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This work demonstrates that prostate tumour progression in vivo can be analysed by using
solutions of a mathematical model supplemented by initial conditions chosen according to
growth rates of cell lines in vitro. The mathematical model is investigated and solved
numerically. Its numerical solutions are compared with experimental data from animal
models. The numerical results confirm the experimental results with the growth rates in vivo.
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1. Introduction

The purpose of this paper is to analyse the C3(1)/Tag-Pr cell lines introduced in Refs. [7,12,24]

and to develop a mathematical model which has a potential to describe the growth rates of

Pr-cell lines in vivo. We have shown that the numerical solutions of the mathematical model can

be used to predict the behaviour of the cancer cell (CC) populations in vivo.

Mathematical models of cancer growth have been the subject of research activity for many

years. The models of Refs. [1–4,27] have used DNA content as a measure of the generic term

‘cell size’ to investigate the dynamics of the human cell cycle. For earlier studies on cell cycle

dynamics, see Refs. [9,20,23,25,26]. Models which describe interactions between CCs and

immune systems have been proposed, e.g. in Refs. [13–15]. Another mathematical model for

tumour growth has been recently studied in Ref. [11]. This model is formulated in radial

coordinates and corresponds to brain cancer progression after surgical therapy. Different initial

conditions explored in Ref. [11] correspond to a small remnant of tumour tissue left after

surgical resection.

In this paper, we have explored the model of Ref. [14] for the analysis of the C3(1)/Tag-Pr

cell lines dynamics. The model is composed of five partial integro-differential equations. We

supplement the model equations by different initial conditions which are chosen according to the

experimental data described in Ref. [7]. The different Pr-cell lines in vitro from Ref. [7] are used

as initial values for the model. Our goal is to solve the resulting initial-value problems and

analyse their solutions, which show different progressions of tumours.

ISSN 1748-670X print/ISSN 1748-6718 online

q 2009 Taylor & Francis

DOI: 10.1080/17486700802517518

http://www.informaworld.com

*Corresponding author. Email: zubik@diamond.boisestate.edu

Computational and Mathematical Methods in Medicine

Vol. 10, No. 4, December 2009, 241–252



We construct numerical solutions for the initial-value problems and compare the computed

approximations with the C3(1)/Tag cell lines in vivo, which are described in Ref. [7]. The

approximations show a good agreement between the experimental data of Ref. [7] and the data

predicted by the model. They also show that the cancer progression is larger in the cases of larger

initial values (larger number of CCs injected) than in the cases of smaller initial values imposed

as the initial conditions in the model. This confirms the correlation (illustrated in Ref. [7])

between the in vitro growth characteristics of the cell lines and the in vivo growth of tumours.

The organization of the paper is as follows. Section 2 describes in vitro cell growth in flasks

and in vivo cell growth in C3(1)Tag Mice. Then the mathematical model of the cancer growth is

described in Section 3. Numerical approximations to the solutions of the model are constructed

in Section 4. Results of our numerical experiments are presented and compared with

experimental data in Section 5. Concluding remarks and future goals are described in Section 6.

2. In vitro cell growth in flasks and in vivo cell growth in C3(1)Tag Mice

Over 210,000 men in the USA are diagnosed with prostate cancer every year [8]. Of these,

26,000 will succumb to the disease as a result of widespread metastasis to secondary organs,

primarily the bones, lungs and liver [10]. These statistics suggest the need for improved early

detection techniques and treatment options.

Prostate cancer progression is characterized by distinct morphological characteristics

signifying various stages. Prostatic intraepithelial neoplasia (PIN) is believed to be the precursor

lesion to prostate adenocarcinoma [5]. Inevitably, invasive adenocarcinoma will enter into

systemic circulation and potentially develop secondary tumours as metastases. These highly

aggressive, metastatic cells are the source of many complications associated with cancer in

addition to the ultimate cause of death [6]. Good model systems are needed that allow for an

increased understanding of the molecular alterations occurring during human prostate tumour

progression.

