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We consider the following class of quasilinear elliptic equations ~h”A,u + Ve () |ulP~?u = |u|h%u,
u(x) > 0 for all x € RN, where h > 0, Apu = div(|VuP2Vu),2<p<N,p<g<p* = Np/(N -p).

We allow the potential V, to be unbounded below and prove the existence and multiplicity for
positive solutions.

1. Introduction

In this paper we are concerned with the existence and multiplicity of positive solutions for
the following class of quasilinear elliptic equations:

~HP Apu + Ve () lul Pu = [uu in RY,
uewhr <RN> with 2 <p <N, (Pre)

u(x) >0, VxeRN,

where h > 0,p <q<p* = Np/(N -p),and A,u = div(|Vu[P~2Vu). Moreover, we consider
the perturbed potential V; satisfying

V.(x) =V(x) —e(hW(x), VYxeRN, (1.1)
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where € : [0,+00) — [0,+00), W : RN — [0,+00) is a measurable function such that, for
some a; > 0 and a, > 0, the inequality

[ weol < avul) + aulf (12

holds for any u € W'P(RN) and the “unperturbed” potential V is a continuous function
satisfying

0<Vp=inf V <lim inf V(x). (1.3)

RN |x| = o0

The last hypothesis was introduced by Rabinowitz in [1].
For the case p = 2, equations of the kind

—RAu+V(x)u=uTu inRN (Py)

in different models, for example, are related with the existence of standing waves of the
nonlinear Schrodinger equation

0 _
2 Ay + (V) - D [gl g, Va e RN, (NLS)

where A € Rand 2 < g < 2N/(N - 2). A standing wave of (NLS) is a solution of the form
@(x,t) = exp(-iAh ') u(x). In this case, u is a solution of (P,).

Existence and concentration of positive solutions for (P.) have been extensively
studied in the recent years; see, for example, Ambrosetti et al. [2, 3], Cingolani and Lazzo
[4, 5], Floer and Weinstein [6], Oh [7-9], Rabinowitz [1], Serrin and Tang [10], Wang [11], and
their references. In [12], Lazzo considers the potential in (P;) perturbed by adding a negative
potential. Under the assumptions (1.1)—(1.3) she obtained the existence and multiplicity
results for positive solutions of the equation

—HAu+Vo(x)u=ul"?u in RV, (1.4)

where h > 0,2 < g <2N/(N -2).

In this paper, we will adapt some variational arguments explored by Lazzo [12] and
extend the results of [12] to the quasilinear case. In order to state our results we need
the following standard notation: if Y is a closed subset of a topological space Z,catzY
is the Ljusternik-Schnirelman category of Y in Z, namely, the least number of closed and
contractible sets in Z which cover Y. If Y = Z, we set catz(Z) = cat(Y). Let

& = lim sup@

o PP (1.5)

M = {xERN:V(x) :Vo}.

For 6 > 0, let Mg = {x € RN : dist(x, M) < 6}.
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Now we can describe our main results.

Theorem 1.1. Suppose that the assumptions (1.1)—(1.3) hold. There exists €* > 0 such that if &y < €*,
then (Py,) has a positive solution for h sufficiently small.

Theorem 1.2. Suppose that the assumptions (1.1)—(1.3) hold. For any 6 > 0 there exists €*(6) > 0
such that if g < €*(6), then (Py) has at least catp; (M) positive solutions for h sufficiently small.

2. Existence of Solutions

In this section, we will give an existence result for (Pj, ). We need some notations, definitions,
and auxiliary results. Let us recall the definition of W7 (RN),

WLP(RN) = {u € LP(RN) = LP(RN),i = 1,2,...,N}, o
leallyp = Nuall, + [Vl

where || - ||, denotes the norm in LP(RY). The space W'#(RY) is the completion of the space
D(RN) of C*-functions with compact support with respect to the norm || - [|1, and

X = {u € WP <]RN> : fV(x)|u|” < +oo}, (2.2)

X* is the dual space of X and the integration set RN will be understood.
In X we define the functionals

Joe1) = fh”IVuI” VL,
2.3)
Tino(u) = fhﬂvmp SV (@)l

From (1.1)—-(1.3) and if 0 < h” < Voleagl (no restrictions on h if ay = 0), then for any u € X,
we have

(1= 52 ) o) < Jnci) < o) 24
Indeed,
[weonr < [ 19+ 32 [Veour < . 5

Asa consequence,

T () = Jnea) + () [ WO < T + S0 Jnau) 26)
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whence (2.4) follows. From (2.4), if limsup,, _,, e(h)h™? < aql there exist ag, hy > 0 such that

Jie (1) > min{h?, Vo) aollull}, (2.7)

forany u € X, for any 0 < h < hj. As aresult the set X, endowed with the norm ||u||fl = Jne(u),
is a Banach space and it is continuously embedded in W7 (RY).

