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The jump problem and problems with defects on the type change line for model mixed-type
equations in the mixed domains are investigated. The explicit solutions of the jump problem are
obtained by the method of integral equations and by the Fourier transformation method. The
problems with defects are reduced to singular integral equations. Some results for the solution
of the equation under consideration are discussed concerning the existence and uniqueness for the
solution of the suggested problem.

1. Introduction

Consider the jump problem and problems with defects on the type change line for the mixed-
type equation of the first kind

sgny
∣
∣y

∣
∣
m ∂2u

∂x2
+
∂2u

∂y2
= 0, m ≥ 0. (1.1)

This equation is a model equation among mixed-type equations of the first kind. For m = 0
and m = 1, (1.1) coincides with Lavrent’ev-Bitsadze equation and the Tricomi equation,
respectively. For even m (1.1) coincides with the Gellerstedt equation (see, [1–9]). Equation
(1.1) is elliptic for y > 0 and hyperbolic for y < 0. In the formulation of the boundary value
problems in the mixed domain, it is usually required that the unknown solution u(x, y)
and its normal derivative should be continuous on the type change line y = 0, that is, the



2 Boundary Value Problems

conditions

u(x, 0 + 0) − u(x, 0 − 0) = 0,

∂u

∂y
(x, 0 + 0) − ∂u

∂y
(x, 0 − 0) = 0

(1.2)

should be fulfilled. More generally conjugation conditions with continuous coefficients of the
form

α0(x)u(x, 0 + 0) + β0(x)u(x, 0 − 0) = γ0(x),

α1(x)
∂u

∂y
(x, 0 + 0) + β1(x)

∂u

∂y
(x, 0 − 0) = γ1(x)

(1.3)

have been discussed (see [10, 11]). There are defects on the type change line if the conjugation
conditions (1.2) are replaced by conditions of another form. For example, if the boundary
values of the solution or its normal derivative are given on defect. Such terminology is taken
from the boundary value problems of elasticity theory. So problems with defects on the type
change line will form special class of boundary value problems for the mixed-type equations
with discontinuous coefficients in the conjugation conditions. We say that boundary value
problems in the mixed domain with the conjugation conditions

u(x, 0 + 0) − u(x, 0 − 0) = a(x),

∂u

∂y
(x, 0 + 0) − ∂u

∂y
(x, 0 − 0) = b(x)

(1.4)

are the jump problems on the type change line for (1.1). Obviously, the classical Tricomi
problem is the jump problem with zero jump. Two methods are used in this papre to solve
the jump problem: the method of integral equations and the method of integral Fourier
transformation. It is shown that explicit solutions of the jump problem can be used as
potentials under researching boundary value problems with defects.

2. The Jump Problem for Lavrent’ev-Bitsadze Equation:
The Method of Integral Equations

Let the domain D be bounded by the line Γ with the ends at the points A(0, 0) and B(1, 0) of
the real axis and by the characteristics AC : x + y = 0 and BC : x − y = 1 of Lavrent’ev-
Bitsadze equation

∂2u

∂x2
+ sgny

∂2u

∂y2
= 0. (2.1)

Let D1 and D2 be the elliptic and the hyperbolic parts of the mixed domain D.
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The unknown solution of (2.1) in the jump problem as in the Tricomi problem should
satisfy the following boundary conditions:

u
(

x(s), y(s)
)

= ϕ(s), 0 ≤ s ≤ l on Γ;

u(x,−x) = ψ(x), 0 ≤ x ≤ 1
2
on AC

(2.2)

(here s is arc abscissa of arc Γ being measured from the point B to the point A).
As it is commonly accepted in the theory of the boundary value problems for the

mixed-type equations we denote

τ1(x) = u(x, 0 + 0), τ2(x) = u(x, 0 − 0),

ν1(x) =
∂u

∂y
(x, 0 + 0), ν2(x) =

∂u

∂y
(x, 0 − 0).

(2.3)

Assume that on the segmentAB = [0, 1] there is the finite number of points inwhich functions
τj(x) can have discontinuities of the first kind and functions νj(x) can have singularities of
integrable order. We say that such points are the exclusive points.