The C3(1)/Tag transgenic mouse model of prostate cancer was developed by expressing the

transforming sequences of the SV40 large T antigen (SV40 Tag) in tissues utilizing the

regulatory sequences of the rat steroid binding protein C3(1) [18,19]. Prostates of transgenic

mice develop low and high grade PIN from 2 to 7 months of age and adenocarcinoma after 6

months [22]. Based upon the predictable progression of tumour development in this model, a

series of cell lines from C3(1)/Tag mice at different cancer stages were established, including the

low-grade PIN cell line, Pr111 [24] and the high-grade PIN cell line, Pr117 [7]. Pr14 was

established in tissue culture from a 6-month-old C3(1)/Tag mouse prostate and is an aggressive

adenocarcinoma cell line [12]. Nude mouse studies involving the subcutaneous injection of Pr14

cells resulted in a rare lung metastasis. These lesions were isolated and established in culture as

novel metastatic cell lines, Pr14C1 and Pr14C2 [7].

In both in vitro and in vivo analyses, the five cell lines could be distinguished by their growth

characteristics. Using an in vitro proliferation assay, early passage (5–10) cells were cultured

on collagen-coated flasks (Corning, NY) in mammary epithelial growth media (MEGM)

(Bio-Whittaker, Walkersville, MD) supplemented with 2% fetal bovine serum (Invitrogen,

Carlsbad, CA) and 4 nM of the synthetic androgen mibolerone (Sigma, St. Louis, MO) [7].

104 cells/well were grown for 5 days in six-well plates, trypsinized, and counted daily using a

Neubauer hemacytometer chamber (Hausser Scientific, Horsham, PA). The low-grade PIN cell

line Pr111 had the lowest proliferation rate, Pr117, Pr14 and Pr14C2 had intermediate growth

rates, and the metastatic Pr14C1 had the fastest rate of proliferation [7] (see Figure 1).

The in vivo growth rate of the cell lines correlatedwell with the in vitro results. 106 cells/0.2ml

saline were subcutaneously injected into 5–6 months old syngeneic C3(1)/Tag male mice [7].
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Only three of five mice injected with Pr111 cells developed small tumours (,200mm) 10–11

weeks after injection. Injection of all of the other cell lines produced large tumours that grew

rapidly in five of five mice between 2 and 6 weeks after injection. Pr14C1 cells were the most

aggressive [7]. These cell lines establish a model system with a cell line of low tumourigenicity

(Pr111), cell lines with intermediate tumourigenicity (Pr117, Pr14 and Pr14C2), and a cell line

with high tumourigenicity (Pr14C1).

3. Mathematical model

We follow the idea of Ref. [14] and investigate the development of CCs by means of

mathematical equations. As in Ref. [14], we denote by

f iðt; uÞ; f i : ½0;1Þ £ ½0; 1�! Rþ; i ¼ 1; . . . ; 6;

Figure 1. Morphological features and growth rates of C3(1)/Tag cell lines. Top and middle panels,
histology of the same type of prostate lesion from which the C3(1)/Tag cell lines were isolated and
morphological features of the cells in culture. A, LG-PIN-like lesions in the prostate of a 3–4-month-old
C3(1)/Tag mouse. D, Pr111 cells in culture, isolated from a prostate with LG-PIN-like lesions. B, HG-PIN-
like lesions in the prostate of a 5-month-old C3(1)/Tag mouse from which the Pr117 line is derived. E,
Pr117 cells in culture. C, adenocarcinoma in the prostate of a C3(1)/Tag mouse. F, morphology of Pr14
cells in culture isolated from a C3(1)/Tag mouse adenocarcinoma. Cells are small and lack cytoplasm
processes compared with Pr111 and Pr117. Pr14C1 and Pr14C2 cells were isolated from lung metastasis
found in nude mice after injection of Pr14. G, Pr14C1 cells in culture. H, growth rates of Pr-cells line in
vitro. Pr111 has the lowest rate of proliferation, whereas Pr14C1 has the highest rate of proliferation, with
the other cells lines having intermediate rates. I, growth rates in vivo correlate with in vitro results.
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the distribution density of the ith population with activation state u [ ½0; 1� at time t $ 0.

