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This paper describes two approaches to modelling lung disease: one based on a multi-
compartment statistical model with a log normal distribution of ventilation perfusion
ratio ( _V= _Q) values; and the other on a bifurcating tree which emulates the anatomical
structure of the lung. In the statistical model, the distribution becomes bimodal, when
the _V= _Q values of a randomly selected number of compartments are reduced by 85% to
simulate lung disease. For the bifurcating tree model a difference in flow to the left and
right branches coupled with a small random variation in flow ratio between generations
results in a log normal distribution of flows in the terminal branches. Restricting flow
through branches within the tree to simulate lung disease transforms this log normal
distribution to a bi-modal one. These results are compatible with those obtained from
experiments using the multiple inert gas elimination technique, where log normal
distributions of _V= _Q ratio become bimodal in the presence of lung disease.
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1. Introduction

Models of the respiratory system which include lung disease ideally require mathematical

descriptions of both the anatomical and physiological impacts of the disease, and in

particular, the impact the disease has on gas exchange within the lung. The primary

determinant of gas exchange efficiency in the lung is the matching of alveolar ventilation

with blood flow through the alveolar capillaries and the heterogenous distribution of

ventilation ð _VÞ and perfusion ð _QÞ across the lung. This has been studied by a variety of

experimental techniques including: multiple inert gas elimination technique (MIGET)

[26], isotope imaging [4], positron emission tomography (PET; [16,21,22]) and

fluorescent microspheres [1–3,9,20]. In order to achieve a better understanding of how

the anatomical structure of the lung relates to gas exchange, a number of mathematical

models of the lung have been proposed including 3D finite element models [13,15], flow

bifurcation models [28] and fractal geometries [5,9,17].

The majority of these models have been developed for normal lungs and to date little

attention has been paid to the problem of modelling diseased lungs, in particular lungs with

acute disease. For subjects with very severe acute lung disease who are admitted to
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intensive care, it has been shown that the disease is spatially localized within the lung

[14,23]. This suggests that acute lung disease, sometimes referred to as acute lung injury,

can potentially be modelled as a spatially localized change in the _V= _Q values found in the

normal lung. Ventilation and perfusion distributions are commonly described in terms of a

log normal function, since this allows a wide dynamic range in the value of the parameters

without the presence of negative values, which are physiologically impossible. The

parameter recovery algorithms used in the MIGET aim to provide ventilation and

perfusion distributions that are log normally distributed for normal subjects [11,24]. When

these parameter recovery algorithms are applied to the data obtained from MIGET on

patients with chronic adult respiratory distress syndrome (ARDS) [7] or other pathologies

[26] bimodal distributions result. A unimodal distribution in normal lungs which becomes

bimodal in the presence of lung disease is compatible with the experimental finding that

lung disease is spatially localized [14,23], but not uniquely so.

In this paper, we explore the use of log normal data series as a basis for modelling the

distribution of _V= _Q ratios in a multi-compartment lung. In addition, we propose a

theoretical model of the lung based on a bifurcating tree structure that represents the

conducting airways of the lung extending from the trachea to the terminal bronchioles as

the basis for modelling lung disease. Irrespective of the aetiology of the lung disease, it

ultimately affects gas exchange across the alveolar membrane, altering the _V= _Q ratio

which in turn can be regarded as effectively reducing the volume of gas and/or blood

available to participate in gas exchange. Therefore, modifications to the values in the log

normal data series or to the structure of the bifurcating tree potentially allow the effects of

regional lung disease to be modelled.

2. Theoretical models

2.1 Statistical models

The log normal probability density function is characterized by two parameters m and s

and is given by:

Fðxjm;sÞ ¼
1

xs
ffiffiffiffiffiffi
2p

p e
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; ð1Þ

and where the distribution is characterized by:

Mean ¼ emþ
s 2

2 ; ð2Þ

Median ¼ em; ð3Þ

Variance ¼ eð2mþ2s 2Þ 2 eð2mþs 2Þ: ð4Þ

It can be seen that the mean of the distribution depends on both m and s. In order to

construct a log normal distribution for ventilation, we can use the fact that the mean of the

ventilation distribution is given by EðxÞ ¼ _Vtot=Nmlmin21, where _Vtot is the total

ventilation and N is the number of compartments used to model the lung. Using this and

rearranging Equation (2) gives the parameter m _V:

m _V ¼ 1n
_Vtot

N
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2

1
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where m _V and s _V are the parameters associated with the ventilation distribution. Replacing
_Vtot and sv in the above expression with _Qtot and s _Q gives an equivalent expression for m _Q,

where the subscript _Q indicates the perfusion distribution.