Denote byAB∗ is the set of points of the segmentAB which are not the exclusive ones.
We can seek a solution of the problem T in the different classes of solutions [2, Section

15]. The regular solution u(x, y) ∈ C2(D1 ∪D2) and satisfies (2.1) inD1 ∪D2. The generalized
solution of the class R∗ belongs to C2(D1), satisfies (2.1) inD1 and is the generalized solution
of (2.1) in D2 in the sense that

u
(

x, y
)

=
1
2
τ2
(

x + y
)

+
1
2
τ2
(

x − y) + 1
2

∫x+y

x−y
ν2(t)dt (2.4)

(the D’Alembert formula)where τ ′2(x), ν2(x) ∈ H∗. HereH∗ = H∗[0, 1] is a class of functions
which can have singularities of integrable order at the points 0 and 1, but satisfy Hoelder’s
condition with some index at any part of the interval (0, 1). As it is known the generalized
solution of the class R∗ will be regular if we assume in addition that τ ′2(x), ν2(x) ∈ C1(0, 1).

In the jump problem on the type change line for Lavrent’ev-Bitsadze equation, we
need to seek a function u(x, y) which

(1) is regular or generalized solution of (2.1) in D;

(2) satisfies the boundary conditions (2.2);

(3) has the limiting values τj(x), νj(x) on AB∗ and

(4) the conditions

τ1(x) − τ2(x) = a(x), ν1(x) − ν2(x) = b(x), x ∈ AB∗ (2.5)

are fulfilled.
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Let us obtain functional correlations at the segment AB which connect functions
τ1(x), ν1(x), τ2(x), and ν2(x). The general scheme of reasoning is just the same as under
solving the Tricomi problem.

Consider auxilliary boundary value problem N in the domain D1. Let G2(ζ, z) =
G2(ξ, η, x, y) be the Green function of the problem N for (2.1) in the domain D1. Then in
D1

u
(

x, y
)

= −
∫1

0
ν1(ξ)G2

(

ξ, 0, x, y
)

dξ +
∫

Γ
ϕ(s)

∂G2

∂nζ

(

ξ, η, x, y
)

dsζ. (2.6)

By this

τ1(x) = −
∫1

0
ν1(ξ)G2(ξ, 0, x, 0)dξ + ϕ1(x), 0 < x < 1, (2.7)

ϕ1(x) =
∫

Γ
ϕ(s)

∂G2

∂nζ

(

ξ, η, x, 0
)

dsζ. (2.8)

From D’Alembert’s formula (2.4) and condition on the characteristic it follows
immediately that

τ2(x) −
∫x

0
ν2(ξ)dξ + ψ1(x) = 0, ψ1(x) = −2ψ

(x

2

)

+ ψ(0). (2.9)

Consider system of (2.7), (2.9), and (2.5) for functions τj(x), νj(x). Subtracting (2.9)
from (2.7)we get

a(x) = −
∫1

0
ν1(ξ)G2(ξ, 0, x, 0)dξ −

∫x

0
ν2(ξ)dξ + ϕ1(x) + ψ1(x), x ∈ AB∗. (2.10)

It follows from here that function ν1(x) should be a solution of integral equation

∫x

0
ν1(ξ)dξ +

∫1

0
ν1(ξ)G2(ξ, 0, x, 0)dξ = h1(x), x ∈ [0, 1], (2.11)

h1(x) = ϕ1(x) + ψ1(x) − a(x) +
∫x

0
b(ξ)dξ. (2.12)

Similar equation can be obtained for the function ν2(x).
If the domain D1 is a semidisc |2z − 1| < 1, Im z > 0, then

G2(ζ, z) =
1
2π

ln

∣
∣
∣
∣
∣
∣
∣

(z + ζ − 2zζ)
(

z + ζ − 2zζ
)

(z − ζ)
(

z − ζ
)

∣
∣
∣
∣
∣
∣
∣

, (2.13)

G2(ξ, 0, x, 0) =
1
π

ln
ξ + x − 2ξx

|ξ − x| =
1
π

ln
1 − x
|ξ − x| −

1
π

ln
1 − x

ξ + x − 2ξx
. (2.14)
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Let us transform the integral equation (2.11)with logarithmic singularity in the kernel
into the integral equation with the analogue of the Cauchy kernel. As

ln
1 − x
|ξ − x| =

∫1

ξ

dt

t − x , ln
1 − x

ξ + x − 2ξx
=
∫1

ξ

1 − 2x
t + x − 2tx

dt, (2.15)

so the new function to be found,

μ(x) =
∫x

0
ν1(t)dt, (2.16)

should satisfy the equation

μ(x) +
1
π

∫1

0
μ(t)

