law (5) synchronizes
the coupled neurons asymptotically with proper selection of
parameters C0, C1, and C2, if the following matrix inequalities
are verified:

Ps > 0, Qs > 0,

Γs

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ATP + PA +Q + F1 PA1 P P P
∗ −Q + F2 0 0 0
∗ ∗ −I 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦
< 0,

(17)

where

F1 =
[
r2
mL

2
a + g2

m + b2
m 0

0 v2
m

]

, F2 =
[
g2
m 0
0 0

]

, (18)

and matrices A and A1 are given by (7).
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Proof. Incorporating the control law (5) into (4), the overall
closed-loop system becomes

dx1

dt
= x1(x1 − 1)(1− (r + Δr)x1)

− y1 −
(
g + Δg

)
(x1 − x2(t − τ)) + s1(t),

dy1

dt
= (b + Δb)x1 − (v + Δv)y1,

dx2

dt
= − rx3

1 + (1 + r)x2
1 − x2 − y2 −

(
g + Δg

)

× (x2 − x1(t − τ)) + s1(t) + C0(x1 − x2)

+ C1(x1(t − τ)− x2(t − τ))− Δrx3
2 + Δrx2

2,

dy2

dt
= (b + Δb)x2 − (v + Δv)y2 + C2

(
y1 − y2

)
.

(19)

Using the same procedure as discussed in the previous
section, the following error dynamics model is obtained:

de

dt
= Ae + A1e(t − τ) + Ψ + Θ + Φ, (20)

where

Ψ = ψ
(
x1, y1

)− ψ(x2, y2
)
,

Θ = θ(x1)− θ(x2),

Φ = φ(x1(t − τ))− φ(x2(t − τ)),

ψ
(
x1, y1

) =
[
−Δr

(
x3

1 − x2
1

)
− Δgx1

−Δvy1

]

,

ψ
(
x2, y2

) =
[
−Δr

(
x3

2 − x2
2

)
− Δgx2

−Δvy2

]

,

θ(x1) =
[

0
Δbx1

]

, θ(x2) =
[

0
Δbx2

]

,

φ(x1(t − τ)) =
[
−Δgx1(t − τ)

0

]

,

φ(x2(t − τ)) =
[
−Δgx2(t − τ)

0

]

.

(21)

On the basis of Assumption 9 and inequality (16), we have
∥
∥Δr

(−x3
1 + x2

1 + x3
2 − x2

2

)∥∥ ≤ ‖rmLa(x1 − x2)‖,

∀x1, x2 ∈ [xmin, xmax],
∥
∥Δg(−x1 + x2)

∥
∥ ≤ ∥∥gm(x1 − x2)

∥
∥.

(22)

Combining the local and global Lipschitz constraints of (22),
we have
∥
∥Δr

(−x3
1 + x2

1 + x3
2 − x2

2

)
+ Δg(−x1 + x2)

∥
∥

≤ (r2
mL

2
a + g2

m

)‖(x1 − x2)‖, ∀x1, x2 ∈ [xmin, xmax].

(23)

As we know from the global Lipschitz condition,

‖Δb(x1 − x2)‖ ≤ ‖bm(x1 − x2)‖, (24)
∥
∥Δv

(−y1 + y2
)∥∥ ≤ ∥∥vm

(
y1 − y2

)∥∥, (25)
∥∥Δg(−x1(t − τ) + x2(t − τ))

∥∥

≤ ∥∥gm(x1(t − τ)− x2(t − τ))
∥
∥.

(26)

Inequalities (23)–(25) imply

ΨTΨ + ΘTΘ ≤ eTF1e, (27)

and (26) implies

ΦTΦ ≤ eT(t − τ)F2e(t − τ). (28)

Constructing the LK functional

E(e, t) = eTPse +
∫ t

t−τ
eT(ζ)Qse(ζ)dζ , (29)

with Ps > 0 and Qs > 0.
Taking the derivative of (29) along (20)

Ė(e, t) = eT
(
ATPs + PsA +Qs

)
e + eT(t − τ)

× AT1 Pse + eTPsA1e(t − τ)− eT(t − τ)

×Qse(t − τ) + ΨTPse + eTPsΨ

+ ΘTPse + eTPsΘ + ΦTPse + eTPsΦ,

(30)

and, using inequalities (27)-(28), we obtain

Ė(e, t) ≤ eT
(
ATPs + PsA +Qs

)
e + eT(t − τ)AT1 Pse

+ eTPsA1e(t − τ)− eT(t − τ)Qse(t − τ)

+ ΨTPse + eTPsΨ + ΘTPse + eTPsΘ

+ ΦTPse + eTPsΦ−ΨTΨ−ΘTΘ

−ΦTΦ + eTF1e + eT(t − τ)F2e(t − τ).