Moreover, let

niðtÞ ¼

ð1
0

f iðt; uÞdu; ni : ½0;1Þ! Rþ; i ¼ 1; . . . ; 6; ð1Þ

be the concentration of the ith cells at time t $ 0. Here, the subscript i ¼ 1 refers to the CCs. The

other five populations described in our model are the helper T cells (Th), denoted by the

subscript i ¼ 2, the cytotoxic T lymphocytes (CTLs), denoted by the subscript i ¼ 3, the antigen

presenting cells (APCs), denoted by the subscript i ¼ 4, the antigen-loaded APCs ([Ag-APC]),

denoted by the subscript i ¼ 5, and the cells of the host environment (HE), denoted by the

subscript i ¼ 6.

Here, the activation state of a given CC denotes the probability of recognition of this CC by

APCs. The higher the probability, the higher is the possibility of the immune system to perform

effective destruction of the tumour cell. On the contrary, if the activation state of a CC is small

(u < 0) then the CC is ‘invisible’ for the APCs, e.g. due to antigenic modulation [16]

(the disappearance of detectable tumour-specific antigens from the surface of the CC).

Therefore, the smaller the activation state of a CC, the more dangerous is the tumour cell.

In ourmodel, the activation state of a given CTL is defined as the probability of the destruction

of a recognizedCC after the interactionwith the givenCTL. The population of Th cells is involved

in the activation and the proliferation of immune cells (e.g. APCs, CTLs, Th cells, B cells) by the

production and the secretion of cytokines leading to the generation and the activation of immune

cells [17]. In ourmodel, the activation state of a givenTh cell is defined as the quantity of cytokines

produced by the Th cell after its interaction with [Ag-APC], normalized with respect to the

maximal possible production of cytokines.

We take into account only binary cell interactions which are supposed to be homogeneous in

space and without time delay. These encounters may change the activation state of cells as well as

create or destroy cells. The activation states of the populations denoted by i [ {1; 2; 3} are

allowed all possible values u [ ½0; 1�. For example, we describe the possible decrease in the

states of activity of CCs by the parameter tð1Þ16 as well as the possible increase in the activation

states of Th cells and CTLs by the parameters tð3Þ25 and tð3Þ23 , respectively (and the corresponding

terms in Equations (2)–(4) below).

As a simplification of the biological reality, we admit the following assumptions. For the

populations denoted by i ¼ 4, 5 and 6, we neglect the possible change of their activity and

assume that only some fixed state of activation (say u ¼ 0.5) is possible. The distribution

function f6 of the HE is assumed to be constant in time. Table 1 shows the populations variables

and their abbreviations for i ¼ 1; . . . ; 6.
Our model describes the cellular immune response against cancer [16]. The following

interactions are taken into account. We assume that the interactions between CCs and HE lead to

Table 1. Cancer-immune system dynamics variables.

Variable i Abbreviation Population Activation state u [ [0, 1]

1 CC Cancer cells Recognition of CC by APC
2 Th Helper T cells Cytokines produced by Th cells
3 CTL Cytotoxic T lymphocytes Destruction of CC
4 APC Antigen presenting cells 0.5
5 [Ag-APC] Antigen-loaded APCs 0.5
6 HE Host environment cells 0.5 and f6 constant
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the production of new CCs as well as to decreasing the possibility of the immune system to

recognize the CCs (thus they becomemore dangerous). The production of new CCs is assumed to

be proportional to the number of existent CCs. The respective gain term is

pð1Þ16

ð1
0

f 1ðt; vÞdv:

Here, the subscripts 1 and 6 denote that the parameter pð1Þ16 corresponds to interactions

between populations i ¼ 1 and i ¼ 6 leading to generation of cells belonging to population i ¼ 1

(superscript 1). Hereafter, the respective parameters are supplied with subscripts and

superscripts in a similar way.

