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Calculating the number of people with Alzheimer’s disease in any
country using saturated mutation models of brain cell loss that also
predict widespread natural immunity to the disease
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The series of mutations that cause brain cells to spontaneously and randomly die
leading to Alzheimer’s disease (AD) is modelled. The prevalence of AD as a function
of age in males and females is calculated from two very different mutation models of
brain cell death. Once the prevalence functions are determined, the number of people
with AD in any country or city can be estimated.

The models developed here depend on three independent parameters: the number of
mutations necessary for a brain cell associated with AD to spontaneously die, the
average time between mutations, and the fraction of the risk population that is immune
to developing the disease, if any. The values of these parameters are determined by
fitting the model’s AD incidence function to the incidence data.

The best fits to the incidence rate data predict that as much as 74.1% of males and
79.5% of females may be naturally immune to developing AD. Thus, the development
of AD is not a normal or inevitable result of the aging process. These fits also predict
that males and females develop AD through different pathways, requiring a different
number of mutations to cause the disease. The number of people in the USA with AD in
the year 2000 is estimated to be 451,000.

Itis of paramount importance to determine the nature of the immunity to AD predicted
here. Finding ways of blocking the mutations leading to the random, spontaneous death
of memory brain cells would prevent AD from developing altogether.

Keywords: Alzheimer’s disease; mutation model; prevalence; incidence rate; brain
cell loss

1. The ordered mutation model of late-onset Alzheimer’s disease

Alzheimer’s disease (AD) begins when neurons in the brain spontaneously begin dying in
a disorganized way taking some memory with it. Research data suggests that AD results
from a series of random missense mutations in brain cells. In this section, the possibility
that all these mutations occur one-by-one in a definite order in a neuron until the final
mutation causes the cell to die will be explored. For example, in this ordered mutation
model a normal, unmutated brain all can only mutate into the first mutation state and no
other, and cells that are in the first mutation state can only mutate into the second mutation
state and no other, etc. It is assumed that the characteristics of the cell in each mutation
state are unique and different from the characteristics of the cell in every other mutation
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state. It is further assumed that AD progresses as more and more neurons die. At some
point, the disease impacts the central nervous system to such an extent that the patient dies.

Clearly, the number of mutations in a brain cell necessary to cause the onset of clinical
symptoms of AD in males or females (risk populations) is important to determine. Equally
important to ascertain is the average time a cell spends in any particular mutation state, a
quantity that will be called the mutation lifetime of the state. Perhaps the most important
thing to calculate from modelling the AD incidence rate in a particular risk population is
the prevalence of natural immunity to AD if, indeed, any exists. The model to be presented
below will enable the values of all three of these quantities to be calculated by fitting the
model’s incidence function to AD incidence data.

An important, novel feature of the AD model constructed here is that it is inherently
saturated, i.e. the maximum percentage of a risk population that can develop AD can never
exceed 100%. Thus, the model’s AD incidence rate function always increases, peaks, and
subsequently declines towards zero as the age of the risk population increases to arbitrarily
large values (in practice, the peak could lie above the maximum human lifespan).

In this model, it will be assumed that an ordered series of mutations, numbering m, of a
brain cell is required for the cell to spontaneously die. At any age ¢, every brain cell of a
person is in one of the mutation states. The probability or risk of a person developing AD is
exactly equal to the probability that a random brain cell was mutated to death in this
fashion.

Suppose the total number of brain cells in the average member of a risk population is
denoted by Ny. If a fraction f; of these cells are susceptible to the ordered mutations
leading to death of this model, then the number of susceptible brain cells in the average
brain of the risk population is Ny = f,Nr.

Consider a random representative cohort of a risk population whose members all have
the same age t. Here, r = 0 is coincident with birth. It will also be assumed that a total of m
mutations are required in a brain cell for it to spontaneously die.

Then, the number of brain cells in the average brain of the cohort that are in the rth
mutation state at age ¢t will be denoted by N(r/m,t) or N,(t) for short, where r = 0,1,2, ..., m.
Assuming that all cells in the average brain are in the zeroth mutation state at birth, then at
aget = 0,N(0) = Oforr=1,2,3,...,m,and Ny(0) = N,. A schematic representation of the
values of the N(7) at age ¢ is shown in Figure 1 where the ordered mutations are represented
by the arrows connecting two sequential mutation states.

Consider the first mutation of a brain cell necessary to cause AD. The fraction of an
average brain with no mutated cells that experiences the first mutation per unit time will
be denoted by k; and called the first mutation rate. The average time required for a brain
cell to experience the first mutation will be defined as the first mutation lifetime and will
be denoted by 7). The mutation lifetime and the mutation rate will be shown to be
reciprocals of each other so that k; = Tl_' . Continuing in this way, the number of cells in
the average brain N,(r) who are in the rth mutation state at age ¢ depends on the values of
the » mutation rates (k,) = [k, ka, ..., k,] as depicted in Figure 1. It will be assumed that
all the mutation rates are constants so that the mutations experienced by the cohort occur
randomly.

The Appendix contains a complete description on how the functions N,.(7) are
computed from the model just described. One of the most important features of the model
is that it allows the possibility that a fraction f; of the brain cells are naturally immune to
the mutation process leading to death described here. The fraction f; of brain cells that are
susceptible to mutation to death is related to the fraction that is immune to it since

tHfi=1
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Figure 1. Mutation model of brain cells leading to AD.

The probability P(f) that a neuron will undergo the ordered set of m mutations and die
at age t is given by
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Figure 1a. Male AD data for annual incidence rate IR(#) mean value and standard deviation error as
a function of age ¢ in years from Table 1(c).
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Figure 1b. Male AD data for mean prevalence P(¢) and standard deviation error as a function of age
t in years from Table 1 (b2).

This probability is also equal to the probability of developing AD at age  in the risk
population, a quantity also known as the prevalence of AD at age 7. Thus, in a population
of a total number of Ht humans, if the number of humans that have been diagnosed with
AD by age ¢ is denoted by Hap(?), then

Py = a0 - 2l @

The fraction of the population that comes down with AD per unit time at age ¢ (the
fractional AD incidence rate) is given by

1 dHap() _ dP(1)

IR(m;(km);t)EFT it a 3

where m is the number of mutations necessary to cause an average brain cell to
spontaneously die, (k,,) is the set of m mutation rates, and f; is the fraction of brain cells
that are susceptible to mutation to death. All these model parameters are determined by
fitting the incident rate function to AD incidence data.

The AD incidence rate IR(#) and prevalence P(¢) functions arising from the ordered
mutation model described here are derived in the Appendix. For the particularly simple
case when all the mutation rates are equal to each other, the AD incidence rate is given by
the particular simple function given in (A8) in the Appendix; integrating this function
gives the AD prevalence function P(7) given in (A7). Notice that as the age ¢ of the cohort
becomes arbitrarily large, the prevalence function in (A7) approaches f; in value. Since
fs = 1, the prevalence function is naturally saturated in that it can never exceed unity in
value. The incidence rate function given in (A7) characteristically monotonically rises
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to a peak as the age ¢ of the cohort increases from birth and then monotonically decreases
to zero as ¢ continues increasing. Thus, the area under the IR(?) curve, namely P(?), is finite
and can never exceed f; in value. These particularly simple functions will be shown to give
surprisingly good fits to the AD data.

Fitting the incidence rate function IR(?) to the AD incidence rate data determines the
values of the model parameters. If every member of the population is susceptible to
developing AD, then f; = 1| and the fit involves determining the values of the remaining
model parameters.

The saturated ordered mutation model constructed and solved in this paper is
isomorphic to the physical model describing an ordered chain of radioactive nuclei decays
with the exception that it allows for the possibility that a fraction of a risk population may
be immune to developing AD.

2. The unordered, independent mutation model of AD

A completely different model of the mutations in a brain cell that lead to AD postulates
that every mutation occurs independently of all the others. In Figure 1, only the first
transition is permitted for each mutation and from Equation (A3a) in the Appendix with
fs = 1, the fraction of brain cells that have made the first mutation necessary to cause AD
as a function of age is

pi(t) = 1 — exp(—ki1), “

where the transition constant k; is related to average time 7 necessary for this mutation to
occur in a cell by T} = 1/k,. If m independent mutations are required for a brain cell to be
destroyed, then the probability that a cell will be destroyed at age ¢ is given by

P(1) = p1(Dp2(Dp3(D) . ... pm—1(OPm(D), &)

where the values of the m mutation constants ky,k», . .., k,,—1,k, are all independent of each
other in general. Notice that the mutations here are not ordered, as they where in the model
described in section 1 above, but are completely independent of each other. Thus, in this
model the mutations can occur in any order, simultaneously, or at completely different
times.