It is not clear at this stage how numerical values for the parameters s _V and s _Q for a

normal lung can be assigned as they cannot, by definition, be measured or inferred directly.

Wagner et al. [24] quote values of s _V and s _Q derived from distributions, where _V and _Q

were expressed as a function of _V= _Q (which we have denoted s _Vj
_V= _Q and s _Qj

_V= _Q,
respectively) for a young normal male of s _Vj

_V= _Q ¼ 0:35 and s _Qj
_V= _Q ¼ 0:43. However,

in order to examine the effects of lung disease on log normal distributions, we need to

know the values of s _V and s _Q for their native distributions (distributions of number of

compartments as a function of ventilation or perfusion), rather than those obtained as a

function of _V= _Q. There is clearly a relationship between the values of s _V and s _Vj
_V= _Q and

between s _Q and s _Qj
_V= _Q. Establishing this relationship gives a potential way of

determining numerical values for s _V and s _Q.

In order to explore this relationship, Equation (1) was used to generate a series of

distributions for _V and _Q, using typical values of alveolar ventilation _VT and total perfusion
_QT of 5250 and 5000mlmin21, respectively, whilst the values of s _V and s _Q were varied

between 0.1 and 1 in steps of 0.1. These distributions were combined using the method of

West and Wagner [26] to give distributions of _V and _Q as a function of _V= _Q. For each
combination of values of s _V and s _Q, the values of s _Vj

_V= _Q and s _Qj
_V= _Q were calculated.

From the plots of these data (Figure 1) it can be seen that s _Qj
_V= _Q varies approximately

linearly withs _V ands _Q and thats _Vj
_V= _Q varies linearly withs _V ands _Q for values ofs _V less

than about 0.5. It therefore follows that s _Vj
_V= _Q and s _Qj

_V= _Q will vary linearly with

js _V 2 s _Qj ( ¼ Ds, Figure 2) for values of s _V less than about 0.5. Further processing of the

data given in Figures 1 and 2 showed that the gradient of the relationship between s _Vj
_V= _Q

and js _V 2 s _Qj and s _Qj
_V= _Q and js _V 2 s _Qj varied linearly with the ratio

_VT= _QT (Figure 3)

and therefore, js _V 2 s _Qj can only be determined for a specific value of _VT= _QT . The data in

Figure 2 is for typical values of total ventilation ð _VT Þ and total perfusion ð _QT Þ of 5250 and

5000mlmin21, respectively, ð _VT= _QT ¼ 1:05Þ. Using these data with s _Vj
_V= _Q ¼ 0:35 and

s _Qj
_V= _Q ¼ 0:43 yielded an average value for js _V 2 s _Qj of 0.35.Having obtained a value for

js _V 2 s _Qj, it was now necessary to determine a mean value of s ððs _V þ s _QÞ=2Þ, so that

explicit values ofs _V ands _Q could be determined. In order to determine the sensitivity of the

Figure 1. Plots showing the relationship between s _V and s _Q (sv and sq, respectively, on the graph
axes) for their native distributions against s _V expressed as a function of _V= _Q (s _Vj

_V= _Q), left and s _Q

expressed as a function of _V= _Q (s _Qj
_V= _Q), right (note: _V= _Q is shown as v/q on the graph axes).
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value of s to the values of s _Vj
_V= _Q and s _Qj

_V= _Q, values of s _Vj
_V= _Q and s _Qj

_V= _Q were

calculated for js _V 2 s _Qj ¼ 0:35 as the mean value of s was varied between 0.2 and 1.1 in

steps of 0.1. The results, plotted in Figure 4, showed that the values of s _Vj
_V= _Q and s _Qj

_V= _Q
were largely independent of the mean value of s. Thus, a mean value of 0.4 was selected so

that js _V 2 s _Qjwas evenly distributed about the mean value. This give values for s _V and s _Q

of 0.23 and 0.58, respectively. These are the dispersion parameters for the log normal

distribution of ventilation and perfusion in a normal lung. Usedwith Equation (1), thesewill

give the distribution of ventilation values at the end of the conducting airways and the

distribution of perfusion values at the corresponding level within the pulmonary circulation.