(31)

This further implies that

Ė(e, t) ≤ ξTΓsξ, (32)

where

ξT =
[
eT eT(t − τ) ΨT ΘT ΦT

]T
. (33)

For stability, Ė(e, t) < 0, and hence Γs < 0, which completes
the proof of Theorem 10.

Remark 11. It is notable that Theorem 10 also guarantees
global asymptotic synchronization in the absence of para-
metric uncertainties. By ignoring Φ, Ψ, and Θ in (31),
corresponding to Δg = 0, Δr = 0, Δb = 0, and Δv = 0,
one can obtain the matrix inequalities in (6).
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Theorem 10 provides a sufficient condition for the
local robust asymptotic synchronization of uncertain delayed
FHN neurons, ensuring zero synchronization errors in the
steady state. The other pertinent issue is robust performance
in terms of the L2 gain reduction from the uncertain
nonlinearities Ψ, Θ, and Φ to the error e. By selecting a
controller with a smaller size of the error e with respect to the
uncertainties Ψ, Θ, and Φ, the required robust performance
can be achieved. For this purpose, again consider system
(20), but in an alternative form given by

de

dt
= Ae + A1e(t − τ) +

[
I I I

]
d,

with d =
[
ΨT ΘT ΦT

]T
,

(34)

where I represents the identity matrix of appropriate
dimensions. Although the asymptotic convergence of error
e to zero under parametric uncertainties can be ensured by
Theorem 10, the performance of the synchronization control
can be improved for robustness with the help of additional
constraints addressing the minimization of the effects of
uncertainties in d at error e (see also [33–35]). To that
end, we provide a sufficient condition for robust asymptotic
synchronization of FHN neurons with robustness bound γ in
terms of the L2 gain from the uncertain nonlinearities to the
error.

Theorem 12. Consider FHN neurons (4) satisfying Assump-
tion 9 with states bounded by a region x1, x2 ∈ [xmin, xmax].
Suppose the optimization problem

min γ, (35)

such that

Ps > 0, Qs > 0, Γs < 0, (36)

Pr > 0, Qr > 0, γ > 0,

Γr

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ATPr + PrA +Qr PrA1 Pr Pr Pr I
∗ −Qr 0 0 0 0
∗ ∗ −γI 0 0 0
∗ ∗ ∗ −γI 0 0
∗ ∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ ∗ −γI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0.

(37)

Then, the control law (5), with proper selection of parameters
C0, C1, and C2 ensures the following.

(i) asymptotic synchronization of neurons with zero steady
state synchronization error;

(ii) the L2 gain from the nonlinear uncertainties d to the
error e less than γ.

Proof. Consider the objective function

min γ (38)

such that

Ė(e, t) < 0,

J(e, t) = Ėr(e, t) +
(
1/γ
)
eTe − γdTd < 0,

(39)

where

Er(e, t) = eTPre +
∫ t

t−τ
eT(ζ)Qre(ζ)dζ > 0,

with Pr > 0, Qr > 0,

(40)

and E(e, t) > 0, as already defined in (29). It has already
been shown, in Theorem 10, that Ė(e, t) < 0 leads to
matrix inequalities in (36), ensuring the robust asymptotic
synchronization of neurons. Hence e(t) → 0 as t → ∞,
which completes the proof of statement (i) in Theorem 12.
Now, integrating J from t = 0 to t → ∞, and multiplying by
γ, we obtain

‖e‖2
2 < γ

2‖d‖2
2 + γ(Er(e, 0)− Er(e,∞)). (41)

From (40), we have Er(e, 0) > 0, because Pr > 0, Qr > 0, and
Er(e,∞) = 0 (given that e(t) → 0 as t → ∞). Accordingly,
(41) shows that the L2 gain from d to e is less than γ. Taking
the derivative of (40) along (34) and incorporating it into
(39), we obtain

J(e, t) = eT
(
ATPr + PrA +Qr

)
e + eT(t − τ)AT1 Pre

+ eTPrA1e(t − τ)− eT(t − τ)Qre(t − τ)

+ ΨTPre + eTPrΨ + ΘTPre + eTPrΘ + ΦTPre,

+ eTPrΦ +
(
1/γ
)
eTe − γ

(
ΨTΨ + ΘTΘ + ΦTΦ

)

(42)

which further can be written as

J(e, t) = ζTΠ ζ < 0, (43)

where

Π

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ATPr + PrA +Qr +
(
1/γ
)
I PrA1 Pr Pr Pr

∗ −Qr 0 0 0
∗ ∗ −γI 0 0
∗ ∗ ∗ −γI 0
∗ ∗ ∗ ∗ −γI

⎤

⎥
⎥
⎥
⎥
⎥
⎦
< 0.