In the limit when k;t < 1 for all i, (5) gives

P(z)=k1k2k3...k,,,><tm, kit < 1. (6)

This result is to be compared with (A4) in the Appendix obtained from the ordered model.

The simplest such independent mutation model occurs, if all the mutation constants
have the same positive value k. Under these circumstances, using Equations (4) and (5),
the probability that a brain cell will be destroyed at time ¢ becomes

P(t) = [1 — exp(—kn)]™. @)

The quantity k defined in (7) can be regarded as an effective mutation constant that
reproduces the experimental value of P(¢) in a simplified simulation of the data.

In the general case, where only a fraction f; of the population is susceptible to
developing AD, the prevalence of AD at age ¢ is then given by

P(t) = fs[1 — exp(—kn)]". ®)



124 1. Kramer

Since P(t) also represents the probability of developing AD at age ¢ in the population, the
incidence rate of AD at age t is given by

R =T = 17, ko) = famkl1 = exp(—ka 1" Dexp(—). ©

Thus, in a simplified simulation of AD incidence rate data using the independent mutation
model, the values of the three independent parameters, m, k and f;, are returned by the fit.

Notice that as the age ¢ of the cohort increases, the prevalence function P(¢) in
Equation (8) saturates at the value of f; = 1. Thus, the model prevalence function
automatically satisfies the physical requirement that its value never exceed one. Thus, both
the ordered and independent mutation models are naturally saturated, as they must be to
be physically realistic.

3. AD incidence data

The most extensive analysis of the incidence of AD comes from the Rochester, Minnesota
study [1,2]. The original data was compiled over a 25-year period (1960—1984) by
Kokmen ez al. [1]. This data was reanalysed and extended by Rocca et al. [2] for the last 10
years of the study (1975-1984). The modelling of AD in this paper will be based on the
data in the Rocca [2] reanalysis.

The incidence of AD in men and women for Rochester, Minnesota in Ref. [2] is
reproduced here in Tables 1(a) and 2(a), respectively, for convenience. The fractions that
appear in these tables are incidences over 5-year intervals. To get annual incidences,
which are required in the modelling in this paper, these fractions must be divided by 5.
Since females live longer than males, the female cohorts in Table 2(a) are substantially
larger than the corresponding male cohorts appearing in Table 1(a), especially above 80
years of age; thus, the female AD data is more reliable than the male data. The incidence
data in these tables differ from the incidence data in Ref. [1] in one important respect: the
population numbers appearing in the denominators in Tables 1(a) and 2(a) were those
within an age interval that were initially free of dementia. In the incidence data in Ref. [1],
all residents of Rochester, Minnesota within an age interval were included in the
denominators of the AD incidence tables, including those that were previously diagnosed
with dementia. Since the goal of the modelling in this paper is to compute the prevalence
of AD as a function of age, it will be necessary to convert the form of incidence data in
Ref. [2] back into the form for the incidence data used in Ref. [1].

If Hy is a random sample of a risk population at birth (age = 0) and Hap(?) is the
number within this population that has developed AD at age ¢, then the prevalence of
AD is defined as P(f) = Hap(f)/Ht. The incidence rate of AD at any age ¢ used in
Ref. [1] was defined as (dHap(?)/df)/Ht = dP(t)/dt, which will be denoted by IR(#) for
short. If this expression is applied to any age interval for AD, then the denominator Hy
can be approximated by the total number of city residents with ages falling within this
interval and the numerator is the annual number of these residents who developed AD
with ages within this interval. Although not all people diagnosed with dementia have
AD, in the case of Rochester, Minnesota, the great majority did. Thus, to a very good
approximation of the data, it will be assumed that all dementia cases are cases of AD.
The error induced in the modelling results by making this simplifying assumption is
certainly far less than the observed variation in the incidence of AD from one year to
the next.
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In contrast to the definition of the incidence rate used in Ref. [1], the incidence rate
used in Ref. [2] replaced Ht, which includes previously diagnosed cases of AD, with
H ZD(I) = Ht — Hap(t) which does not. Thus, the incidence rate in Ref. [2] was defined as
(dH Ap(2)/dt/ H;:D(t), which will be denoted as IR*(¢) for short. The connection between
these two different incidence rates is given by

dP(r)

R HADD ooy BT = HADOT _ e oy o
IR() = IR (0422 = IR () A2 = IR = PO) === (10)
The last Equation in (10) can be rewritten as
IR*(t) = — dl 1—-P 11
"= & n[ (D] (11a)

Since the data shows that P(#) = 0 for t = 60 years, Equation (11a) can be integrated to
give

P(H) =1 —exp[—6(1)], where 6(r) EJ IR (¢)dt. (11b)
60y

The following relationship between the two incidence rates then follows from (10) and
(11b):

IR(f) = ? = IR*(Hexp[— O(t)]. (12)

Since the dimensionless quantity 6(r) = 0, it is always true that IR(f) = IR*(¢). Using the
data in Tables 1(a) and 2(a), the male and female AD incidence rates IR() and prevalences
P(t) can be computed from the incidence rates IR*(r) appearing in Ref. [2].

The male prevalences P(#) are shown in Table 1(b1),(b2), while the female prevalences
are shown in Table 2(b1),(b2). The prevalences appearing in these tables were calculated
using Equation (11b) where the time-dependent parameter 6(f) appearing in (11b) is
computed from the fractions 6,; in these tables as follows: 6(65) = 6,
0(70) = 00’1 + 91,2, 0(75) = 00,1 + 01’2 + 92’3, etc.

The male annual incidence rates IR(7) are shown in Table 1(c) while the female annual
incidence rates are shown in Table 2(c). The annual incidence rates appearing in these
tables were computed using Equation (12) where for example IR*(62.5) = 00.1/5 and
6(62.5) = 61/2, so that IR(62.5) = 615 'exp[—6p1/2]. Similarly, IR*(67.5) = 6, /5
and 6(67.5) = 6y + 6, /2, so that IR(67.5) = 01125’Iexp[—60,1 — 012/2]. Continuing in
this way generates all of the annual incidence rates appearing in Tables 1(c) and 2(c).
Multiplying the annual incidence rates in Tables 1(c) and 2(c) by 5 gives the 5-year
interval incidence rates IR(7) that can be compared with the 5-year interval incidences
rates IR"(r) given in Tables 1(a) and 2(a); indeed, the ratio of 5-year interval incidence
rates IR(#)/IR*(f) computed from these tables are in agreement with the IR(¢) and IR"(r)
curves appearing in Figure 1 in Ref. [2].

In the language of the models constructed here, remembering that m mutations are
required to initiate AD, the prevalence P(f) of AD at age ¢ is given by the probability that a
brain neuron has died (see (5), (7), or (A6) in the Appendix).

So, what do that annual AD incidence IR(#) and prevalence P(f) data appearing in
tables say about the disease?
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Table 3. Age-specific AD incidence rates (% per year) in cohorts initially free of dementia.

Baltimore
Longitudinal
Rochester, Minnesota study [2] study [3]
Age range East Boston,
(in years) Men Women Men Women Mass. study [4]
55-59 0 0 0 0
60-64 0.067 0.027 0 0.25
65-69 0.181 0.067 0.09 0.22 0.6
70-74 0.400 0.359 0.55 0.17 1.0
75-79 0.692 0.827 0.75 1.10 2.0
80-84 1.60 2.5 1.25 3.61 33
85-89/(85+) 2.79/(3.00) 3.44/(3.49) (7.2) (5.27) (8.4)
90-94 4.21 3.36
95-99 1.66 4.37
Study population 4,680/(1975) to 7,140/(1975) to 802 434 2,313
size/(year) 5,484/(1984) 7,933/(1984)

Figure 1(a) is a plot of the mean male annual incidence rate data IR(f) appearing in
Table 1(c) together with the standard deviation error of each data point. Figure 1(b) is a
similar plot of the male AD prevalence P(f) data appearing in Table 1(bl),(b2).
Figure 1(a),(b) clearly shows that the errors in the male data above 90 years old are so
great that it is impossible to extrapolate the IR(¢) and P(¢) data into the region above 100
years old with any confidence of accuracy. A very similar situation results from the
female AD data.

Figure 2(a) is a plot of the mean female annual incidence rate data IR(7) appearing in
Table 2(c) together with the standard deviation error of each data point. Figure 2(b) is a
similar plot of the female AD prevalence P(f) data appearing in Table 2(bl),(b2).
Figure 2(a),(b) again shows that the errors in the data above 90 years old are so great that
it is impossible to accurately extrapolate the IR(r) and P(f) data into the region above
100 years old.