[
1

t − x − 1 − 2x
t + x − 2tx

]

dt = h1(x), 0 < x < 1. (2.17)

Generally speaking (2.17) is the complete singular integral equation with the Cauchy
kernel, but special form of the kernel enables us to construct its solution in the explicit form.
By this it is advisible to use the method of reduction to the Riemann boundary value problem
for automorphic functions [12, Chapter III]. Consider an auxiliary piecewise-holomorphic
function

M(z) =
1

2πi

∫1

0
μ(t)

[
1

t − z − 1 − 2z
t + z − 2tz

]

dt, (2.18)

satisfying the automorphic type condition

M

(
z

2z − 1

)

= −M(z). (2.19)

It follows from the analogues of the Sohotski formulas that integral equation (2.17) is
equivalent to the Riemann boundary value problem

(1 + i)M+(x) − (1 − i)M−(x) = h(x), x ∈ (0, 1). (2.20)

for analytic functions satisfying the condition (2.19). The solutions of problem (2.20) should
be limited at the points z = 0, z = 1 and at infinity.

The canonical function of the Riemann problem in class of the automorphic functions
has the form

X(z) = eγ(z)
[

f(z) − f(0)]−κ0[f(z) − f(1)]−κ1 , (2.21)
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where

γ(z) =
1

2πi

∫1

0
ln

1 − i
1 + i

f ′(t)
f(t) − f(z)dt =

1
4
ln
f(z) − f(0)
f(z) − f(1) ,

f(z) = z +
z

2z − 1

(2.22)

is simple automorphic function of group z, z/(2z− 1). As it is shown in [13, page 111], there
is a unique opportunity to choose numbers κ0 = 0 κ1 = 0 (z = 0 z = 1 being stationary points
of group of the homographic transformations).

So index of problem (2.20) κ = κ0 + κ1 = 0 and its unique solution limited at infinity

M(z) =
−1 − i
4π

X(z)
∫1

0

h1(t)
X+(t)

[
1

t − z − 1 − 2z
t + z − 2tz

]

dt. (2.23)

By condition (2.19) an arbitrary constant in the right-hand side is equal to zero. Since the
boundary value of the canonical function from the upper half-plane on (0, 1)

X+(x) =
[
f(z) − f(0)
f(z) − f(1)

]1/4

=
√

x

1 − x , (2.24)

then

μ(x) =M+(X) −M−(x) =
1
2
h1(x) − 1

2π

∫1

0
h1(t)

√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt. (2.25)

By this if the elliptic partD1 of the mixed domain is a semidisc then by formula (2.25),
we can write down the solution of the integral equation (2.11) in the form

∫x

0
ν1(ξ)dξ =

1
2

[

ϕ1(x) + ψ1(x) − a(x) +
∫x

0
b(ξ)dξ

]

− 1
2π

∫1

0

[

ϕ1(t) + ψ1(t) − a(t) +
∫ t

0
b(ξ)dξ

]√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt.

(2.26)

The function to be found ν1(x) can be obtained by differentiation, but as it will be shown later
it is not obligatory.
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By the main correlation (2.7)

τ1(x) = μ(x) − h1(x) + ϕ1(x)

=
1
2

[

ϕ1(x) − ψ1(x) + a(x) −
∫x

0
b(ξ)dξ

]

− 1
2π

∫1

0

[

ϕ1(t) + ψ1(t) − a(t) +
∫ t

0
b(ξ)dξ

]√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt,

(2.27)

here it is taken into account that function ν1(x) satisfies (2.17). Expressions of functions
τ2(x) and ν2(x) can be obtained from conditions (2.5).

The solution of the jump problem in the domain D2 can be easily derived by the
D’Alembert formula (2.4), and it is not necessary to seek the expression of the function ν2(x)
for this, it is sufficient to have formula to calculate its primitive. The solution of the jump
problem in the domain D1 can be obtained by two methods: either as a solution of problem
N or as a solution of the Dirichlet problem.