The activation state of CCs decreases and this change of activity is described by the term

tð1Þ16 2u

ð1
u

f 1ðt; vÞdv2 u2 f 1ðt; uÞ

� �
:

Specific Th1 cells and CTLs are involved in the elimination of CCs. We assume that the

number of destroyed CCs is proportional to the activation states of Th cells and CTLs and the

respective loss terms are

d1i f 1ðt; uÞ

ð1
0

v f iðt; vÞdv; i ¼ 2; 3; u [ ½0; 1�;

see Ref. [14] for more details. Thus we obtain the equation

›f 1

›t
ðt; uÞ ¼pð1Þ16

ð1
0

f 1ðt; vÞdvþ tð1Þ16 2u

ð1
u

f 1ðt; vÞdv2 u2 f 1ðt; uÞ

� �

2 d12 f 1ðt; uÞ

ð1
0

vf 2ðt; vÞdv2 d13 f 1ðt; uÞ

ð1
0

vf 3ðt; vÞdv;

ð2Þ

for the time evolution of the CCs.

In our model, the time evolution of the populations i ¼ 2 and 3 depends on the following

factors: the constant production of T cells (Th cells and CTLs) by HE, the generation of T cells

as well as the increasing of the activation states of Th cells and CTLs due to the interactions

between Th cells and [Ag-APC], the destruction of T cells resulting from their interactions with

CCs, the natural death of T cells and the possible inlet of T cells.

There are observations that the HE constantly produces T cells and APCs [17]. The activity

of newly generated T cells is small and it increases during their development and selection

[16]. We model the process of the production of Th cells and CTLs by the gain terms

pðiÞ16ð12 uÞ; i ¼ 2; 3:

The interactions between Th cells and [Ag-APC] induce a generation of new Th cells and

CTLs. We assume that the rate of this production is proportional to the activation states of Th

cells and that the probability of creation of very active T cells is less than the probability of the
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creation of less active T cells. The respective gain terms are

pðiÞ25ð12 uÞn5ðtÞ

ð1
0

vf 2ðt; vÞdv; u [ ½0; 1�; i ¼ 2; 3:

The interactions between Th cells and [Ag-APC] lead to an increase in the activation states

of Th cells and CTLs. We assume that the change of the activity of Th cells depends on the

number of [Ag-APC] and is described by the term

tð2Þ25 n5ðtÞ 2

ðu
0

ðu2 vÞf 2ðt; vÞdv2 ð12 uÞ2 f 2ðt; uÞ

� �
:

We assume that the change of the activity of CTLs depends on the number of Th cells and is

described by the term

tð3Þ23 2

ðu
0

ðu2 vÞf 3ðt; vÞdv2 ð12 uÞ2 f 3ðt; uÞ

� �ð1
0

f 2ðt; vÞdv:

The interactions between T cells and CCs may result in apoptosis of Th cells and CTLs [17]. We

assume that the respective loss terms for the populations i ¼ 2 and 3 are

di1 f iðt; uÞ

ð1
0

f 1ðt; vÞdv; i ¼ 2; 3:

The natural death of Th cells and CTLs is described by the terms

di6 f iðt; uÞ; i ¼ 2; 3;

and the possible influx of Th cells and CTLs is described by

Siðt; uÞ; i ¼ 2; 3:

In this way, we obtain

›f 2

›t
ðt; uÞ ¼ pð2Þ16 ð12 uÞ þ pð2Þ25 ð12 uÞn5ðtÞ

ð1
0

vf 2ðt; vÞdv2 d21 f 2ðt; uÞ

ð1
0

f 1ðt; vÞdv

2 d26f 2ðt; uÞ þ tð2Þ25 n5ðtÞ 2

ðu
0

ðu2 vÞf 2ðt; vÞdv2 ð12 uÞ2 f 2ðt; uÞ

� �
þ S2ðt; uÞ

ð3Þ

and

›f 3

›t
ðt;uÞ¼pð3Þ16 ð12uÞþpð3Þ25 ð12uÞn5ðtÞ

ð1
0

vf 2ðt;vÞdv2d31f 3ðt;uÞ

ð1
0

f 1ðt;vÞdv

þ tð3Þ23 2

ðu
0

ðu2vÞf 3ðt;vÞdv2 ð12uÞ2 f 3ðt;uÞ

� �ð1
0

f 2ðt;vÞdv2d36 f 3ðt;uÞþS3ðt;uÞ; ð4Þ

for the time evolution of the populations i ¼ 2 and 3, respectively.

For the time evolution of the fourth population of APCs, we assume their constant

production by HE described by the term pð4Þ16 as well as production of APCs due to the interactions

between Th cells and [Ag-APC] with a rate proportional to the state of activity of Th cells
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described by the term

pð4Þ25 n5ðtÞ

ð1
0

vf 2ðt; vÞdv:

A part of APCs is loaded with cancer antigens due to the interactions between APCs and CCs

[16]. We assume that the concentration of new [Ag-APC] is proportional to the state of activity

of CCs and is described by the term

bð5Þ14 n4ðtÞ

ð1
0

vf 1ðt; vÞdv:

We note that this term is a loss term for the fourth population of APCs and it is a gain term for the

fifth population of [Ag-APCs]. Taking into account also the natural death process of APCs

described by the term

d46n4ðtÞ;

we obtain the equation

d

dt
n4ðtÞ ¼ pð4Þ16 þ pð4Þ25 n5ðtÞ

ð1
0

vf 2ðt; vÞdv2 bð5Þ14 n4ðtÞ

ð1
0

vf 1ðt; vÞdv2 d46n4ðtÞ ð5Þ

for the time evolution of the population i ¼ 4.

We also consider the possible source term S5(t) of [Ag-APC], the natural death of [Ag-APCs]

described by the term

d56n5ðtÞ

as well as their destruction by CCs described by the term

d51n5ðtÞ

ð1
0

f 1ðt; vÞdv:

This leads to the equation

d

dt
n5ðtÞ ¼ bð5Þ14 n4ðtÞ

ð1
0

vf 1ðt; vÞdv2 d51n5ðtÞ

ð1
0

f 1ðt; vÞdv2 d56n5ðtÞ þ S5ðtÞ; ð6Þ

for the time evolution of the population i ¼ 5.

The entire model (2)–(6) for the interacting populations is a system of partial integro-

differential equations. Note that (2)–(6) is not complete and has to be supplemented by initial

conditions. We apply the experimental data of Ref. [7] for the initial conditions and choose

different Pr–cell lines in vitro as initial values. The values of the parameters of the model can be

found by using experimental data and numerical approximations to the solutions of (2)–(6). The

approximations are constructed in Section 4.

4. Approximate solution of the model

The purpose of this section is to construct a numerical solution to the concentrations of cells

njðtÞ, j ¼ 1; . . . ; 5, at any time variable t . 0. The concentrations n1ðtÞ, n2ðtÞ and n3ðtÞ can be

computed from (1) by using the functions f 1ðt; uÞ, f 2ðt; uÞ and f 3ðt; uÞ. To compute numerical
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approximations to the values f 1ðt; uÞ, f 2ðt; uÞ, f 3ðt; uÞ, n4ðtÞ and n5ðtÞ, we discretize the system