(44)

Using the Schur complement, inequality (44) can be written
as Γr < 0, which completes the proof of statement (ii) in
Theorem 12.

Remark 13. The sufficient condition for synchronization of
FHN neurons, provided by Theorem 12, ensures ‖e‖2

2 <
γ2‖d‖2

2 + γ(Er(e, 0)) as Er(e,∞) = 0. Note that Er(e, 0) is
dependent on initial condition e(0). Therefore, the effects
of the uncertain nonlinear terms contained in d and
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the initial-condition-dependent term Er(e, 0) are minimized
by minimizing γ. Hence, the proposed condition, by manag-
ing a single parameter γ, ensures robustness against both the
uncertainties and the initial condition.

Remark 14. Recently, global synchronization of FHN models
with unknown parameters and in the absence of time-
delays, by application of a nonlinear robust adaptive control
methodology, was presented [23]. Such a control scheme is
computationally complex due to the utilization of adaptation
laws. In the present work, synchronization of delayed FHN
models under parametric uncertainties is addressed by
designing a noncomplex locally robust controller.

In neuronal synchronization, only measurements of the
activation potentials and control input u1 are available,
though the robust synchronization control addressed by
Theorem 10 is general for selection of a control law with a
single control input u1 (by taking C2 = 0) or multiple control
inputs u1 and u2. However, Theorem 12, providing robust
synchronization along with robust performance, is better
for the two-control-input case in which the second control
input requires measurement of recovery potentials. For a
single control input, it is better to ensure the minimization
of the L2 gain from d to e1 than from d to e, for three
reasons. First, the most relevant uncertain neuronal state
is the activation potential due to uncertainty in r and g.
Because e1 = x1 − x2, the above-noted criterion is helpful
when dealing with variations in activation potentials. The
second reason is that we have no control input to handle the
uncertainties Δb and Δv (because, in the case of neurons,
u2 = 0 with a single-input controller). And third, we can
still ensure the robustness of e2 by minimizing the L2 gain
from d to e1, because the dynamical equation ė2 = (b +
Δb)e1 − (v + Δv)e2 also contains e1. This indicates that the
robustness of e1 will, somehow, ensure the robustness of e2.
Although obtaining matrix inequalities for this performance
criterion is a straightforward extension of Theorem 12, this
important issue remains unaddressed in the literature; we
prefer therefore to apply the results for this case to the
following Theorem.

Theorem 15. Given FHN neurons (4) satisfying Assumption 9
with states bounded by a region x1, x2 ∈ [xmin, xmax], suppose
the optimization problem

min γ, (45)

such that

Ps > 0, Qs > 0, Γs < 0,

Pr > 0, Qr > 0, γ1 > 0,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ATPr+PrA+Qr PrA1 Pr Pr Pr diag(1, 0)
∗ −Qr 0 0 0 0
∗ ∗ −γ1I 0 0 0
∗ ∗ ∗ −γ1I 0 0
∗ ∗ ∗ ∗ −γ1I 0
∗ ∗ ∗ ∗ ∗ −γ1I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

<0.

(46)

Then, the control law (5), with proper selection of parameters
C0 and C1 along with C2 = 0, ensures

(i) asymptotic synchronization of neurons with zero steady
state synchronization error;

(ii) the L2 gain from the nonlinear uncertainties d to the
error e1 less than γ1.

Proof. The proof is similar to that of Theorem 12.

Remark 16. The proposed techniques provide both “robust
stability” (in terms of asymptotic convergence of synchro-
nization errors to zero) and “robust performance” (in terms
of uncertainty rejection) as addressed by Theorems 10–15. In
contrast to the traditional schemes, the robust performance
of the proposed synchronization schemes, addressed in The-
orems 12–15, is an extra feature of the proposed controller
(in addition to asymptotic stabilization).

Remark 17. The present work, in contrast to traditional
synchronization techniques for FHN neurons, is novel in
many respects. Our techniques consider time-delay between
interlinked neurons. The easy LMI-based means of control
parameter selection is another key characteristic, as is the
exceptional idea of a less conservative local robust nonlinear
controller for local synchronization of uncertain delayed
FHN neurons. Our work furthers the design of both single-
and multiple-input controllers by addressing their robust
performances.