Weak solution to (Py,) can be found by looking for critical points of Jj.(u) on the
manifold X = {u € X : [u]? = 1}. Indeed, Jj . is well defined and smooth on X; moreover,
for any critical point u of J, . on X, (Jie (u))l/ @)y is a weak solution for (Ppe). Therefore, in
order to prove existence of solutions to (Py.) it suffices to solve the following minimization
problem:

cn = inf Jc (). ()

Problem (P) is affected by a lack of compactness, due to the noncompact Sobolev embedding
WP (RN) — LI(RN). One way is to guarantee that cj, is attained and to prove that Jj, .
satisfies the Palais-Smale condition below c¢;, + a, for some positive a. This is indeed the
case: as we prove below, the Palais-Smale condition holds below some level, related to
lim infjy| o,V (x). In order to state this result more precisely, we need some notations. First,
let us recall some facts about ground state solution of the equation

—hP Apu + MulPu=ulu inRN, (Q)

where h, A > 0. By [13, Propositions 2.1 and 2.2], there is a positive radially symmetric ground
state solution w(h,\) of (Q). By adopting arguments similar to those in Li and Yan [14,
Theorem 3.1], we obtain that w(h, ) € L®(RN) n C'*(RN) for some 0 < a < 1 and that
w(h,\) decays exponentially at infinity (also see Alves and Carriao [15, Lemma 2.1]). The
infimum

WP || Vully + Alully

P
l[ullg

m(h;\) = inf{ ‘ue W <RN>, u,.i_O} (2.8)

is achieved by w(h; A) = @w(h,\) /|| (h, 1)||4. It is easy to see that

N(g—
() = Kom(1:))  with 8= N=P) (2.9)
By (1.3), we can choose V, € R such that
Vo < Vi < lim inf V(x). (2.10)

|x[— o0
Let us denote

my = m(1; Vo), My, = m(1; V), (2.11)
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being the map A — m(1; ) strictly increasing, (2.10) implies
My < Mes. (2.12)

We are ready to state our compactness result.

Proposition 2.1. Suppose that assumptions (1.1)—(1.3) hold and

£ < ai<1 - ﬂ) (2.13)

1 My

Then there exists ki € (0, mo, — mg) and h} > 0 such that Jy, . satisfies the Palais-Smale condition in
the sublevel {u € X : J (1) < (mo + k;‘)he},for any 0 < h < h}.

Proof. Let p € (my, (1 — a160)my,) and fix 179 > 0 such that

P+ armome, < (1= aie0)me, (2.14)
obviously, for h small we have
e(h
% < g9+ 1o. (2.15)

Next, let y < fand let {u,} C X be a Palais-Smale sequence for Jj, . on X at the level y,, = yhe,
namely,

The(un) = yn +0(1), (2.16)

—hP Ayt + Ve () [t [P = Anlttn| "1 = 0(1)  in X, (2.17)

asn — oo, it is easily seen that A, = y;, + 0(1). By standard calculations, we can see that {u,}
is bounded in X. Therefore there exists u € X such that, up to a subsequence, u,, — u weakly
in X. Moreover, adapting arguments found in [16-18], it follows that u is a weak solution of
the following equation:

—hP Apu + Ve () [ulP?u = ylul"u  in RV, (E)

In order to prove that {u,} converges to u strongly in X we apply Lions Concentration-
Compactness Lemma (see [19, 20]) to the sequence of measures p,, = h?|Vu,|P + Ve (x)|u,|". By
[20, Lemma L.1], and the fact that u,, € =, we can exclude that vanishing occurs. If dichotomy
occurs, there exists 61,6, > 0, with 61 + 6, = y;, such that for any ¢ > 0 there are y,, € RN, R >
0,R,, — oo such that

fl L fl et (2.18)
X—Yn|< X=Yn|>2Ln
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Asa consequence,

f pn <28 (2.19)
R<|x—yn|<2R,

Let ¢ : [0,+00) — [0,1] be a smooth, nonincreasing function, such that {(t) = 1if 0 <t <1,
¢(t) =0if t > 2. If we define

w0 @), -ne-nei (), e

then (2.18) yields

fhr’wu;;r’ + Vo)l |” > 6,-¢, i=1,2. (2.21)