Figure 2. The relationship between the modulus of the difference in value of sigma for the native
distributions of ventilation and perfusion (js _V2 s _Qj) and the value of sigma obtained for
ventilation as a function of _V= _Q (s _Vj

_V= _Q) shown ( £ , - - -) and perfusion as a function of _V= _Q
(s _Qj

_V= _Q), shown (þ , - · - ·) for _VT= _QT ¼ 1. In each case the line shown is the line of best fit.

Figure 3. The gradient of the line of best fit for s _Vj
_V= _Q against js _V2s _Qj ¼ Ds ( £ ) and for

s _QjV=QðÞ against js _V2s _Qj ¼ Ds (þ) (see Figure 2) for values of _VT= _QT between 0.2 and 2.
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Having obtained values for s _V and s _Q, it is now possible to generate two sets of

numbers _Vi and _Qiði ¼ 1 . . .NÞ for the N compartments of the lung model from a log

normal distribution with the parameter sets ðm _V;s _VÞ and ðm _Q;s _QÞ, respectively. A set of
_Vi= _Qi ratios can then be obtained from the individual values using:

_V

_Q
¼

_Vi

_Qi

; ð6Þ

for i ¼ 1, . . . , N. A x 2 analysis of the resultant histogram of these _V= _Q ratios for

N ¼ 2000, shows that this in turn is log normally distributed both when _Vi and _Qi are

correlated ( p ¼ 0.96) and when they are uncorrelated ( p ¼ 0.99).

2.2 Structural models

Whilst there are good theoretical reasons for the use of a log normal distribution there is a

need to establish whether that distribution is appropriate to a model of the physical

structure of the lung suitable for the investigation of acute lung disease. For the purposes

of this study, the lung has been modelled as a dichotomously branching tree such that the

flow at the top of the tree is normalized to 1. This parent tube bifurcates into two daughter

tubes and conservation of mass governs that if a fraction a flows down one daughter tube,

a fraction b ¼ 1 2 a has to flow down the other. Each daughter tube now bifurcates with a

fraction a of the flow in the parent tube flowing down one of the new daughter tubes and a

fraction b of the flow in the parent tube flowing down the other. An asymmetric flow

distribution where a – b is a more realistic model of the branching structure in the human

airways [10] than the symmetric model proposed by Weibel [25] that has often been used

in flow analysis in the past. A whole tree with the same flow asymmetry at each generation

is shown in Figure 5, together with the corresponding flow rates in each generation.

Figure 4. Plot showing the values of values of s _Vj
_V= _Q (- - - -) and s _Qj

_V= _Q (- · - ·) against average
values of s _V and s _Q for their native distributions with js _V2s _Qj ¼ 0:35.
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Normalizing the flow at the top of the branching tree structure to 1 eliminates the effects of

the resistance of the airways, which will cause a change in the numerical values of the

flows. The flow rates in the 2N branches at the Nth generation of the tree are quantized to

N þ 1 discrete values ( _Vnk) given by:

_Vnk ¼ anb k; ð7Þ

where n ¼ 0, . . . , N and k ¼ N 2 n, and the number of occurrences of each discrete flow

rate within a generation is given by:

N _Vnk
¼

N!