Let D be a simple connected domain bounded by piecewise-smooth curve and let
function ω = ω(ζ, z) conformally map by variable z in D onto unit disc in such way that
ω(ζ, ζ) = 0. Then (see, [14, page 464]) function

G(ζ, z) =
1
2π

ln
1

|ω(ζ, z)| (2.28)

is the Green function of the Dirichlet problem for the domain D. If w = w(z) is conformal
mapping of the domain D onto unit disc then

ω(ζ, z) =
w(ζ) −w(z)

1 −w(z) w(ζ)
. (2.29)

More general statement is formulated in [2, page 30]. If the function w = w(z) maps the
domain D of the plane z onto the domain D0 of the plane w and G0(ζ, z) is the Green
function of the Dirichlet problem for the domain D0, then G(ζ, z) = G0[w(ζ), w(z)] is the
Green function of the Dirichlet problem for the domain D.

In the case of problemN it is also possible to use the method of conformal mappings
[2, Section 7]. Let domains D0 and D1 be bounded by segment AB of real axis and by curves
Γ0 and Γ1 placed in the upper half-plane. Let function w = w(z) map the domain D1 onto
the domain D0 in such way that AB goes over into AB and ends of this segment remain
stationary. If G0(ζ, z) is the Green function of problem N for the domain D0, then G(ζ, z) =
G0[w(ζ), w(z)] is the Green function of problemN for the domain D1.

By this way, the Green function of problemN for the domain D1 in the jump problem
can be derived from the Green function of problemN for some simple canonical domain D0

by conformal mapping. In [2] the upper half-plane is chosen as a canonical domain but in
our case a semidisc is more convenient to be considered as such domain. Hence if G2(ζ, z) is
the Green function (2.13) of the problem N for semidisc and w = w(z) is a mapping of any
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other domain D1 onto this semidisc satisfying the above mentioned conditions. Then for the
Green function of the problemN for the domain D1, we have

G2(ξ, 0, x, 0) =
1
π

ln
w(ξ) +w(x) − 2w(ξ) w(x)

|w(ξ) −w(x)| . (2.30)

So the integral equation (2.11) can be transformed into equation of the form (2.17) by
substitution of variables.

3. The Jump Problem for Lavrent’ev-Bitsadze Equation:
The Method of Fourier Transformation

Let us construct the solution of the jump problem for Lavrent’ev-Bitsadze equation in the
unbounded mixed domain by the method of the integral Fourier transformation.

Preliminary, we consider two auxiliary Cauchy problems in the upper and lower half-
planes using some results of the works [15, 16]. We will use the following denotions: under
Fourier transformation function a(x) goes over into function (distribution) A(ξ).

Note that the boundary value problems in the half-space for partial differential
equations have been investigated quite adequately (see, [17]). If the Cauchy problem in
the half-space is overdetermined, then analysis of the algebraic equation for the Fourier
transform of the unknown solution gives necessary and sufficient conditions for the
boundary functions.

We seek a solution of (2.1) in the upper half-plane y > 0 satisfying the boundary
conditions

u(x, 0 + 0) = τ1(x),
∂u

∂y
(x, 0 + 0) = ν1(x). (3.1)

The Fourier transform of the unknown solution will be a solution of the equation

−
(

ξ2 + η2
)

U
(

ξ, η
)

=
1√
2π

[

N1(ξ) − iηT1(ξ)
]

. (3.2)

This solution exists if and only if when the right-hand side of (3.2) vanishes under η = i|ξ|,
that is, the condition

N1(ξ) + |ξ|T1(ξ) = 0 (3.3)

is fulfilled. Consequently,

U
(

ξ, η
)

=
i√
2π

1
η + i|ξ|T1(ξ) =

i√
2π

1
η + i|ξ|

−1
|ξ|N1(ξ),

u
(

x, y
)

=
1√
2π

∫+∞

−∞
T1(ξ)e−|ξ|y−iξxdξ, y > 0

(3.4)
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or

u
(

x, y
)

=
−1√
2π

∫+∞

−∞
N1(ξ)

1
|ξ|e

−|ξ|y−iξxdξ, y > 0. (3.5)

Equality (3.3) is the main correlation between boundary functions τ1(x) and ν1(x).
We seek a solution of (2.1) in the lower half-plane y < 0 satisfying the boundary

conditions

u(x, 0 − 0) = τ2(x),
∂u

∂y
(x, 0 − 0) = ν2(x). (3.6)