(2)–(6) with respect to the activation state u [ ½0; 1� by applying the uniform grid-points

ui ¼ iDu; i ¼ 0; . . . ;N;

whereN is a positive integer andDu ¼ 1=N. Then the values f 1ðt; uÞ, f 2ðt; uÞ and f 3ðt; uÞ in (2)–(6)
can be replaced by their approximations

f jðt; uiÞ < f j;iðtÞ; j ¼ 1; 2; 3; ð7Þ

at the state grid-points ui [ ½0; 1�. Similarly, the values S2ðt; uÞ and S3ðt; uÞ can be replaced by

the approximations

Sjðt; uiÞ < Sj;iðtÞ; j ¼ 2; 3: ð8Þ

For every t . 0 and every ui [ ½0; 1�with i ¼ 0; . . . ;N, we apply the approximations (7) for

quadrature formulas to approximate the integrals:

ð1
0

f jðt; vÞdv < QN
0 ½f jðt; vÞ�; j ¼ 1; 2;

ð1
0

vf jðt; vÞdv < QN
0 ½vf jðt; vÞ�; j ¼ 1; 2; 3;

ð1
ui

f 1ðt; vÞdv < QN
i ½f 1ðt; vÞ�;

ðui
0

ðui 2 vÞf jðt; vÞdv < Qi
0½ðui 2 vÞf jðt; vÞ�; j ¼ 2; 3:

ð9Þ

The approximations in (9) represent arbitrary quadratures. For example, in Section 5, the values

QN
0 ½f jðt; vÞ�, Q

N
0 ½vf jðt; vÞ�, Q

N
i ½f 1ðt; vÞ� and Qi

0½ðui 2 vÞf jðt; vÞ� are computed by the composite

trapezoidal rule.

The approximations (7), (8) and (9) applied to the partial integro-differential system (2)–(6)

result in the following system of ordinary differential equations:

df 1;i
dt

ðtÞ ¼ pð1Þ16Q
N
0 f 1ðt; vÞ
� �

þ tð1Þ16 2uiQ
N
i ½f 1ðt; vÞ�2 u2i f 1;iðtÞ

� �
2 d12f 1;iðtÞQ

N
0 ½vf 2ðt; vÞ�

2d13 f 1;iðtÞQ
N
0 ½vf 3ðt; vÞ�;

df 2;i
dt

ðtÞ ¼ pð2Þ16 ð12 uiÞ þ pð2Þ25 ð12 uiÞn5ðtÞQ
N
0 ½vf 2ðt; vÞ�2 d21 f 2;iðtÞQ

N
0 ½f 1ðt; vÞ�2 d26f 2;iðtÞ

þtð2Þ25 n5ðtÞ 2Qi
0½ðui 2 vÞf 2ðt; vÞ�2 ð12 uiÞ

2f 2;iðtÞ
� �

þ S2;iðtÞ;

df 3;i
dt

ðtÞ ¼ pð3Þ16 ð12 uiÞ þ pð3Þ25 ð12 uiÞn5ðtÞQ
N
0 ½vf 2ðt; vÞ�2 d31 f 3;iðtÞQ

N
0 ½f 1ðt; vÞ�

þtð3Þ23 2Qi
0½ðui 2 vÞf 3ðt; vÞ�2 ð12 uiÞ

2 f 3;iðtÞ
� �

QN
0 ½f 2ðt; vÞ�2 d36 f 3;iðtÞ þ S3;iðtÞ;

dn4
dt
ðtÞ ¼ pð4Þ16 þ pð4Þ25 n5ðtÞQ

N
0 ½vf 2ðt; vÞ�2 bð5Þ14 n4ðtÞQ

N
0 ½vf 1ðt; vÞ�2 d46n4ðtÞ;

dn5
dt
ðtÞ ¼ bð5Þ14 n4ðtÞQ

N
0 ½vf 1ðt; vÞ�2 d51n5ðtÞQ

N
0 ½f 1ðt; vÞ�2 d56n5ðtÞ þ S5ðtÞ:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð10Þ