This is a situation where modelling the disease may help answer the question of how
the AD incidence rate IR(¢) and prevalence P(7) functions behave in the region above 100
years of age.

4. Other studies of age-related AD incidence rates

The results of other studies of age-related AD incidence rates is shown in Table 3 along
with the data for the Rochester, Minnesota study that was used for the modelling in this
paper. The Rochester study was clearly more detailed than the others and benefits from
having a much greater cohort population. The cohort population in the Rochester Study
was about ten times greater than that of the Baltimore Longitudinal Study. Moreover, by
choosing an entire city for the study, the Rochester results avoid errors stemming from
choosing a sample cohort that is not representative of the population as a whole. For
example, the ratio of women to men in the Rochester study is about 1.5, a result that is in
general agreement with the elderly population in the USA. However, the ratio of women to
men in the Baltimore Longitudinal Study is 0.54, a ratio that is not representative of the
USA population as a whole. Finally, the Rochester Study is the only one of the three
studies shown in Table 3 that has detailed data for the 85-89, 90—94 and 95-99 year age
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Figure 2. (a) Female AD data for annual incidence rate IR(#) mean value and standard deviation
error as a function of ¢ in years from Table 2 (c) and (b) Female AD data for mean prevalence P(¢)
and standard deviation error as a function of age ¢ in years from Table 2 (b2).
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groups. For all of these reasons, the data of the Rochester Study was deemed more reliable
and was used in the modelling in this paper. Nonetheless, the corresponding AD incidence
rate data between any two studies in Table 3 are within a factor of 2 of each other in
general. Thus, the general features of the model results using any of these three data sets
are very similar and differ only in how fast the AD prevalence rate rises with age.

5. Modelling the AD incidence rate curve

The AD incidence rate curve produced by the ordered mutation model is given by
Equation (AS8) in the Appendix. Setting the susceptibility fraction parameter f; equal to 1
and fitting this function to the male AD data in Table 1(c) yields the fit shown in
Figure 3(a). To achieve this fit, the mean data point at 97.5 years was ignored since this
point was deemed too unreliable. Nonetheless, the model incidence rate function IR(#)
returned by the fit falls within one standard deviation of not only the 97.5 year data point
but of all of the data points as shown in Figure 3(a). In this fit, the entire male population
was assumed to be vulnerable to developing AD (f; = 1). The values of k and m, the only
remaining independent parameters, were determined by the fit and are shown in
Figure 3(a). The projection of the IR(#) model function into the region above 100 years old
is also shown in Figure 3(a). Notice that the IR(7) curve peaks at around 120 years old and
monotonically declines thereafter towards zero. The projected values of the model
incidence rate function IR(#) in the region ¢ < 60 years old are vanishingly small, in
agreement with experiment; indeed, this is one of the strongest features of both the ordered
and independent mutation models.

Letting f; become an independent parameter and repeating the ordered mutation model
fit gives the result shown in Figure 3(b). The fit to the data here is better than the one in
Figure 3(a), with the (chisq) error [see (A11) in the Appendix] reduced from what it is in
Figure 3(a) by 35.5%. As before, the model incidence rate curve falls within one standard
deviation of all of the data points. However, this fit predicts that only 45.9% of men are
susceptible to acquiring AD (fy = 0.459), and, therefore, that 54.1% are immune to
getting it. This fit also predicts that the average number of mutations necessary for a brain
cell associated with AD to spontaneously die is m = 45, and the average elapsed time
between consecutive mutations is 7=k ' = (0.414)"' y = 2.41 years. The incidence
rate function IR(#) extrapolated into the non-fitted region peaks around 105 years and
monotonically declines towards zero thereafter.

Looking carefully at the fit in Figure 3(b) shows that it is particularly poor for the
early incidence data points. To improve the fit to this data, a more sophisticated ordered
model will be constructed where it will be assumed that, not one, but two susceptible
groups are responsible for generating all of the AD data. It will be assumed that, because
of genetic inheritance, a fraction of the population is born with a head-start in
development of AD in that it is born with many of the mutations needed to cause it. Thus,
it will be assumed that the male AD incidence data is generated by a compound incidence
function given by

I(0) = Li(fsi,k,my) + I(fo, k,my), 13)

where the notation in Equation (AS8) in the Appendix has been used. Thus, the compound
model assumes that there are two different groups of the population that are susceptible to
acquiring AD, one that has model parameters (f;;, k and m;) and the second that has
model parameters (fi,, k and m,). Notice that it is assumed that the mutation rates k
for both susceptible groups are identical, and it will be assumed that m; < m, so that
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I,(fs1, k and m,) describes the group born with some common average number (not zero)
of AD mutations. Fitting the male AD incidence data with the compound incidence
function in Equation (13) gives the much-improved result shown in Figure 3(c), with a fit
error (chisq) that is 60.8% lower than the error in Figure 3(b). Interestingly, the fit returns
the values f;; = 0.01163 and f;, = 0.2465 so that f;; = 0.0472f,,. Thus, a particular small
fraction of the population (about 1%) is predicted to be born with AD mutations on the
average, certainly a plausible result. The fit also produces the values m; = 62 and
my =79 so that the particularly susceptible population is born with an average of
79 — 62 = 17 AD mutations. The projection of the model incidence function returned by
this fit is also shown in Figure 3(c) along with the standard deviation error in the data
points.

Integrating the model incidence function shown in Figure 3(c) gives the model
prevalence function which is given as a series of points in the second column in Table 4.
The prevalence curve must be a monotonically increasing function of age f, and it
musty saturate at the value of f;; + f;, = 0.258136, which, as seen in Table 4, it
certainly does. Thus, the results in Table 4 constitute a check on the modelling results in
Figure 3(c).

A measure of the error of the least-squares fit is given by the sum (chisq) given in
(A11) of the Appendix. A completely different positive definite sum that measures the
statistical quality of a fit is known as the chi-square distribution goodness-of-fit test. Even
though these two tests have virtually the same name, they are not to be confused with each
other. The last part of the Appendix contains a description of the chi-square distribution
goodness-of-fit test and all of the details of the application of this test to the fit in
Figure 3(c).

Since there are eight data points in the fit in Figure 3(c), there are 8 —1=7 degrees of
freedom in this problem. The positive definite sum in the chi-square distribution goodness-
of-fit test will be denoted by y 2, and for the fit in Figure 3(c), it is found that y* = 3.83.
For a problem with 7 degrees of freedom, a y  value of y* = 3.83 means that there is a
79.8% probability (the p-value is 0.798) that the expected (model) and observed (data)
distributions are statistically identical. Thus, by any conventionally used criterion, the
model fit in Figure 3(c) is very good.

It is interesting to see what sort of fit to the same data is returned by the
independent mutation model. Using the incidence rate function given in Equation (9)
gives the fit shown in Figure 4(a). Here, choosing the susceptible fraction parameter to
equal fy =1 gives a fit with the least error. Thus, no immunity to AD in the male
population is predicted by the independent mutation model. Although the error of the fit
here is about 10% higher than the fit in Figure 3(b) for the ordered mutation model, this
model is nonetheless about as credible. Notice that the projected values of the
independent model incidence rate function IR(#) in Figure 4(a) in the region # < 60
years old are vanishingly small in agreement with experiment. As has already been
pointed out, this is one of the strongest features of both the ordered and independent
mutation models.

To improve the fit of the independent mutation model, especially for the early points, a
compound version of this model will be tried in exactly the fashion outlined in Equation
(13) for the ordered model. The compound independent model fit is shown in Figure 4(b),
and it has reduced the fit error (chisq) by 75.5% from that in Figure 4(a). The most
important result of this fit is that this model now predicts widespread immunity to AD.
Since the fit returns the values f;; = 0.0359 and f;, = 0.329, the compound independent
model predicts that 63.4% of men are immune to acquiring AD.
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Table 4. Prevalence curve computed from the compound ordered model fitted to AD male and
female data.