Remark 18. The synchronization techniques proposed by
Theorems 3–15 for FHN models can be used for a number
of purposes. These techniques can be applied to estimate
the control signal u1 responsible for synchronization of two
uncertain delayed neurons, which can be helpful in future
for measuring brain activity and for improving stimulation-
therapy-based treatments for brain disorders. The proposed
schemes for synchronization of two delayed neurons can be
generalized to deal with a delayed neural network. Further,
such methodologies can be used for biomimetic systems
in order to develop artificial neural networks, which can
be useful for humanoid robotic applications. Furthermore,
synchronization studies, owing to the capability of the FHN
model to represent complex processes such as the reaction-
diffusion system, can be applied to control (or synchronize)
(the chemical kinematics of) industrial plants under time-
delays.

Theorem 12 facilitates the selection of a suitable
multiple-input robust controller with guaranteed robust
stability, ensured by constraints (36), as well as robust
performance in terms of L2 gain γ, ensured by constraints
(37). Theorem 15 provides further results for the special and
important case of a single-input robust controller. The tra-
ditional techniques, with the help of additional constraints,
have not yet adequately addressed robust stability and robust
performance simultaneously for synchronization of FHN
neurons. In future, the ideas presented in this work will be
extended to address the issue of robust synchronization of
different uncertain delayed neurons.
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Figure 2: Synchronization of delayed coupled FHN neurons with parametric uncertainties using robust multiple-input controller KI. (a)
Phase portrait of x1 and y1; (b) phase portrait of x2 and y2; (c) synchronization error e1 = x1 − x2 versus t; (d) synchronization error
e2 = y1 − y2 versus t.

5. Simulation Results

To confirm the validity of the proposed schemes, we
choose multiple- and single-input controllers KI and KII,
respectively.

KI =
{
C0 = 10,C1 = 0,

C2 = 10.
(47)

KII =
{
C0 = 17,C1 = 0,

C2 = 0.
(48)

Note that these controllers are global in the absence of
parametric uncertainties and local otherwise, due to the
feasibility of both Theorems 3 and 10. Moreover, both
controllers KI and KII have no memory feedback, because
C1 = 0. By solving Theorem 12, the L2 gain γ = 0.141 for
KI is obtained. Local synchronization of the FHN models

is considered for the region [xmin, xmax] = [−0.5, 1] with
La = 2. Phase portraits and synchronization error plots
for KI are shown in Figure 2. Clearly, the FHN neurons
are synchronized with zero steady-state synchronization
errors, demonstrating suitable robust performance under the
parametric uncertainties.

The controller KI, though robust, requires two control
inputs in addition to measurement of the recovery potentials.
We then check the performance of controller KII for the
same region [xmin, xmax] = [−0.5, 1] and La = 2. The
L2 gain γ1 = 0.508 is obtained by solving Theorem 15.
Figure 3 provides phase portraits and synchronization error
plots validating the results obtained by Theorem 15. The
performance of controller KII is not better than that of KI,
though we use a higher value of gain C0 for KII. This is
due to the lack of a second control input u2 in the single-
input control case. Nonetheless, the results obtained using
KII, which offers additional computational simplicity with no
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Figure 3: Synchronization of delayed coupled FHN neurons with parametric uncertainties using robust single-input controllerKII. (a) Phase
portrait of x1 and y1; (b) phase portrait of x2 and y2; (c) synchronization error e1 = x1 − x2 versus t; (d) synchronization error e2 = y1 − y2

versus t.

requirement for multiple control inputs or measurement of
recovery potentials, are reasonable.

6. Conclusions

This paper provided a brief look at coupled delayed FHN
neurons with various parametric variations under EES.
A global nonlinear control law was developed for the
asymptotic synchronization of delayed FHN neurons. By
integrating the ideas of neuronal state bounds, local and
global Lipschitz conditions for the nonlinear and uncertain
components of the dynamics of delayed neurons, the LK
functional, and L2 gain reduction, a less conservative regional
robust synchronization control was developed that ensures
both robust stability and robust performance. Computa-
tional simplicity, a simple design procedure, guaranteed zero
steady-state synchronization error, a computed robustness
bound and applicability to both multiple- and single-input

controllers are additional distinguishing features of the
proposed schemes. Simulations of the uncertain coupled
chaotic delayed FHN neuronal synchronization validated the
proposed methodology.
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