ðN 2 kÞ!k!
: ð8Þ

The total flow at that Nth generation _VN is given by the product of Equations (7) and (8)

summed over all unique flow values:

_VN ¼
XN
n¼0

N _Vnk
_Vnk ¼ 1: ð9Þ

The parameters a and b parameterize the asymmetry in the flow down the airways. As

predicted by Equations (7) and (8), the distribution of normalized flows in the terminal

branches contain only a few possible values (Figure 6(a)). This quantization of values is

unlikely to occur in the real lung. However, if instead of the same flow asymmetry at each

bifurcation a slightly different, and randomly varying, asymmetry is used such that the

Figure 5. A bifurcating tree model of the human lung with unequal flow down the left (a) and right
(b) branches, respectively.
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fraction of the flow going down one branch at the nth generation is given by:

an ¼ a^ hx; ð10Þ

where a is the average flow asymmetry for the tree, x is a random variable from a

uniform distribution on the interval (20.5, þ 0.5) and h is a constant with a value much

smaller than a. Using this, a larger number of terminal flows is created together with a

more realistic model of the airways as shown in Figure 6(b). The parameter h controls

the amplitude of the random values that remove the quantization from the terminal flows

and produces a smooth probability distribution. The magnitude of h does not affect the

overall shape of the distribution, but merely the number of values which define it.

Therefore, the analysis is insensitive to its value provided it is much less than the flow

asymmetry parameter, a which does control the shape of the distribution. Simulations

showed that a value of h of 0.025 gave smooth distributions for values of a between 0.51

and 0.6, and there was little improvement for values of h greater than this.

The median and variance for the distribution of flow rates of the type shown in

Figure 6(b) can be used to calculate the parameters m and s for an equivalent log normal

distribution from Equations (3) and (4). Applying these to the flow rates shown in Figure

6(b) and comparing this distribution with the equivalent log normal distribution using a x 2

analysis showed that the flow rates at the terminal branches of the bifurcating tree model

are log normally distributed ( p ¼ 0.84).

Rather than use Equation (10) to produce a smooth distribution, it is also possible to

transform the discrete distribution into a continuous one resulting in a distribution that is

only dependant on a and b. The probability of a particular discrete flow rate p(x), where

x ¼ a nb k occurring at the Nth level of the bifurcating tree model can be determined

from the number of occurrences of each discrete value given by Equation (7) and the

total number of branches which is 2N:

pðxÞ ¼
N!

ðN 2 kÞ!k!

1

2N

� �
: ð11Þ

Figure 6. (a) Shows the distribution of terminal flows from a 15 level bifurcating tree with
a ¼ 0.535. (b) Shows the terminals flows for the same tree but where the flow at the nth branch is
given by: aN ¼ 0.51 þ 0.05x, where x is a random value from a uniform distribution on the interval
(0.0,1.0).
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If instead of integer values for n and k, we assume that they are real values on the

interval (0, N) then given that n! ¼ G(n þ 1), where:

GðyÞ ¼

ð1
0

t y21e2tdt; ð12Þ

the probability density function corresponding to the new continuous (rather than discrete)

random variable x can be written as:

fðxÞ ¼
GðN þ 1Þ

GðN 2 k þ 1ÞGðk þ 1Þ

1

2N
: ð13Þ

Figure 7 shows a plot of f(x) against x for values of a between 0.52 and 0.60. From the

median and variance of the distribution for a ¼ 0.56, the parameters m and s for an

equivalent log normal distribution were determined using Equations (3) and (4). This log

normal distribution was then compared against the one obtained from the above equation

using a x 2 analysis, which showed that the distribution of flow rates from the continuous

transformation of the bifurcating tree are log normally distributed ( p ¼ 0.99). Therefore,

flows in the terminal branches in the bifurcating tree model have a log normal distribution

which is the distribution used to create the statistical model (Section 2.1). Figure 7

suggests that the modal value of the distribution decreases with increasing asymmetry,

whilst the spread of values increases. A graph of s for the log normal distribution against

the asymmetry parameter a shows that these are linearly related (Figure 8). The analysis of

the log normal distributions for the compartmental models (Sections 1 and 2.1) yielded

values of s _V and s _Q of 0.23 and 0.58, respectively, for a normal adult lung. Using the data

in Figure 8, the values for a, the asymmetry parameter from the bifurcating tree model,

Figure 7. A series of distributions generated using a gamma function as the asymmetry between the
left and right branches (gamma function parameter a) is varied between 0.52 and 0.6.
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which will give a distribution of flows in the terminal branches with the same values of s _V

and s _Q are a ¼ 0.53 and 0.58, respectively.