P(t) curve for AD computed from compound ordered

model fits

Age t (in years) Male Female

60 0.00020017 0.00012724
62.5 0.00040647 0.00022508
65 0.00075842 0.00038961
67.5 0.00131803 0.00068675
70 0.00216453 0.00125721
72.5 0.00340978 0.00236271
75 0.00522482 0.00442234
77.5 0.00787097 0.00801061
80 0.01171971 0.01379102
82.5 0.01724228 0.02237979
85 0.02495481 0.03416782
87.5 0.03532024 0.04915843
90 0.04862735 0.06688494
925 0.06488146 0.08644810
95 0.08374332 0.10666889
97.5 0.10453950 0.12630920
100 0.12634750 0.14429146
102.5 0.14813128 0.15985641
105 0.16889489 0.17262767
110 0.20432751 0.18998329
115 0.22928373 0.19878664
120 0.24435096 0.20254407
125 0.25224469 0.20392637
130 0.25587292 0.20434332
135 0.25735047 0.20446173
140 0.25788830 0.20449045
145 0.25806467 0.20449664
150 0.25811714 0.20449785

Because the fit errors of the compound ordered and independent models are so close to
each other (compare Figures 3(c) and 4(b)), it is impossible to decide which of these two
models is more credible. However, both models predict widespread immunity to AD in the
male population.

Fitting the female AD incidence data by the ordered mutation model with the value of
the susceptible fraction set equal to f; = 1 gives the results plotted in Figure 5(a). Notice
that the mean value of the data point at r = 92.5 years was left off of the fit since it was
deemed improbable — the mean incidence rate of this point was lower than that of the
rate on either side of it. The fit here is determined by only two independent parameters
(m and k) whose values are shown in Figure 5(a), and the (chisq) error of the fit is relatively
large. Notice that the fit to the earlier data points is particularly poor, lying outside one
standard deviation from the mean values of these points.

Repeating the above fit with f; now being an independent parameter leads to the
convincing fit shown in Figure 5(b). The (chisq) error of the fit in Figure 5(b) with
Js = 0.205 is over 62 times smaller than the fit in Figure 5(a) with f; = 1. Again, the data
point at t = 92.5 years was left off of the fit, but nonetheless the resulting model incidence
rate function IR(?) lies within one standard deviation of the mean for all of the data points,
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Figure 3. (a) Male AD mean incidence rate IR(7) data and fit using f; = 1 ordered mutation model.
(b) Male AD incidence rate IR(7) data (mean and standard deviation error) as a function of age ¢
together with ordered mutation model fit and projection. (¢) Male AD incidence rate IR(7) data (mean
and standard deviation error) as a function of age r together with COMPOUND ordered mutation
model fit and projection.
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as seen in Figure 5(b). This fit predicts that 79.4% of females are immune to developing
AD, the number of mutations necessary for a brain cell associated with AD to
spontaneously die is m = 87, and the average time between consecutive mutations is
T=k '=10916]""y = 1.09 years. Figure 5(b) also shows the projection of the model
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Figure 4. (a) Male AD incidence rate IR(7) data and f; = 1 independent mutation model fit.
(b) Compound independent mutation model fit to male AD incidence rate IR(7) data.
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incidence rate IR(7) curve into the region above 100 years of age. Notice that the model
incidence curve peaks around 98 years of age and monotonically declines thereafter.

To possibly improve the fit in Figure 5(b), a fit using the compound model incidence
function in (13) will now be executed. The improved result is shown in Figure 5(c), with a
fit error (chisq) that is 6.80% lower than the error in Figure 5(b). In the female data case,
the fit returns the values f;; = 0.001078 and f;; = 0.2034 so that f;; = 0.0529f,,, virtually
the same result as for the male data. Thus, once again, a particular small fraction of the
considered population (about 0.1%) is predicted to be born with AD mutations on the
average. The fit also produces the values m; = 66 and m, = 89 so that the particularly
susceptible female population is born with an average of 89 — 66 = 23 AD mutations,
slightly higher than it was for the male population. The projection of the model incidence
function returned by this fit is also shown in Figure 5(c) along with the standard deviation
error in the data points.

Integrating the model incidence function shown in Figure 5(c) gives the model
prevalence function which is given as a series of points on the right-hand side in Table 4.
The prevalence curve must be a monotonically increasing function with age ¢, and it must
saturate at the value of fi; + fi» = 0.204498, which, as seen in Table 4, it certainly does.
Thus, the results in Table 4 again constitute a check on the modelling results in Figure 5(c),
and the modelling passes this test.

Applying the chi-square distribution goodness-of-fit test to the fit in Figure 5(c) gives
the results found in the last part of the Appendix summarized here.

Since there are again eight data points in the fit in Figure 5(c), there are again 8—1=7
degrees of freedom in this problem. The value of test statistic for this fit turned out to be
x> = 4.64. For a problem with 7 degrees of freedom, a y > value of x> = 4.64 means that
there is a 70.3% probability (the p-value is 0.703) that the expected (model) and observed
(data) distributions are statistically identical. Thus, once again, by any conventionally used
criterion, the model fit in Figure 5(c) is very good.

Proceeding in the same way, fitting the same female AD incidence data using the
independent mutation model yields the result in Figure 6(a). Since the value of the
susceptible fraction returned by this fit is f; = 0.271, this model predicts that 72. 8%
of females are naturally immune to developing AD. In the independent model result in
Figure 6(a), the number of mutations necessary for a brain cell associated with AD to
spontaneously die m = 1605, and the average time required for a mutation to occur is
T=k '=[0.780] 'y = 1.28 years.

Fitting the same female data with the compound independent model incidence rate
function gives the fit shown in Figure 6(b). This more sophisticated model reduces the fit
error by 59.1% over what it was in the single term fit in Figure 6(a). Here, the values of the
susceptible fractions returned by the fit are f;; = 0.0177 and f;, = 0.239 so that this model
predicts that 74.3% of females are immune to developing AD.

Interestingly, both the compound ordered and independent mutation models predict that
most females are naturally immune to developing AD. The fits of both models produce
comparable errors, so it is not possible to decide on the basis of the modelling which model
produces superior results. Since females live longer than males, the female AD cohorts above
70 years old in the Rochester, Minnesota study were generally 2—4 times larger than the
corresponding male cohorts (see Tables 1(a) and 2(a)). Thus, the female AD data is probably
more reliable than the male AD data, and, therefore, the female modelling results are expected
to be more reliable than the male modelling results. The different values of the fit parameters
(f;,mand k) predicted by a mutation model for male and female cohorts demonstrates that AD
develops through different pathways, as is commonly true for various cancers.
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Figure 5. (a) Female AD mean incidence rate IR(?) fitted data using f; = 1 ordered mutation
model. (b) Female AD mean incidence rate IR(#) data and fit using ordered mutation model.
(c) Female AD incidence rate IR(7) data (mean and standard deviation error) as a function of age
t together with COMPOUND ordered mutation model fit and projection.
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Although the causes of the mutations in the mutation models are unknown to date, viral
infections are certainly a possibility.

6. How reliable is the model prediction of AD immunity?

To test the sensitivity of the value of a typical model parameter determined by the least-
square fits described in this paper, the y >-test statistic will be calculated for the entire range
of physically permitted values for the susceptible fraction parameter f;, for the dominant
AD-susceptible population. Again, the y *-test statistic is not to be confused with the least-
squares fit error defined in (A11) in the Appendix which is denoted as Chisq, a very similar
annotation. The dependence of both of these errors as a function of f;; is shown in Figure 7.

The procedure followed here was to chose a particular value for f;, and allow the
remaining parameters of the model to be chosen by the least-squares fit to the AD data; this
procedure was repeated until the entire physically permitted range of values for f;, was
covered. As seen in Figure 7, the minimum values for both errors occurs at f;, = 0.329,
where y? = 3.12 (p = 0.8733), and both errors increase in either direction as we move
away from this value. The details of the y * calculation for the point f;, = 0.329 are shown
in Table 9 in the appendix; the values of y? for all the other points in Figure 7 are
calculated in the same way.

The maximum physically permitted value of f;, in the compound model occurs when
fs2 = 1 — f1 so that the entire population is susceptible to acquiring AD. The value for f;,
in this case turns out to be 1 — 0.0111 = 0.988 with y? = 4.67 (p = 0.699). Thus,
although this value for f;; is statistically less probable than the value of f;, = 0.329 above,
the difference is not great enough to rule it out. Thus, although the modelling in this paper
suggests that immunity to AD may exist, it does not prove it.

At the other extreme for f;, = 0.18 the least-squares fit for the remaining parameters
produces x? = 32.3 (p = 0.00004), an extremely unlikely result. Thus, values of f,, <
0.18 are statistically implausible, and 0.18 can be regarded as a lower bound on the value

Offgz.