From the definition of #,, i = 1,2, and (2.19) we get

I|Vun|p_2Vun Vil = j 'Vu; Py 0(),
fvg<x>|un|f"2unu;; = fvg<x> |’ +0@), (2.22)
(a2, = [ ||+ 060,
whence, by taking (2.17) into account,
Joe(u) = [ W19 + Vel =, [ 1+ 0(1) + 0. (223)

Now, if the sequence {y,} is unbounded in RV, for large n we have V(x) > V,, — ¢ for any
x € Br(yy). Thus from (2.4), (2.15), the definition of m(h; V), and (2.23) we have

The (u},) > <1 - a1%> J‘hP|Vu}l|” + V(x)lu:llp

> 0@) + (1- ay(e0 +10)) j WV + Vil

) (2.24)

1
U,
q

> 0(%) + (1 - ai (e +10) ) m(h; Vo)

1\ \ P/4
=0()+o(1)+ (1 —ai(eo + qg))m(h;Vw)<]h’£}E—hu")> ,
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whence

The (ui) >0@)+o1)+ (1-a(e0+ qo))q/(q_p)m(h; Vw)q/(q_”)yf/(p_q). (2.25)
From (2.16) and (2.25) we can deduce

Y+ 0(1) 2 Jie (1) + O@)

(2.26)
> 0(E) +0(1) + (1 - ai (g9 +170) )V TP m(h; Ve )V @ PP/ 70,
letting ¢ — 0,n — oo and dividing by h? yields
Y > (1-ai(eo+10)) Mo (2.27)

and, from (2.14), y > f3, a contradiction. If the sequence {y,} is bounded in R¥, for large n we
have V(x) > V, — ¢ for any x such that |x — y,| > R,, and we get again a contradiction by
taking 12 into account. Dicotomy is therefore ruled out in any case. As a result, the sequence
{pn} is tight; there exists {y,} C RN such that for any ¢ > 0

f WV tal? + V(Olual = o — & (2.28)
|x—yn|<R

for a suitable R > 0. If the sequence {y,} is unbounded in RY, we could define u! as in (2.20)
and, noticing that

f IV + Vol 2y, -, (2.29)

we could get a contradiction exactly as before. So {1, } is bounded in RN, and for some R we
have

j WP Vu,|P + Ve(x)[ua|P < &+ o(1). (2.30)
|x|>R

By the compactness of the embedding W'# < L7 on bounded domains implies that {u,} —
u strongly in L9 and u is a weak solution of (E), we get

fhPWunV’ SVl = 1 f eal? + 0(1) = 11 j 7+ o(1)
(2.31)
= fhp|Vu|p + Vo (x)|ulP + O(¢) +o(1).

In other words, ||un||fl — ||u||fl. Finally, by using the Brezis-Lieb’s lemma [21] and arguing as
in [22, Lemma 2.4], imply u, — u strongly in X. O
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Remark 2.2. By Proposition 2.1 and the choice of V,, it follows that if V is coercive, namely,
V(x) — o as |x| — oo, then Jj. satisfies the Palais-Smale condition on X at any level.

Without loss of generality, we will henceforth assume V,, = lim inf|,|_ , V(x) < +o0.

We are interested in positive solutions for (Py.). Now, we state our result on the sign
of solutions for (Py).

Proposition 2.3. Suppose that assumptions (1.1)—(1.3) hold and

1
£ < —<1 — 2P0/ q). (2.32)
aq

Then there exists k3, h5 > 0 such that, for any 0 < h < h, every critical point u of Jp, . on X satisfying
Jne(u) < (mo +k3)h° (2.33)

does not change sign, where 0 is the same as in (2.9).

Proof. Fix 19 > 0 such that 0 < aj(gp + 10) < 1 —2%"0/9 and let h} € (0, k) be such that
g(h) < (o0 +no)h? for any 0 < h < h3, where hj is the same as in (2.7). Finally, choose

0< ks < (207/9(1— (e + 1)) 1) mo. (2.34)

Now, let 0 < h < h} and let u = u* —u~ be a critical point of Jj,. on X such that u*, u™ #0, where
u* = max{u,0} and u~ = max{-u,0}. We recall ¢j, = inf,cs Jn(u). If we multiply

—hP Apu+ Ve (x)|ulP u = Jie(u)|ul"u (2.35)

by u* and integrate on RY, we get

Jne @)Ut ll] = Tne () > cnllu*|lf, (2.36)
thus
q/(q-p)
etz (72) (237)
]h,s(u)