The equations in (10) are solved in Section 5. The numerical solutions f j;iðtÞ, with j ¼ 1; 2; 3 and
i ¼ 0; . . . ;N, are then used to compute the approximations to the functions n1ðtÞ, n2ðtÞ and n3ðtÞ.
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The approximations are computed from

njðtÞ < QN
0 ½f jðt; vÞ�; j ¼ 1; 2; 3: ð11Þ

5. Numerical experiments

The purpose of this section is to solve system (10) and compare its solutions with the C3(1)/Tag

cell lines and their growth characteristics in vivo presented in Ref. [7], Figure 1I (see Figure 1).

System (10) is not complete and needs to be supplemented by initial conditions. We apply the

C3(1)/Tag cell lines in vitro presented in Ref. [7], Figure 1H (see Figure 1) as the initial values

for (10). Numerical tests are performed with (10) supplemented by different initial conditions,

which are selected according to Figure 1H. The initial values, for which the resulting numerical

solutions fit the experimental data from Figure 1I, are listed in Table 2. The values in the second

row of Table 2 are obtained by scaling the values from Figure 1H with the approximate scale

1:1.6 £ 107.

For the numerical experiments, the composite trapezoidal rule is applied to the

approximations (9) and (11). The equations in (10) are solved by the code ode15s from the

Matlab ODE suite [21]. The numerical solutions of (10) are computed with AbsTol ¼ 1026 and

RelTol ¼ 1022. The approximations to f 1;iðtÞ, with i ¼ 0; . . . ;N, are then applied to (11).

In order to obtain a unique solution of the model, its parameter values have to be determined.

These parameters are not known in advance and their determination is based on numerical

experiments. These experiments are performed with different sets of parameters and with the

initial data listed in Table 2. The resulting numerical solutions are then compared with the

experimental data provided in Figure 1I. The parameter values, which minimize the differences

between the numerical solution and the experimental data, are listed in Table 3.

The computed approximations to n1ðtÞ are presented in Figure 2(b). For comparison, the

experimental data from Ref. [7] are given in Figure 2(a). We assume that since the populations of

the CCs increase (for each of the cell lines), their concentrations and volumes increase

simultaneously. The cumulative tumour volumes in Figure 2(b) have been obtained from n1ðtÞ

by using the reverse scale 1:1.6 £ 107 and assuming that 1mm3 of tumour includes about

80,000 CCs. From the shapes of the curves, we see that both the experimental and numerical data

illustrate the C3(1)/Tag cell lines and their growth characteristics in vivo.

Figure 2 indicates that the model describes accurate growth characteristics of the Pr-cell

lines in vivo. The numerical solutions presented in Figure 2(b) illustrate the in vivo tumour

growth rates of the cell lines Pr111, Pr117, Pr14, Pr14C2 and Pr14C1. The Pr111 cells show low

tumourigenicity, while the Pr117, Pr14 and Pr14C2 cells show intermediate tumourigenicity,

and the Pr14C1 show high tumourigenicity.

The numerical solution for the growth rate of the cell line Pr111 is computed from the model

(10) supplemented by the smallest initial value (the smallest in vitro rate of proliferation)

indicated in Ref. [7] (see Figure 1). Therefore, the rate of growth indicated in Figure 2(b) for

Pr111 is the smallest (the solid line close to the time axis). On the other hand, the numerical

Table 2. Initial conditions for (10).

Initial values at
t ¼ 0 for u [ [0,1] Pr111 Pr14 Pr14C2 Pr117 Pr14C1

f1(0,u) ¼ f3(0,u) ¼ n5(0) ¼ 0.4 £ 1022 0.9 £ 1022 1.0 £ 1022 1.1 £ 1022 1.7 £ 1022

f2(0,u) ¼ n4(0) ¼ 0.0 0.0 0.0 0.0 0.0
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solution for the growth rate of the cell line Pr14C1 is computed from (10) with the largest initial

value (the largest in vitro rate of proliferation) indicated in Ref. [7] and the rate of growth shown

in Figure 2(b) for Pr14C1 is the largest.