7. Computing the number of AD patients in the USA or any other country

The age distribution of the over 60 year-old population of the USA in the year 2000 is shown
in columns 2 and 5 in Table 4. These figures were obtained from the US Census Bureau.
The mean prevalence of AD for each age group was taken from either Table 1(b1) or 2(b1)
and is shown in either column 3 or 6 in Table 4. Multiplying columns 2 and 3 in Table 4
together yields the result in column 4 for the number of males in each age group that had AD
in the USA in the year 2000; similarly, multiplying columns 5 and 6 in Table 4 together yields
the result in column 7 for the number of females in each age group that had AD in the USA
in the year 2000. Summing columns 4 and 7 in Table 4, the total number of people in the USA
that had AD in the year 2000 is estimated to be 451,400, or about 0.16% of the population.

The prevalence results in Table 4 can be used to estimate the number of people with
AD in any country or city by merely changing the numbers in columns 2 and 5 to reflect
the population distribution of that country or city.

The US Census Bureau projects that in the year 2007 the number of Americans in the
65—84 year old bracket will increase by 2,328,000 and those in the 85-years-old and above
bracket will increase by 1,297,000. The average age of the 65—84 year age interval is 75
years old, and from Tables 1(bl) and 2(bl) the average prevalence at age 75 years is
(1/2)[0.006466 + 0.004528] = 0.005497. Thus, the number of AD cases in this age
bracket is expected to rise by 2,328,000 X 0.005497 = 12,797 cases by the year 2007.
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Figure 6. (a) Female AD incidence rate IR(#) data and independent mutation model fit.
(b) Compound independent mutation model fit to female AD incidence rate IR(7) data.
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Taking the average age of the over 85-year-old bracket to be 95 years, the average
prevalence at age 85 years from the same tables is (1/2)[0.02897 4 0.03376] = 0.03136.
Thus, the number of AD cases in this age bracket is expected to rise by
1,297,000 x 0.03136 = 40,680 cases by the year 2007. Thus, the increase in the number
of AD patients in the year 2007 over the result in the year 2000 is estimated to be 12,797 and
40,680 for these two age brackets, respectively, for a total increase of 53,477 cases. Thus,
the total number of AD patients in the USA in the year 2007 is estimated to be 504,877
(451,400 + 53,477), or 0.176% of the projected population (growing but still quite small).

By the year 2020 the 65—-85-year-old population in the USA is projected to increase by
14,000,000 over what it is in 2007; the number of new AD patients this increase is
expected to add to the 2007 total is about 76,958. Also by the year 2020, the 85 4 year-old
population in the USA is projected to increase by 1,705,000 over what it is in 2007; the
number of new AD patients this increase is expected to add to the 2007 total is about
53,468. Thus, by the year 2020, the number of AD patients in the USA is projected to reach
about 635,297 cases, an increase of 23.8% over what it is in 2007. Thus, the aging of the
USA population will result in a significant increase in the number of AD patients.

8. What causes AD and can the disease be blocked?

The average brain contains about 130 billion neurons which are cells that transmit electro-
chemical signals between the brain and the nervous system. Although there are many types
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of neurons, varying in diameter from 4 to 100 wm and length from less than an inch to
several feet, they all have dendrites and axons which allow them to be electrically
connected to each other. The synapse is the gap between the axon of one cell and the
dendrite of another. A typical neuron can communicate with 1000—10,000 other neurons.
The death of a neuron associated with memory destroys all the electrical connections the
cell had with the other neurons to which it communicated and is the immediate cause of
the onset of AD.

Most of the brain actually consists of glial cells that, unlike neurons, do not carry
impulses. Glial cells serve a support function in that they digest parts of dead neurons,
manufacture myelin for the neuron coat, and provide physical and nutritional support
for neurons. The star-shaped astrocytes, a type of glia cell, are of notable importance
since they promote the formation and regulation of synapses without which there would be
no memory. For example, astrocytes remove excitatory chemicals from the synapses
thereby preventing over-stimulation that can lead to seizures. Astrocytes also form the
blood—brain barrier that prevents many toxic substances from crossing into the brain from
the blood, another particularly important function since defects in astrocyte function can
lead to mutation-causing antigens crossing into the brain. Both neurons and astrocytes are
made from the same stem cell, and the ratio of these cells must be carefully regulated for
the brain to function properly. A key receptor on the stem cell, erbB4, controls the
production of astrocyte cells, but the function of this receptor is controlled, in turn, by
presenilin which plays a major role in AD [5]. Genetic mutations in the presenilin gene
lead to defective variations of this protein which leads to astrocyte malfunction, a
weakening of the blood—brain barrier, synaptic malfunction, and AD.

A loss of brain neurons can be fatal. For every minute delay in the treatment of an
average acute stroke the brain losses 1.9 million neurons, 13.8 billion synapses, and 7.4
miles of myelinated fibres [6]. Compared with the rate of neuron loss in normal brain aging,
the blood-starved brain ages 3.6 years each hour without treatment [6]. At the above rates, if
such a stroke runs its full course by being left untreated for an average of 10 h, the brain loses
1.2 billion neurons, 8.3 trillion synapses, and 4470 miles of myelinated fibres [6]. Thus,
stroke data supports another assumption of the model developed here, namely the continual
destruction of neurons in AD eventually leads to death.

Pakkenberg and Gundersen stereographically analysed the brains of 94 healthy Danish
citizen: 62 males, ages range 19—87 years, and 32 females, age range 18—93 years [7].
The average numbers of neocortical neurons in the study females and males was 19 billion
and 23 billion, respectively, a 16% difference. However, both sexes were found to have
lost about 10% of their neocortical neurons over the period from the age of 20 years to the
age of 90 years. Thus, it is normal for the brain to lose about 85,000 neocortical nerve cells
per day. This normal neuron loss is not associated with AD and will be assumed to occur in
such an ordered way so as to prevent the symptoms of AD.

A variety of brain cell genes have been linked to AD, but the most important are those
associated with the proteins presenilin 1, presenilin 2 and amyloid precursor protein
(APP). More than 40 different missense mutations in the presenilin 1 gene and 6 different
mutations in the presenilin 2 gene have been linked to AD. APP is necessary for normal
brain function, but APP can be abnormally cleaved by enzymes to form amyloid beta
peptide, a substance associated with AD.

One of the characteristics of AD is the abnormal build-up of extracellular amyloid
plaque in the cerebral cortex of the brain which has been linked to mutations in the genes
encoding APP. Six different mutations of the APP gene have been linked to AD. A popular
model of AD development is that hypothesis that the accumulation of extracelluar amyloid
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plaque triggers a pathogenic cascade leading to neurodegeneration and the disease [8].
However, amyloid plaque accumulation is not a necessary feature of dementia or
neuorodegeneration. The distribution of synaptic loss correlates well with the pattern of
dementia and severity of dementia in AD but the amyloid plaque distribution does not [9].
Equally interesting, mouse models duplicating the over-expression of human mutant
amyloid plaque production have largely failed to reproduce neurodegeneration [10].

Jie Shen and Raymond Keller have advanced the plausible hypothesis that AD is
entirely caused by mutations in the presenilin genes [11]. Inactivating presenilins in the
cerebral cortex of knockout mice leads to the age-related neurodegeneration
characteristic of AD, including synaptic loss, neuronal cell death, and astrogliosis,
suggesting that presenilin mutations alone are entirely responsible for AD. In this model,
the increase in extracellular amyloid plaque interferes with presenilin function which, in
turn, causes AD.

Thus, the mutation model used to calculate the prevalence of AD with age is
completely consistent with the current bio-medical research literature on how the disease
develops. Clearly, then, the development of AD can be prevented if the causes of the
mutations in brain cells that lead to the disease can be blocked. To date, the causes of the
mutations in brain cells that lead to AD are unknown. However, identifying these causes
could lead to a way of at least delaying the onset of this disease if not blocking its
development outright.

9. Testing the ordered mutation model

A stereological analysis of the neocortical cell population of the brain in a cohort of 14 AD
patients and a group of 20 normal controls was undertaken by Pelvig et al. [12] in an effort
to quantify the cell loss due to AD. For the AD group, the mean total number of neocortical
glial cells and neurons was found to be 25.9 X 10° and 18.9 X 10, respectively [12].
Thus, the ratio of the mean number of glial cells to neurons in the AD group is 1.37. For the
control group, the mean total number of neocortical glial cells and neurons was found to be
29.1 x 10°and 21.2 X 10°, respectively [12]. Thus, the ratio of the mean number of glial
cells to neurons in the control group is also 1.37. From these ratios alone it would appear
that the mean brain of the AD cohort and that of the controls were scaled versions of each
other, with the mean AD brain about 11% smaller than the mean brain of the controls.
Although it is tempting to ascribe this 11% difference in mean brain sizes to the disease,
this conclusion would only be possible if the controls were an excellent match for the AD
cohort in the Pelvig study. Remember that in the Pakkenberg study of healthy brains it was
found that the average number of neocortical neurons in females and males was 19 x 10°
and 23 x 10°, respectively, a 16% difference [7]. This same study also found that both
sexes lost about 10% of their neocortical neurons over the period from the age of 20 years
to the age of 90 years [7]. Thus, sex and age influence the average brain size. Notice that
the average brain of the healthy females in the Pakkenberg study was about as large as the
mean brain of the AD cohort in the Pelvig study. Thus, a smaller brain is not by itself an
indication of disease.