Similarly, the same inequality holds for u~, thus

1= [l + w7117 2 Z(C—”>W(q_m (2.38)
1 = \Jne(w) ’

whence

Jhe(u) > 2P/ 4y, (2.39)
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Then (2.4), (2.9), (2.33), and the definition of mj give

(mo + k3)h > Jpe(u) > 297P7/9(1 - ay (gg + 170) Ymoh?, (2.40)

if we divide by hY, the last inequality contradicts (2.34). This completes the proof. O

Proof of Theorem 1.1. Let 6 > 0 be fixed and let 77 : [0, +00) — [0, 1] be a smooth, nonincreasing
function, such that 77(t) = 1if 0 <t < 6/2 and 7(t) = 0if t > 6. Let w = w(1; V), fix any xo
such that V(xg) = Vp and set

X — X

5, (5) = o (52 Y =), @41)

the constant yy, is chosen in such a way that ||¢, x, [l = 1. Then, ¢, ,, €  and it is easy to see
that

Tne (@n) < Tno (@) = f B2V s + V()

_ RN [ |V (w(x)n(hlx])|” + V (hx + x0) |w(x)n(hlx]) |
(hN [ e (x)n(hl)| )
[IVw(x)]P + V(xo)|w(x)| + o(1)

_ he = 1))h®.
(flw(x)|q+o(1))p/q (m0+0( ))

(2.42)

As a consequence, for h small we have ¢, < (mo+k})h%;if &) < &* = 1/a; min{(1-2~9/9), (1-
my/me,)}, Propositions 2.1 and 2.3 apply and imply Jj,.(u) = c, for some u € X and u does
not change sign. We can therefore assume that u is positive and, up to a Lagrange multiplier,
(Un,e(u)" Py is a positive solution of (Py). O

3. Multiplicity of Solutions

We begin our discussion by giving some definitions and some known results. For any
constant a, we define

Jhe={u€X: Jpe(u) < al. (3.1)

We recall that M denotes the set of global minima points of V and, for any positive 6,
let Mg = {x € RN: dist(x, M) < &}. In order to prove our multiplicity result, we need
the following proposition. For the proof, based on the very definition of category and
homotopical equivalence, we refer, for instance, to [23].

Proposition 3.1. Let a > 0 and let J* be a closed subset of ]ﬁ,s' Let - M — J*, B ]fl’,g — Ms
be continuous maps such that p o @y, is homotopically equivalent to the embedding j : M — Ms.
Then catja (J*) 2 catp, (M).



10 Boundary Value Problems

In our setting, the construction of the map @y, is very simple. Indeed, for any xo € M
and for any h we define @y (x9) = ¢,x, (cf. (2.41), where ¢, , was introduced).

For any 6 > 0, let p = ps > 0 be such that Ms C B,(0). Let y : RN — RN be defined
as y(x) = x for |x| < p and y(x) = px/|x| for |x| > p. Finally, we define the barycenter map
p:Z — RN by setting f(u) = [ y(x)|u(x)|7. Since Ms C B,(0), we can use the definition of x
and the Lebesgue theorem to conclude that

%in}) P(Dp(xp)) =x9 uniformly for xo € M. (3.2)
The content of the following proposition is that barycenters of low energy functions
are close to M.

Proposition 3.2. Suppose that assumptions (1.1)—(1.3) hold. For any 6 > 0 there exists €](6) > 0
such that if

g0 < £7(0), (3.3)
then there exist k3, h% > 0 such that p(u) € Ms for any u € X satisfying Jn. < (mo + k3)h° for
0 < h < h3, where 0 is the same as in (2.9).

Proof. By contradiction, let us assume that for some 6 > 0 we can find ¢,, > O such thate,, — 0
asm — oo, limsup, _,,e(h)h’? < &y, and the claim in Proposition 3.2 does not hold.
For h small we have e(h)h™ < &, + 1/m and by (2.4)

(1= (em+ 5 ) )Inaa) < Tt (34

Let hy,, k, — 0" asn — oo and u, € X be such that Jj, . (u,) < (mo + kn)hﬁ and p(u,) € Ms.