3. Theoretical model for damaged lungs

Having postulated a mathematical model for a normal lung, the next question to be

addressed is: how can lung damage be quantified using these postulated models?

Throughout the following discussion, it is assumed that the lung disease only affects the

ventilation side of the lung and not the pulmonary circulation. In physiological terms, such

a change could result from mucous plugging of the small airways.

3.1 Simulating lung disease in the log normal data series model

Assume that there is D% damage to the lung. There are two simple ways in which this

ventilation damage can be represented by the log normal data series model of the _V= _Q
distribution:

(i) a reduction in ventilation to each compartment by D%; and

(ii) a very large reduction in ventilation to a selected D% of the compartments.

Dantzker [7] demonstrated that patients suffering from adult respiratory distress

syndrome (ARDS) tend, in general, to have bimodal distributions. Case (i) would certainly

not have the effect of increasing the number of modes in the distribution of a normal lung.

In addition, it would be inconsistent with the finding from patient studies that lung disease

is spatially regional [14,23]. In order to analyse case (ii), we need to consider which D% of

the compartments would become damaged and what the reduction in ventilation should be

to each one of those compartments. The ventilation for all compartments form a

population of sample size Ns that are log normally distributed with the parameters m _V and

s _V. Now, if a small fraction d ¼ D/100 of the compartments were randomly selected from

the whole population, then that sample will also be log normally distributed with

parameters m _V and s _V provided Ns is sufficiently large and that Nd ¼ dNS is also a fairly

large sample. If this sample of compartments were then damaged, so that the ventilation to

Figure 8. Plot showing the relationship between the asymmetry in the bifurcating tree (gamma
function parameter a) and the parameter s from the equivalent log normal distribution.
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them is reduced to a very small percentage of the original, then effectively the resultant

series will contain two sub-series: one that represents the undamaged proportion of the

lung and one that represents the damaged portion of the lung. In order to determine what

percentage compartmental damage should be applied, it is necessary to determine how the

appearance of a log normal distribution is affected by the percentage of compartments

damaged and by values of s. Using six log normally distributed data series from a random

number generator all of which had a value of m of 1 and with equi-spaced values of s

between 0.15 and 0.65, the percentage of compartments damaged was changed from 5 to

95% in 2.5% increments. For each value of the percentage of compartments damaged, the

minimal compartmental damage was recorded when two peaks were just visible in the

resultant distribution. An example of this process is shown in Figure 9, where the

percentage of compartments damaged was set to 10% and s to 0.25. In this case,

bimodality was assessed to occur when the compartmental damaged was $52.5%. The

results of the analysis (Figure 10) show that the minimum compartmental damage

necessary to create a bimodal distribution rises linearly with s, that it is less than 0.85 for

all values of s less than 0.60 and that it is largely independent of the percentage of

compartments damaged.

3.2 Simulating lung disease in the bifurcating tree model

In the bifurcating tree model, damage to an area of the lung can be simulated by changing

the value of a to a0 (the branch damage) at one particular branch such that the flow in that

Figure 9. The probability distribution for flows in the log normal distribution model (s ¼ 0.25),
where 10% of the compartments have been damaged and as the compartmental damage is reduced
from 60 to 50%.
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daughter branch is reduced whilst the flow down the other daughter branch (b0 ¼ 1 2 a0)

will increase (Figure 11). This is analogous to the compartmental damage applied in the

log normal data series experiment. By damaging multiple branches it is possible to

simulate different degrees of lung damage which is analogous to the number of

compartments damaged in the log normal data series model. In addition to modifying

the flow within the tree and applying those modifications to multiple branches, the

modifications can also be applied to different levels of the tree. To investigate the

Figure 10. The minimal compartmental damage necessary to form a bimodal distribution as a
function of the log normal parameter s and the percentage of compartments damaged.