Is the control cohort in the Pelvig study [12] a good match to the AD cohort? In
general, the size of a brain scales with the person’s weight, i.e. the size of the brain is
directly proportional to the person’s weight on the average. Of the 14 AD cases included in
the Pelvig study, 7 or half of the total had unknown heights and weights; this was also true
of 2 of the 20 controls. Thus, the average weight of the entire AD cohort in [12] is simply
not known. The average mass of the remaining seven AD cases was 56 kg, while that of the
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Table 6. Fractional neocortical neuronal loss in the 14 AD patients in study [12] computed from the
compound ordered mutation AD model interpretation of the results in Tables 1(b1), (b2) and 2(b1),
(b2).

Neocortical neuron loss in AD:
Pelvig study patients [12]

Males Females
Age t Fractional neuronal Age t Fractional neuronal
in years loss from model: in years loss from model:
at death Number P(1) at death Number P(r)
68 1 0.001461 73 1 0.002681
81 1 0.01369 74 1 0.003450
90 1 0.04862 75 1 0.004422
91 1 0.05478 80 2 0.01379
81 2 0.01686
82 1 0.02041
86 1 0.03979
94 1 0.09858

Average fractional neocortical neuronal loss
for 14 AD patients: 0.01571 (1.571%)

remaining 18 controls was 61.55 kg (see Table 1 in [12]). Thus, the known weights of the
control cohort was 9.9% larger than the known weights of the AD cohort on the average,
and this could account for most of the 11% measured difference in average brain size
between these two cohorts.

Although lighter people have smaller brains than heavier people all things being equal,
they generally are not. A cohort of people of the same sex, age and weight will nonetheless
have a distribution or spread of brain sizes (unmeasured to date) with an accompanying
standard deviation (also unknown) because of genetic factors, making finding a good
control cohort for a given AD cohort even harder.

Thus AD is one of many factors that influence brain size. Nonetheless, the results of
the Pelvig study [12] suggest that there may be some brain cell loss due to AD, and this loss
supports one of the assumptions in the mutation models discussed in this paper.

The modelling in this paper can in fact be used to quantify the percentage of brain cell
loss for the AD cohort in the Pelvig study that is solely due to the disease. This estimate
must assume that the AD cohort and controls in [12] were the average cases considered in
the modelling in this paper.

Using the model results in Tables 1(b1),(b2) and 2(b1),(b2) for the fraction of neurons
lost with age in males and female AD patients, respectively, on the average, the fractional
neocortical neuron lost for the patients in the Pelvig study [12] can be computed, and the
result is shown in Table 6. Thus, the model predicts that the average cortical neuronal loss
for Pelvig’s AD cohort was 1.57%. This percentage is small enough to be overwhelmed by
sex, age, and genetic differences between the AD and control cohorts, and indeed, other
studies similar to Pelvig’s failed to find any significant difference between these cohorts.

10. Remaining survival time following a diagnosis of AD is reduced

Brookmeyer et al. [13] found that a diagnosis of AD at any age invariably shortens the
remaining survival time of the patient on the average. In the Baltimore Longitudinal Study



1. Kramer

150

8€8°¢ 651 €700 Iv1°0 009°0 6100 S6L°0 STS0 szro ‘arla-‘o)=Xx
g “poziewiou

0cl 8¢ 4! 0°LT L6T 9¢ €91 €L'6 61's  Kouenboyy vmuoomxm
fufp “(mer)
¥l 1403 LT1 86T '8¢ 1'sC 9°¢l 0€'6 96+ Kouenbaxy paroadxyg

[eAIUL 10] Y9
00X OLY 00 XOLE L 0l XSHT L 0l XPET (0l XS§9 (0 X L0E ¢ 0l X OFT ,_0I X 8°S  jo uonorpaid [9pojy

4d “reaxayur

0L X 9TT .01 X LEY . 0l X98¥y . Ol X6¥e 0l XLI'T .01 XTTS .0l X9I'c , 0l X85L Jo ooudpeadrd [eurq

'd ‘[earoyur

0l X LE8 - 01 X98v 0l Xo6vrC 0 XLI'T .0l XCTS . Ol X9I'¢c ,_0I X8L L, _0I X00CT JO ooudreaad _EE\:

u

99 cle (444! I11c LEBE 101S 1199 6888 ‘uone[ndod oEEwm

‘0

0cl I el 6C 123 LT 0¢ cl 9  ‘Kouonbaiy partesqQ
wng 8=0 (L="0 9=0 c=0 =10 (e=0 (t=0 (1=0 (sreak
M0y 66—56 ¥6—06 68—68 78-08 6L—VL YL=0L 69-59 ¥9-09 ur) [eA)ul 95y

"(0)¢ 2SI UT UMOYS Blep (JV [BW 0} }Ij [9pOoW Pardapio punodwod ayy 10y No« WN = X ousnels 159 1y-Jo-ssaupoos arenbs-1yo Jo uonemIE) L 9[qeL



151

Computational and Mathematical Methods in Medicine

0r9't 7800 ST8'1 910 €€9°0 8YL°0 088°0 01€0 900 ‘arla-‘o)=x
g “poziewiou

86€ 011 LIS o1 11 vEL 867 €98 §L7  Kouonbaiy paroadxg
fu.fp ‘(mer)

€1y an L'€S 601 0Tl €9L 0'1¢€ L6'8 68°C  Kouonbayy paroadxyg
[eAIUL 10] Y9

201 X0€Y L 0l XSEv . 0l X vpe . 0l X80T ¢ 0l XSb6 Ol X LI'E€ , 01 X898 , 0l XT9CT JO :ouo%wa [PPOIN

Jd ‘Teardyur

Ol X PPT 0L X 90T . 0l X899 0l X I’ . 0l X LET 0l X Tt ¢ 01 X STT , 01 X 68¢  Jo dudesdxd [eur]

'd ‘[earoyur

(00 X 90T 01 X899 Ol X I¥'€ 01 X LET ¢ Ol X Ty 00 XSTT , 01 X 68°€ , 01 X LT] Joooudperard penyup

‘u

L9T vETI 0LI€E 6vLS TLO8 8.6 0rE01 Lgotr  ‘uonendod sdureg

0

86€ 4 w 601 vT1 99 s¢ L ¢ ‘Aouonbayy paarsqQ
wng 8=10 (L=10 9=0 (c=10 =0 (€=0 (z=0 =0 (sreak
Moy 66—56 ¥6-06 6858 ¥8-08 6L—L YL—0L 69-59 909 ur) [eatdyur 98y

*(9)G 231 UT UMOUS BIep (JV 9[BWdJ 0} 1 [opowl paiapIio punoduwrod ay) 10§ No« WN = X ousnels 159 1y-Jo-ssaupoos arenbs-1yo Jo uonemIE) g [qeL



1. Kramer

152

yere 8C'1 1¥C0 €620 LS90 €00 12570 600 6000 .\m\wﬁm -‘oy=%
g ‘paziewiou

0cl ¥6'C eIl 9¢ §'6¢ 0'9¢ 0Ll 0Tl LL’S  Kouenboaiy pajoadxy
fu.fp “(mer)

LSyl 6C'¢ LTl ¥'6¢ Iee 6c 06l £Cl L¥'9  Kouenbayy paroadxy
[eAzuI 10] 9

-0l X 66V .01l X LOV .0l X6LC Ol XLST Ol XT9L 0l XvLe .0 X98l 0l X8CL JO sOﬁBv\WQ [°PON
‘TeArdur

0 X 8ET 01 X86 .0l XI9C . 0 Xv6'C .0l XO0r1l .0l X089 .0l X8LC , 0l XCC6 JO ooco_m\%a [eur]

'd ‘rearoyur

0L X866 . 0l X 19C . 0l X 6T .0l X OF'T 0l X 059 . Ol X 8LCT ,_ 0l X TL6 ,_0I X #6'1  Jo eoudesaid _SE\H.H

u

99 cle (440! I11e LE8E 101¢ 1199 6888 ‘uonendod oEEwm

‘0

0€1 I €l 6C e LT 0C u 9  ‘Aousnbayy paa1ssqO
wng 8=0 (L="0 9=0 (s=0 =10 €=0 Tt=0 (=0 (s1eak
M0y 66—56 ¥6-06 6868 ¥8—-08 6L—VL YL=0L 69-59 ¥9-09 ur) [eAro)ul o5y

(L o3 ur

jurod 99s) 6700 = ¢/ 10J BIEp QY o[eW 03} [opowt juepuadopur punodwiod ay) 10§ m\»\ M_WHW = X onsness 189 1y-Jo-ssoupoo3 dxenbs-1yd Jo uonemdE) 6 JqeL



Computational and Mathematical Methods in Medicine 153

of Aging cohort, a diagnosis of AD at the age of 65 years reduced the remaining survival
time by 67% in both men and women [13]; a diagnosis of AD at the age of 90 years
reduced the remaining survival time by 37% in men and 42% in women. The disease
model presented here can readily explain the shortening of the average remaining survival
time by a diagnosis of AD.