The Fourier transform of the unknown solution satisfies the equation

(

−ξ2 + η2
)

U
(

ξ, η
)

=
1√
2π

[

N2(ξ) − iηT2(ξ)
]

, (3.7)

and boundary functions can be given arbitrary.
It follows from (3.7), that

U
(

ξ, η
)

=
1√
2π

N2(ξ) − iηT2(ξ)
(

η − i0)2 − ξ2 (3.8)

(this distribution is obtained by the method of passing to the complex plane). So

u
(

x, y
)

=
1√
2π

∫+∞

−∞

[

N2(ξ)
sin ξy
ξ

+ T2(ξ) cos ξy
]

e−iξxdξ, y < 0. (3.9)

Note that, if we pass in this formula from the Fourier transforms of the boundary
functions to their prototypes we obtain the D’Alembert formula (2.4).

Consider the jump problem for Lavrent’ev-Bitsadze equation in the unboundedmixed
domain. LetD1 be the upper half-plane,D2 be the unbounded characteristic triangle bounded
by y = −x, x > 0 and by positive semiaxis of the axis y = 0. We should seek a solution of (2.1)
under y /= 0 which satisfying the boundary conditions on the negative semiaxis y = 0

u(x, 0 + 0) = ϕ(x), x < 0, (3.10)

on the characteristic

u(x,−x) = ψ(x), x > 0, (3.11)

and on the line of type change under x > 0

u(x, 0 + 0) − u(x, 0 − 0) = a(x),
∂u

∂y
(x, 0 + 0) − ∂u

∂y
(x, 0 − 0) = b(x). (3.12)
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In the particular case under a(x) ≡ 0, b(x) ≡ 0, the jump problem coincides with the Tricomi
problem in the unbounded mixed domain. Without loss of generality we can assume that
ϕ(0) = ψ(0) = 0.

We will seek a solution of the jump problem in the upper and in the lower half-planes
as solutions of the Cauchy problems. Let us continue the unknown solution in D2 onto the
whole lower half-plane so that

τ2(x) = τ1(x), ν2(x) = ν1(x), x < 0. (3.13)

The Fourier transforms of values of the unknown solution on the axis y = 0 should satisfy
the transformed conditions (3.12)

T1(ξ) − T2(ξ) = A(ξ), N1(ξ) −N2(ξ) = B(ξ), (3.14)

and the condition (3.3). Here A(ξ) = A+(ξ), B(ξ) = B+(ξ) are the Fourier transforms of
functions a(x), b(x) being completed by zero up to the whole axis.

Denote by T(ξ) = T1(ξ), N(ξ) = N1(ξ) and represent each of these functions as a sum
of the Fourier transforms of one-side-functions. Hence

T1(ξ) = T−(ξ) + T+(ξ), N1(ξ) =N−(ξ) +N+(ξ),

T2(ξ) = T−(ξ) + T+(ξ) −A(ξ), N2(ξ) =N−(ξ) +N+(ξ) − B(ξ).
(3.15)

By condition (3.10),

T−(ξ) = Φ(ξ), (3.16)

where Φ(ξ) = Φ−(ξ) is the Fourier transform of the boundary function ϕ(x) being completed
by zero up to the whole axis.

Condition (3.11) on the characteristic can be written down in the form

T+(ξ) −A(ξ) − i

ξ
[N+(ξ) − B(ξ)] = 4Ψ(ξ), (3.17)

where Ψ(ξ) = Ψ+(ξ) is the Fourier transform of the boundary function ψ(x) being completed
by zero up to the whole axis. Actually, by the D’Alembert formula

τ2(x) −
∫x

0
ν2(t)dt = 2ψ

(x

2

)

, x > 0. (3.18)
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After Fourier transformation subject to the evident identity

1√
2π

∫+∞

0

(∫x

0
f(t)dt

)

eiξxdx =
i

ξ
F+(ξ), (3.19)

we obtain (3.17).
Condition (3.3) in the new denotions has the form

N−(ξ) +N+(ξ) + |ξ|T−(ξ) + |ξ|T+(ξ) = 0. (3.20)

Excluding function T+(ξ) from (3.17) and (3.20) we get in view of (3.16)

N+(ξ)
(

1 + i sgn ξ
)

+N−(ξ) = −|ξ|[Φ−(ξ) + 4Ψ+(ξ) +A(ξ)] + i sgn ξB(ξ), −∞ < ξ <∞.
(3.21)

Equality (3.21) is the condition of the Riemann boundary value problem with discontinuous
coefficient given on the real axis (this equality is being understood as the equality of
distributions).