Figure 11. A bifurcating tree model of the human lung with damage at level 2. The flow in the left
hand branch at the damage level is a0, whilst the flow in the right hand branch is b0 ¼ (1 2 a0).
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appearance of bimodality in the distribution of terminal flows from the tree, the branch

damage at which bimodality occurred was found when this was applied to between 10 and

50% (in steps of 10%) of the branches at a particular level, and when the average values of

a was varied between 0.51 and 0.59 in steps of 0.2. This analysis was repeated for damage

to the tree at all levels between 10 and 15. The bimodality of the resultant frequency

distributions was identified visually from the plots of these. The results obtained showed

that the branch damage (a0) required to produce a bimodal distribution rose approximately

linearly with the average value of a for the tree and was largely independent of the number

of branches damaged (Figure 12). In addition, applying the patterns of flow modification at

different level of the tree showed that these findings were independent of the level in the

tree at which the modifications were applied. Analysis of the results showed that a value of

branch damage greater than 0.95 will always produce a bimodal distribution independent

of the value of a, the number of branches where flow modification is applied and the level

in the tree where that flow modification is applied. If it is assumed that the average value of

a is 0.55, then a branch damage of 0.95 corresponds to a flow modification of 90%.

4. Discussion

In this paper, we have examined two theoretical models of the conducting airways of the

lung: a log normal data series model and a bifurcating tree model. Using the log normal

data series model we have shown that if the distributions of _V and _Q are log normally

distributed, then the _V= _Q ratio is also log normally distributed. In doing this, we have

established a method for determining values of s _V and s _Q based on distribution values that

can be obtained from MIGET experiments. In addition, we have shown that js _V 2 s _Qj is

linearly related to s _Vj
_V= _Q and s _Qj

_V= _Q for values of s _V , 0:5. Colburn et al. [6] showed

theoretically that that this relationship was a function of js _V 2 s _Qj for the case where the

mean value of ventilation and perfusion were the same. In this paper, we have also shown

that the value of js _V 2 s _Qj increases linearly with the ratio of total ventilation to total

perfusion. Wilson and Beck [27] approached the problem of determining values for s _V and

s _Q in supine dogs using a hyperplane technique applied to the results from MIGET

experiments. Using the results obtained in this paper, together with the published values

Figure 12. Plot of branch damage, a 0, at tree level 14 required to produce a bimodal distribution in
the terminal flows as a function of the average value of a and where the number of branches damaged
varies between 10 and 50%.

B.S. Brook et al.150



from studies on normal subjects using the MIGET technique, possible values of s _V and s _Q

of 0.23 and 0.58, respectively, were obtained. Caution must be exercised in interpreting

and using these values, since they were obtained using the results from MIGET

experiments for a small number of subjects using early revisions of the parameter recovery

algorithms. There is little information on how these distributions may vary with age.

Wagner et al. [24] suggested that there was a consistent broadening of the _Vj _V= _Q and
_Qj _V= _Q distributions with increasing age for normal subjects, but they made measurements

on only 12 normal subjects whose ages ranged from 21 to 60. This is not a sufficiently

large enough sample to establish an exact relationship.

Using data series of random numbers with log normal distributions to represent

values of _V and _Q in the compartments of a multi-compartment lung model, it was

shown that the resultant _V= _Q distributions are log normally distributed both when _V and
_Q are correlated and when they are uncorrelated. It is generally assumed that ventilation

and perfusion are correlated and that the matching between ventilation and perfusion is

actively maintained [3,21]. However, when lung damage was induced in an animal

model, plots of _V against _Q showed an increased spread around the straight line
_V= _Q ¼ 2 when compared with animals without lung damage [1]. In the model of lung

disease proposed in this paper, lung damage is regional and therefore, there will be areas

of the lung where ventilation and perfusion are either no longer correlated or where the

correlation coefficient is very different from other parts of the lung. This is consistent

with the finding in the animal model [1] of an increased spread of points on plots of _V

against _Q when lung disease is present.