The numerical solutions for the growth rates of Pr117, Pr14 and Pr14C2 are presented in

Figure 2(b) by the dotted, dash-dotted and dashes lines, respectively. These numerical solutions

are computed from the model (10) supplemented by the initial values chosen from Ref. [7] for

Pr117, Pr14 and Pr14C2, respectively. These initial values are intermediate between the initial

Figure 2. Experimental versus predicted data. (a) Experimental data, (b) predicted data.

Table 3. Parameter values for different Pr-cell lines in vivo.

Symbol Pr111 Pr117 Pr14 Pr14C2 Pr14C1

pð1Þ16 0.4545 0.7143 0.6600 0.9901 1.6667

pð2Þ16 0.0909 0.1429 0.0667 0.1980 0.3333

pð3Þ16 0.0909 0.1429 0.0667 0.1980 0.3333

pð4Þ16 0.0909 0.1429 0.0667 0.1980 0.3333

pð2Þ25 0.4545 0.7143 0.3333 0.9901 1.6667

pð3Þ25 0.0455 0.0714 0.0333 0.0990 0.1667

pð4Þ25 0.9091 1.4286 0.6667 1.9802 3.3333

tð1Þ16 0.9091 1.4286 0.6667 1.9802 3.3333

tð2Þ25 0.9091 1.4286 0.6667 1.9802 3.3333

tð3Þ25 0.9091 1.4286 0.6667 1.9802 3.3333

bð5Þ14 2.0907 3.2854 1.5332 4.5540 7.6659
d12 0.9091 1.4286 0.6667 1.9802 3.3333
d13 0.0909 0.1429 0.0667 0.1980 0.3333
d21 0.0909 0.1429 0.0667 0.1980 0.3333
d26 0.0 0.0 0.0 0.0 0.0
d31 0.0091 0.0143 0.0067 0.0198 0.0333
d36 0.0 0.0 0.0 0.0 0.0
d46 0.0 0.0 0.0 0.0 0.0
d51 0.0909 0.1429 0.0667 0.1980 0.3333
d56 0.0 0.0 0.0 0.0 0.0
S2, S3, S5 0.0 0.0 0.0 0.0 0.0
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values for Pr111 and Pr14C1 and the corresponding numerical solutions for Pr117, Pr14 and

Pr14C2 are intermediate between the numerical solutions of Pr111 and Pr14C1.

The numerical results presented in Figure 2(b) confirm the experimental results of Ref. [7]

and show that the in vitro growth characteristics of cell lines correlate well with the in vivo

growth of tumours.

6. Concluding remarks

We have presented a correlation between numerical and experimental results. The numerical

results have been obtained by solving a system of partial integro-differential equations. Growth

rates of prostate CC lines in vitro have been used as initial values for the initial conditions

supplementing the model equations. The numerical approximations to the solutions of the

resulting model have shown a good agreement with in vivo growth of tumours. Different kinds of

tumourigenic cell lines have been illustrated by the numerical solutions of the mathematical

model. The numerical results have confirmed the experimental results by showing that growth

rates in vivo correlate with growth rates in vitro.

It would be interesting to develop a strategy for approximating exact amounts of CCs in

different kinds of tumours. Therefore, our future work will address the exact relation between

the concentrations and volumes of tumours. Another interesting open question related to the

previous, which we plan to study, concerns quantitative and qualitative analysis of metastases.

We will also address an efficient algorithm for finding precise parameter values for the model

equations. For this algorithm, we will adopt our method presented in this paper. The method will

be used to compute numerical solutions for the model with different parameter values. The

numerical solutions will then be compared with the experimental data to compute their errors. In

order to obtain the model outputs as close as possible to the experimental data, we will minimize

the sum of the squared errors.
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