Note that solution of the jump problem in the whole plane without condition on the
characteristic (3.11) is not unique but is determined within the arbitrary function.

The canonical function has the form

X+(ξ̇
)

= ξ̇1/4, X−(ξ̇
)

= (−1 + i) ξ̇1/4, (3.22)

where ξ̇1/4 is a single-valued branch of the power function which is chosen in the plane with
a cut along positive semiaxis ξ > 0 of real axis and takes on the real values ξ1/4 on the upper
side of the cut.

Denote by

X(ξ) = X+(ξ)
(

1 + i sgn ξ
)

= −X−(ξ). (3.23)

Then

N±(ξ̇
)

X±(ξ̇
) =

1
2πi

∫+∞

−∞

−|τ |[Φ(τ) + 4Ψ(τ) +A(τ)] + i sgn τB(τ)
X(τ)

1
τ − ξ̇ dτ. (3.24)

By the Sohotski formulas

N(ξ) =N−(ξ) +N+(ξ)

=
3 − i sgn ξ

4
{−|ξ|[Φ(ξ) + 4Ψ(ξ) +A(ξ)] + i sgn ξB(ξ)

}

− 1 + i sgn ξ
4πi

X(ξ)
∫+∞

−∞

−|τ |[Φ(τ) + 4Ψ(τ) +A(τ)] + i sgn τB(τ)
X(τ)

1
τ − ξdτ.

(3.25)
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Now we can easily obtain the expressions of the other auxiliary functions N2(ξ) = N1(ξ) −
B(ξ), T1(ξ) = −N1(ξ)/|ξ|, T2(ξ) = T1(ξ) − A(ξ) and consequently, the solution of the jump
problem in the domains D1 and D2.

The technique of the integral Fourier transformation can be used also in the cases when
the mixed domain in the jump problem has another form.

If the elliptic part of the mixed domain is, for example, a semidisc then the Fourier
transformation method can be modificated in the following way. Assume that the unknown
solution of the jump problem on the semidisc is equal to zero. Continue the function u(x, y)
to the whole upper half-plane symmetrically about Γ, that is, in such way that values of
function are equal at the points symmetrical about semidisc. Besides the solution and its
normal derivative should be continuous on the semidisc. Then all formulas obtained at the
beginning of the section remain valid but after substitution of variable integrals on infinite
intervals can be transformed into integrals on segment. This method can be used in more
general case when the elliptic part of the mixed domain is a half of the symmetrical about
real axis fundamental domain of group of homographic transformations [12, Chapter III].

4. The Boundary Value Problems with Defect on the Line of Type
Change for Lavrent’ev-Bitsadze Equation

Let the mixed domain D be bounded by the line Γ with the ends at the points A(0, 0) and
B(1, 0) of the real axis and by characteristicsAC : x+y = 0 and BC : x−y = 1 of Lavrent’ev-
Bitsadze equation (2.1). Let M be a set of disjoint segments placed inside the segment AB
and letN be a complement ofM with respect to AB.

We should seek the function u(x, y) with the following properties:

(1) u(x, y) satisfies (2.1) in D under y /= 0 (classical or generalized solution);

(2) u(x, y) ∈ C(D1 ∪D2);

(3)

u = ϕ(s) on Γ; u = ψ(x) on AC; u = χ(x) on M; (4.1)

(4) u(x, y) satisfies onN the conjugation condition (1.4).