From (A6) in the appendix the ratio N,,(f)/Ny [with f; = 1] is the fraction of the population
that has developed AD at age ¢. This ratio also represents the fraction of an average person’s
brain cells that have died at age . Since N,,(f)/N, is a monotonically increasing function, the
fraction of an average person’s brain cells that have been destroyed at age 65 years is
considerably less than that at age 90 years. Clearly, late AD can be developed at any age as
long as a non-zero fraction of a person’s brain cells have been destroyed.

From Table 1(bl) and the modelling in this paper, only about 0.0677% of the cells of
an average male diagnosed with AD at the age of 65 years have been destroyed while
about 5.55% of the cells of an average male diagnosed with AD at the age of 90 years have
been destroyed. Clearly, the 0.0677% of brain cells that have been destroyed in men that
develop AD at the age of 65 years are just as important insofar as AD is concerned as the
5.55% of brain cells that have been destroyed in men that develop AD at the age of 90
years. Thus, not all brain cells are equally important insofar as AD is concerned. Since
people diagnosed with AD at the age of 65 years have over 99.9% of their brain cells in
tact they tend to live longer than people diagnosed with AD at the age of 90 years who
have lost over 5% of their brain cells. In the model presented in this paper, death from AD
can be viewed as resulting from the destruction of a sufficient number of brain cells
controlling the central nervous system; this takes longer to occur at age 65 years than at
age 90 years. Thus, the model presented here offers a straight-forward, plausible
explanation of the empirical results in Ref. [13].

11. Conclusion

The modelling in this paper suggests that there may be widespread natural immunity to the
development of AD. Biomedically determining the mechanism of this immunity should
become a research priority since such knowledge could help in discovering methods to
block AD from developing altogether.

The number of people in the USA estimated to have AD in the year 2000 was 451,000,
only 0.16% of the population at that time. Although this number is expected to grow as the
population ages, it nonetheless is far less than other estimates that have appeared in the
popular press.
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Appendix

1. The ordered mutation model of AD

In this model the onset of AD will be assumed to require an ordered chain of m mutations to occur
within a neuron leading to its death, where m is a positive integer. Suppose in the average human
brain in a risk population there are a total of Nt neurons, any one of which could trigger the onset of
AD if it dies. Suppose further that m ordered mutations are required in a neuron for it to die. At any
given age, the number of neurons that have experienced ¢ mutations will be denoted by Ny(t), where
g =0,1,2,..., m. Thus, in this notation, the number of neurons that have experienced no mutations
at age t is denoted by Ny(7), and the number of neurons that have died by age ¢ is denoted by N, (7).
Figure 1 is a schematic representation of the ordered mutation model. The m mutation rates
(constants) k,, ¥ = 1,2, ..., m, shown in Figure 1 are defined as the fraction of cells in mutation state
r — 1 that undergo the rth mutation per unit time. This mutation model is ordered so that only cells in
the » — 1 mutation state can mutate into the rth mutation state, and cells in the ¢ — 1 state cannot
mutate into any other mutation state as indicated in Figure 1.

It is possible that a fraction of the total number of neurons N are actually immune to undergoing
the m mutations necessary for them to die and contribute to AD. If this immune fraction is denoted by
fi, then the fraction of neurons susceptible to mutating to death is f; =1 — f;, where 0 = f; = 1.
Thus, in a total of Nt neurons the number susceptible to contributing to the development of AD is
given by Ny = fNr.

The set of coupled, time-dependent equations involving the neuron numbers N,(¢) at age ¢ in this
model are

dN,
0~ kiMoo, (Al2)
dN
dl[(t) = klNo(I) - kZNl([)v (Alb)
PO ke = keaiNa), 5 =123, om = 1, (Ale)
dn,,
dl(t) = kmNmfl(t)~ (Ald)

Adding these equations together and integrating leads to
m
Ng = No(t) + N1(t) + No(t) + N3(t) + - + Nu(t) = > N,(0), (A2)
p=0

since N,(0) =0 for r=1,2,...,m.
The solutions to each of the Equations in (A1) in order are

No(t) = Nye "' = fNoe ™", (A3a)
t
Ny(f) = e_k‘“’J kN (e n'dd, s=1,2,...,m—1, (A3b)
0
1
Ny (1) = ka Nm—l(t])dtl- (A3c)
0

If (k.t) < 1 for r=1,2,..., m, then the Equations in (A3) yield the approximate solution

m

t
N,u(t) = fsNokikaks .. .km%, (kt) < 1. (A4)
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Thus, the value of m, the number of mutations necessary to cause the onset of AD, can be determined
by fitting the function in (A4) to the early part of the N,(¢) data curve.

If all the mutation rates k,, r = 1,2, ..., m, are equal to the same constant k, then the solutions in
(A3Db) yield the particularly simple solutions

kS
N,(1) :fSNT—’t“‘e_k’, s=1,2,....m—1, (A5a)
S

and the number of neurons that have developed AD by time 7 is given by

|
5=0 §:

7ktm—l (k[)x
Nau(t) = fN7 |1 — e > " =2 | (A5b)
Notice that N,,(0) =0, as it should, and N,() = N, = f,Nt so that the entire collection of
susceptible neurons die as # becomes infinite, as they must.
From the result in (AS5b) the probability P(7) that a neuron will undergo the ordered set of m
mutations and die at age 7 is given by

CNG) | R R
P == —f{l e ;T . (A6)
The probability in (A6) is also equal to the probability of developing AD at age ¢ in the risk
population, a quantity also known as the prevalence of AD at age ¢. Thus, in a population of a total
number of Ht humans, if the number of humans that have been diagnosed with AD by age ¢ is
denoted by Hap(?), then (A6) leads to

m—1 5
P@) = H—ﬁz(’) =/ {1 —ey @J

J IR(/)df . (A7)
0

Using (A7), the fraction of the population that comes down with AD per unit time at age ¢ (the
fractional AD incidence rate) is given by

_dP@) _ 1 dHap(1) _  fsk"

RO =1 kem === = 4~ =1

t(m*l)e*kt7 (AS)

where m is the number of mutations necessary to cause AD, k is the mutation rate, and f; is the
fraction of the population that is susceptible to developing AD. The values of the three parameters m,
k and f; are determined by fitting the incident rate function in (A8) to AD incidence data. If every
member of the population is susceptible to developing AD, then fy =1 and the fit involves
determining the values of only two parameters, m and k.

An inherent feature of the model developed here is that the cumulative number of people in a risk
population that develop AD over time can never exceed the total number of people in the risk
population, a characteristic known as saturation. The saturation of the model is responsible for the
fact that the general AD incidence function in (A8) monotonically increases, peaks, and
monotonically declines towards zero as the age of the risk population increases. The peak in the
incidence function in (AS8) occurs at the age of

Imax = (m & 1) (A9)
The following procedure was followed in obtaining the least-squares fits shown in this paper.
Referring to (AS8), the parameter

fsHrk™

b
(m— 1!

(A10)

was regarded as an independent parameter to be determined, along with m and k, by the fit. Then,
solving (A10) for f;, the value of f can be calculated from the values of b, m and & returned by the fit.
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If the set of n consecutive data points used in the fit are denoted by {d;} and if the corresponding
model fit for this points are denoted by the set {x;}, then the square of the error of the fit, to be called
chisq, is defined as

Chisq = > [x — dil*. (A11)
i=1

The lower the value of chisq, the better the model fit is to the data.
If kt < 1, then the leading term in the solution in (ASb) is
(k)"

Nu(1) =fsN07, (kt) < 1. (A12)

Equating (A4) and (A12) leads to the following relationship between the average mutation rate k and
the set m mutation rates ky,k», ..., k,,:

k™ = kikoks . .. Ko (A13)

The physical model that produces the result in (A8) for the AD incidence rate has distinct advantages
over the phenomenological models whose independent parameters generally lack a simple, clear
physical interpretation.