Let v,(x) = h,]:]/qun(hnx) and from (3.4) we have

m0+kn
1-ay(em+1/m)’

< (3.5)

f|m|" V()0 <

We apply Lions’ lemma to the sequence of probability measures o, = |v,|7. Vanishing is easily
ruled out. If dichotomy occurs, there exist 61,6, > 0, with 6; + 6, = 1 such that for any ¢ > 0
there are y, € RN, R>0, R, — oo such that

J‘ On 2 61 - ér I On 2 62 - (§ (36)
[x=yu|<R [x=yn|>2R,,

Let us consider ¢ as in the proof of Proposition 2.1 and define v}, v3 accordingly as in (2.20).
Inequalities (3.6) give

[lif26-¢ i-12 (37)
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From (3.5) and (3.7) we get

mo + ky 1P P J‘ - .
> Vi v
T—ai(em +1/m) -IIanI +Voloal” + | V02l + Volw2 +O(2)

> mo< :) +0@) (3.8)

> mo((61-8)"7 + (62-8)").

p
M+
q

2
v, v

n

Asm,n — oo and ¢ — 0 we deduce 1 > Gf /a 6; /q, a contradiction. Thus {0, } is tight; there
exists {y,} C RN such that for any ¢ > 0

for a suitable R > 0. The sequence T,, = v,(- + y,) is bounded in W'?(RN), hence it weakly
converges to some ¥ in W?(RY) and, due to the compactness property (3.9), strongly in
L9(RN). If the sequence x,, = h,y, — oo asn — oo, then (3.5) gives

mp > I|V5|p + lim inf’[ V (hpx + x,)|0,|F > J [VOlP + V[0 > m., (3.10)
n— oo

which contradicts (2.12). Thus we can assume that x, converges to some X (up to a
subsequence), and arguing as before we obtain

my > J Vol + V(X)) > m(1; V(X)) > my. (3.11)

From this we have V(x) = V and [ |Vo]P + Vy(X)[0]P = mo, hence my = m(1; V) is achieved
by ¥ € X. Furthermore, since [ |V0,[P + Vo[v,|P > my, from (3.5) we get [ |V, [P + Vo[v,[P —
mg = [ |[VO|P + Vy[o]P as n — co. By using the Brezis-Lieb’s lemma [21] and as in [22, Lemma
2.4], we get that T, converges to v strongly in WP (RN). Finally, let 6 > 0 be fixed and let
71:[0,+00) — [0, 1] be a smooth, nonincreasing function, such that n(t) =1if 0 <t < 6/2 and
n(t) =0if t > 6. Set

X — Xy

gax) = m( >n<|x _— (3.12)

n

where the constant y;, is chosen in such a way that [|¢,[|, = 1. Then, ¢, € £ and it is easy to
see that

1BGan) = Bl < p [ 115l = ] = o). (3.13)
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By x, — X € M and the fact Ms C B,(0) and Lebesgue theorem, it follows that |f(¢s,) —
Xn| = o(1). Therefore, |f(u,) — x,| = o(1), which contradicts f(u,) ¢ Ms. This completes the
proof. O

Proof of Theorem 1.2. Let 6 > 0 be fixed and let £7(6) be as in Proposition 3.2. Let

£ (6) = min{ 1 (1-20-0/9), 1 (1 - %),g;(a) } (3.14)

o a s

and assume gy < €*(6). Let 0 < h* < min{h : i = 1,2,3} and k* = min{k} : i = 1,2,3}, with
the constants h’, kI being defined in Propositions 2.1, 2.3, and 3.2. Let 0 < h < h*; we can
assume that a(h) = (mg + k*)h? is not a critical value for J;, on . For convenience, we set
Sp={ue: Jne(w)<ah)},Z ={uey:u>0},and =, = {u €y :u<0}.

If h is small enough, (2.42) gives Jj, -(Pn(x0)) < (mg + k*)h? for any xg € M. In other
words, ®p,(xp) € X for any xo € M. Furthermore, Proposition 3.2 implies f(u) € M; for
any u € . Finally, as a consequence of (3.2) it is easy to see that p o @ is homotopically
equivalent to the embedding j : M — M. Thus Proposition 3.1 gives cats, (X}) > caty; (M).
If we use the map -®;, we also get cats, (%) > catpr, (M), whence cat(Xy,) > 2caty, (M), for
h small.

Proposition 2.1 guarantees that the Palais-Smale condition holds in a sublevel
containing 3. Thus Ljusternik-Schnirelman theory applies and we deduce that J; . has at
least 2catyg; (M) critical points on %, satisfying Jj (1) < a(h) < (mp + k;‘)he. Therefore, by
Proposition 2.3 they do not change sign and we can assume that at least catas, (M) critical
points are positive. O
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