If the set M is empty and N = AB (there are no defects), then the problem under
consideration coincides with the classical Tricomi problem. If M = AB, then we have two
independent boundary value problems: the Dirichlet problem for the Laplace equation inD1

and the Goursat problem in D2.
Later on for simplicity we will assume that in the set M there is only one segment

[α, β] and 0 < α < β < 1.
If in the problem with defect the values of the unknown solution are given on the type

change line, then we say that such defect is the defect of the first kind. If onM the values of
the derivative ∂u/∂y of the unknown solution are given (the defect of the 2nd kind), then
by the main correlation (2.9) nothing changes in fact. By the same reason the problem with
defect of the 3d kind (when on M the linear combination of the solution and its derivative
are given) can be reduced to the problem with defect of the 1st kind. Note that defect can be
considered as a cut and independent boundary conditions can be given on every side of the
cut.
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We will seek a solution of the problem with defect on the line of type change as a
solution of the jump problem (see Section 1). Let the elliptic part of the mixed domain be a
semidisc. Without loss of generality we can assume that ϕ(x) ≡ 0, ψ(x) ≡ 0.

It follows from the boundary conditions on the type change line that a(x) = 0 almost
everywhere on [α, β] (except for only points α and β probably) and b(x) = 0 on [0, α] and on
[β, 1]. In the interval (α, β) function b(x) is still unknown in the meantime. This function can
be found from the boundary condition

τ1(x) = τ2(x) = χ(x), x ∈ (

α, β
)

. (4.2)

By formula (2.27)

τ1(x) = −1
2

∫x

0
b(ξ)dξ − 1

2π

∫1

0

[

−a(t) +
∫ t

0
b(ξ)dξ

]√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt. (4.3)

Since b(ξ) = 0 outside interval (α, β) the function b(ξ) should satisfy the integral equation

− 1
2π

∫β

α

b(ξ)

⎡

⎣

∫ ξ

0

√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt

⎤

⎦dξ − 1
2

∫x

α

b(ξ)dξ = χ(x) x ∈ (

α, β
)

.

(4.4)

The integral equation (4.4) is the integral equation with logarithmic kernel represented
in the form of the integral with the analogue of the Cauchy kernel with variable limit.
Introduce new unknown function

c(x) =
∫x

α

b(ξ)dξ. (4.5)

Then (4.4) can be transformed into the integral equation with the analogue of the Cauchy
kernel

−1
2
c(x) − 1

2π

∫1

0
c(t)

√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt = χ(x). (4.6)

by this c(x) = 0 under x ≤ α and c(x) = C under x ≥ β, where

C = c
(

β
)

=
∫β

α

b(ξ)dξ (4.7)

is supplementary unknown constant.
Let us construct the explicit solution of the integral equation (4.6). Denote by

c̃(x) =

√

1 − x
x

c(x), χ̃(x) =

√

1 − x
x

χ(x). (4.8)



14 Boundary Value Problems

Then

− 1
2π

∫β

α

c̃(t)

√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt − 1
2
c̃(x) = χ̃(x) + CI(x), x ∈ (

α, β
)

, (4.9)

where

I(x) =
1
2π

∫1

β

√

x(1 − t)
t(1 − x)

(
1

t − x − 1 − 2x
t + x − 2tx

)

dt. (4.10)

By the auxiliary function

M(z) =
1

2πi

∫β

α

c̃(t)
[

1
t − z − 1 − 2z

t + z − 2tz

]

dt (4.11)

pass to the Riemann boundary value problem with condition

M+(x) = −iM−(x) +
1

1 + i
[

χ̃(x) + CI(x)
]

, x ∈ (

α, β
)

, (4.12)

solutions of which we should seek in the class of functions bounded at the points α and β.
Since the index of the problem κ = −1 its solution exists if and only if when the solvability
condition

∫β

α

χ̃(t)
X+(t)

dt + C
∫β

α

I(t)
X+(t)

dt = 0, t ∈ (

α, β
)

(4.13)

is fulfilled. From the equality (4.13) the constant C will be determined and so the Riemann
problem (4.12) will have the unique solution.

Further operations are evident. The difference of the limiting values of the solution of
the Riemann problem gives the unknown function c̃(x) on (α, β), by this the function c(x)
will be determined and the function b(x) if it is necessary. But as it was mentioned above, it is
sufficient to have only the expression of primitive of the function b(x) but not of this function
itself.

If the mixed domain is unbounded it is convenient to use under solving the problem
with defect on the type change line the results of Section 2 obtained by the Fourier
transformation method. Depending on the kind of defect one of the auxiliary functions a(x)
and b(x)will be identically equal to zero and the values of another function on the defect will
remain unknown. Immediately from the formula (4.4) it is easy to get the integral equation
equivalent to the problem with defect.
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