In terms of the bifurcating tree model of the conducting airways of the lung, the results

show that the distribution of the terminal branch flow rates have log normal distributions

when the branching is asymmetric. It should be noted that it is the asymmetric nature of the

tree that yields these distributions since symmetric branching would result in equal flow

rates at each terminal branch. Furthermore, we have shown that there is a linear

relationship between the asymmetry factor a and the parameter s for the log normal

distribution of terminal flows. A theoretical analysis of a bifurcating tree model of the

pulmonary blood flow with fractal dispersion showed that the distribution of flows from

such models were inherently log normally distributed [19]. Simulations have also been

reported for electrical analogues of bifurcating networks with fractal characteristics [8],

where the networks were composed of pathways having random Gaussian resistances.

Constant potential sources applied to these networks, yielded log normal distributions of

potentials at the terminal nodes. Thus, basing a model for ventilation and perfusion

distributions in a normal lung on branching tree structures such as those described in this

paper seems a reasonable basis for modelling lung disease. In the proposed model, the

division of flow at each bifurcation is characterized by an asymmetry factor a. In reality,

the proportion of flow in the parent tube that is directed into each of the daughter tubes will

depend on the length, diameters and branching angles of the daughter tubes, which

determine the resistance to flow in each branch. Within this study, the distribution of flows

in the terminal branches of the bifurcating tree model were compared with the equivalent

log normal distribution using values of s _V ¼ 0.23 and s _Q ¼ 0.58 obtained from the

distribution analysis. This yielded values for a of 0.53 and 0.58 for the ventilatory and

pulmonary trees, respectively. In the case of the airways, these values of a are compatible

with those obtained via flow simulations in geometries reconstructed from 3D medical

images [12] and from cast reconstructions [18]. Whilst the values obtained for a are

compatible with those from other studies, the bifurcating tree is only an approximation for

the structure of the lung and a complete picture of the flow distribution for an individual
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subject can only be obtained using 3D CFD models with the geometry determined from

anatomically accurate medical images [12].

A consistent finding in the literature is that _V= _Q distributions become bimodal in the

presence of lung disease. There is no standard definition of bimodality in a statistical

distribution nor a standard test for its presence. For the purpose of the analysis presented in

this paper bimodality was defined as the existence of two distinct peaks in the distribution

identified by visual inspection.

The results from modelling lung damage by reducing the values of a randomly selected

subset of values in a log normal data series representing the ventilation in the terminal

airways of a multi-compartment lung showed that a bimodal distribution always resulted

when the compartmental damage level was greater than 85%. For a given percentage of

compartments damaged, the fractional reduction in alveolar ventilation in the damaged

compartments rises linearly with fractional reduction in the ventilation. Therefore, a high

value of the fractional reduction in the compartmental ventilation for the damaged

compartments results in the fraction of damaged cells approaching the fractional reduction

in alveolar ventilation. There is no inherent way of allocating specific values of ventilation

and perfusion modelled using a log normal random number series to a particular region of

the lung. Therefore, if this approach to modelling lung disease is to be used a separate

algorithm will be required to assign the compartmental values to mimic the spatial

distribution of the disease within the lung.

In the bifurcating tree model of the conducting airways, lung damage was simulated

by altering the flow in one or more branches of the tree. It should be noted that since the

total flow is normalized to 1, this process only produces a re-distribution of flow in the

tree and not a change in the total flow through the airways. The finding that the level of

flow alteration at which the distribution of terminal flows became bimodal was

independent of the number of branches and the level in the tree where flow alteration

applied was unexpected. This finding offers the potential of modelling a number of

different regions of disease within the lung of different sizes, whilst producing

distributions of the terminal flows that are consistent with those obtained from MIGET

and other experimental techniques.

It is interesting to note that the level of damage required to always produce a bimodal

distribution from the log normal data series model is 85% whilst the flow re-distribution

required to always produce a bimodal distribution in the bifurcating tree model was 90%.

Given the lack of a formal test for bimodality in a distribution these values can be

considered very similar and emphasize the similarity of the two approaches.

The models proposed in this paper offer the opportunity of developing realistic models

of the effects lung disease has on the conducting airways and the pulmonary circulation

and the potential for incorporating these into larger scale models of the respiratory and

cardiovascular systems.
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