If all the mutation rates have different values, then the time-dependent AD incidence rate can be
calculated in a straightforward way using the results in Equations (A3).

For example, if m = 1, then using (3a) and remembering that for r=1, 2,..., m
IR(1; k5 1) = dl\illt([) = kiNo(r) = fNokje 51, (Al4a)
and
Ni(t) = f,No[1 — e 7] (Al14b)

Similarly, if m = 2, then

1 —kit —kat
Ni(t) =fsNg——— " — =1, Al5
10 = fiNo s fe ™ = e 7] (Al5a)
and
dN, (1) kiky gk
IR,(2; k1) = =k =fNg—m— B e Al5b
2(2;kp5 1) ” 2N =f U= 7k1)[€ e ™ (A15b)
As a final example, if m = 3, then
dN3(1) kikoks [(e™h! —e7hl)  (e7h! —e k)
IR(3; k5 1) = = k3N,(t) = fsN - A16)
( . ! Oy — ki) | (ks — ki) (k3 — k2) (

Continuing in this way, the AD incidence rate IR,,(#) for any value of m and arbitrary (positive)
values of the mutation rates ki, k, k3, ..., k,, can be computed.

Notice that the AD incidence functions in (A14a), (A15b), and (A16) all approach zero if the age
of the cohort becomes large enough, a characteristic feature of all AD incidence functions in this
model. For m > 1, the incidence function must also vanish at age t = 0. Thus, for m > 1, it is always
the case that the incidence function starts out at zero, monotonically grows until it reach a peak, and
then monotonically declines towards zero as the age of the risk population continues increasing.
However, the peak in the incidence rate function may occur at ages above the natural human life-
span; in these cases not everyone in the risk population that is susceptible to developing AD will get
it before they die of something else.

For greater clarity, at points in this exposition the function Ny(#) will be denoted by N(s/m, 1),
s=0,1,2,..., m, where m is the number of mutations necessary to cause AD in a characteristic
cohort.
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2. The chi-square (x?) goodness-of-fit test

The chi-square goodness-of-fit test ascertains whether two distributions can be regarded as identical
to each other from a statistical point of view. In this part of the appendix, this test will be used to test
the quality of the compound ordered mutation model fits in Figures 3(c) and 5(c). The discussion
here will follow the notation in R14 (see chapter 11).

The steps in applying the chi-square goodness-of-fit test to the fit in Figure 3(c) are arranged in
Table 7 that follows. The fastest way to illustrate how this test is executed is to explain how each and
every line that appears in this table is obtained.

The top row in Table 7 contains the 8 age intervals used in the collection of male AD incidence
data in Table 1(a).

The second row in Table 7 is simply the sum of all the numerators in each column in Table 1(a).
Thus, this sum is simply the total number of AD cases within each age interval over a 10-year period.

The third row in Table 7 is simply the sum of all the denominators in each column in Table 1(a).
Thus, this sum is simply the total sample population within each age interval.

The fourth row in Table 7 is the model calculation of the AD prevalence at the beginning of the
age interval, and the fifth line is the model calculation of the prevalence at the end of the age interval.
The values that appear on these lines are taken directly from Table 4. For example, for the 60—64 age
interval P; = P(60 years) = 0.00020017 and P;= P(65 years) = 0.00075842. These values are
necessary to compute the next line in Table 7.

The fifth row in Table 7 is the model predictions of the 5-year incidence rates that appear in
Table 1(a). To compute the values on this line for each interval, Equation (11b) will be inverted so
that

0(t) = —In[1 — P(1)]. (14a)

Thus, the value of 6; for each interval is given by

a,:lnv_P"J. (14b)

1—P
For example, for the 60—64 age interval,

{1 — 0.000200
91 = In

1= 0000200 _ 4
1*0.000758] 338107

The other values of 6; on this row are computed in the same way.

The sixth row in Table 7 is the raw expected frequency for this age interval, i.e. the raw number
of expected AD cases for this interval computed from the model, and is computed by taking the
product of 6; on row six and n; on row three. The total number of AD cases on this row will have to be
normalized to give the same total number of observed AD cases on row two (130 cases). This
normalization is performed and the result appears on the next row (row eight).

The chi-square goodness-of-fit test statistic for this problem appears on the last row in Table 7.
The sum of the elements on this row is the positive definite chi-square test statistic defined by

8 8 o
=Y g=y AL (s)

=1 =1 Ej

The conclusion of the analysis in Table 7 is that y > = 3.838 for the fit to the male AD incidence data
shown in Figure 3(c).

Since Zle 0; = Z;LlEj, the number of degrees of freedom here must be reduced by one. Thus,
since there are eight data point in the fit in Figure 3(c), there are 8 — 1=7 degrees of freedom in this
problem. For a problem with 7 degrees of freedom a y *-value of x> = 3.838 means that there is a
79.8% probability (the p-value is 0.798) that the expected (model) and observed (data) distributions
are statistically identical. Thus, by any conventionally used criterion, the model fit in Figure 3(c) is
very good.

In order for this statistical test above to be valid, two general criteria must be met by the expected
frequencies (row eight in Table 7).

Firstly, all expected frequencies must be at least 1. From Table 7, this criterion is met.
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Secondly, at most 20% of the expected frequencies can be less than 5. It must be noted that
although many texts state this rule as ‘all expected frequencies must be at least 5°, research by W. G.
Cochran shows that this statement of the rule is too restrictive. The results in Table 7 show that the
second criterion is also met.

To test the quality of the compound ordered model fit to the female AD incidence data in
Figure 5(c), the above chi-square goodness-of-fit analysis will be repeated here. All of the steps
required in this calculation appear in Table 8, which has exactly the same form as Table 7 above.
Thus, the above explanation of a row in Table 7 is exactly the same for the corresponding row in
Table 8.

Since there are again eight data points in the fit in Figure 5(c), there are again 8—1=7 degrees of
freedom in this problem. From Table 8, the value of test statistic for this fit turned out to be
x> = 4.640. For a problem with 7 degrees of freedom a y >-value of y > = 4.640 means that there is a
70.3% probability (the p-value is 0.7038) that the expected (model) and observed (data) distributions
are statistically identical. Thus, once again, by any conventionally used criterion, the model fit in
Figure 5(c) is very good.

The x? analysis above for the compound ordered mutation model is easily extended to the
compound independent model. The AD incidence rate function in the compound independent model
also consists of two terms described by Equation (13). Here however, each incidence rate term on the
right-hand side of Eguation (13) integrates into a prevalence function given by Equation (8).

The value of y~ as a function of the value of a model parameter determine the degree of
reliability of the model’s prediction of the parameter’s value obtained by the least-squares fit. For
example, the value of y 2 for the fit in Figure 4(b) using the independent model will be described in
detail. All of the steps necessary to compute the value of y % in this case are shown in Table 9 and are
identical to those shown in Tables 7 and 8 for the ordered model. As seen in Table 9, the value
obtained is y > = 3.124, and this point is plotted in Figure 7 as a function of susceptible fraction fi, of
the dominant AD population. Fixing the value of this parameter at another value, refitting the male
AD data with the compound independent model incidence function, and then recomputing the
corresponding value of y? yields the other points shown in Figure 7.

As seen in Figure 7, the minimum values for borh the x> and least-square fit errors occurs at
fio = 0.329, where 2 = 3.12 (p = 0.8733), and both errors increase in either direction as we move
away from this value.

The maximum physically permitted value of f;, in the compound model occurs when f;; = 1 —
fs1 so that the entire population is susceptible to acquiring AD. The value for f;, in this case turns out
to be 1 —0.0111 = 0.988 with x> =4.67 (p = 0.699). Thus, although this value for fi, is
statistically less probable than the value of f;, = 0.329 above, the difference is not great enough to
rule it out. Thus, although the modelling in this paper suggests that immunity to AD may exist, it does
not prove it.

At the other extreme for f;; = 0.18 the least-squares fit for the remaining parameters produces
x> =323 (p = 0.00004), an extremely unlikely result. Thus, values of f,, < 0.18 are statistically
implausible, and 0.18 can be regarded as a lower bound on the value of f;,.



