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We discuss how homology computation can be exploited in computational electromagnetism. We
represent various cellular mesh reduction techniques, which enable the computation of generators
of homology spaces in an acceptable time. Furthermore, we show how the generators can be used
for setting up and analysis of an electromagnetic boundary value problem. The aim is to provide a
rationale for homology computation in electromagnetic modeling software.

1. Introduction

Setting up a well-posed electromagnetic boundary value problem encompasses setting up
constraints that are related to the problem domain: the boundary conditions, field sources,
and material parameters. These constraints usually surreptitiously involve the topology of
the field problem domain. The division of the domain boundary to be governed by different
boundary conditions, imposed source fields or circuit quantities, the division of the domain
to conducting and nonconducting subdomains, and the use of field potentials bring up
topological aspects that cannot be overlooked when defining the boundary value problem
[1–6].

Failure to provide the above information in a consistent manner often leads to an over-
or underdetermined system, and worse than that, the user as well as the software might be
clueless where the problem lies. In this light, an automated, fast and definite procedure to find
out the keystones of problem topology would save human effort and supersede problem-
specific methods and heuristics in EM modeling software.

The tools of homology, capturing the topological nature of Maxwell’s equations,
can provide what is needed. Therefore, the efficient computation of absolute and relative
homology groups has been under active study in computational electromagnetics community
during recent years [7, 8]. The absolute homology links to topologically complicated
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boundary value problem domain, while the relative homology is needed when the boundary
values are imposed for the unknown fields, or the boundary value problem is coupled to
external systems.

In this paper, we represent a succession of algorithms that, when given a cellular
mesh, will lead to computation of generators of homology groups in an acceptable time
and memory, establishing the viability of homology computation as an integral part of
an electromagnetic modeling software. We also discuss how the information provided by
homology computation can be exploited.

2. Homology

The study of homology is sewed around the concept of boundary of a chain, which is an
intrinsic part of Maxwell’s integral equations and Stokes’ theorem. We define a boundary
operator on chains, which maps chains to their boundary chains. A chain with zero boundary
is called a cycle, and the boundary of the boundary of any chain is empty. Therefore, all
boundaries are cycles. However, the converse is not true, there can be cycles that are not
boundaries. This makes a dramatic difference in the integration of closed fields over cycles.
By Stokes’ theorem, the integrals of closed fields vanish over boundaries, but not necessarily
over cycles. Therefore, if two cycles differ only by a boundary, integrals of closed fields over
them are equal, and they can be considered equivalent in this sense. The homology spaces (they
are generalizable into moduli, but we restrict to spaces with coefficient field of R or C, which
are sufficient to our application) of a chain complex provide reliable means to classify cycles
depending on their contribution to the integrals of closed fields. The elements of homology
spaces are thus cosets of cycles.

To algebraize the concepts of boundary and chain, we form a finitely generated chain
complex C(K) based on a cellular mesh K of the problem domain Ω. The cellular mesh K
is an instance of the regular cell complex, a finite element mesh for example. The domain Ω is
taken to be an orientable manifold with boundary. Now, the finite spaces of p-chains constitute a
chain complex (Chain complex: im(∂p+1) ⊂ ker(∂p) for each p). under the boundary operator.
It is represented by an incidence matrix ∂p, one for each dimension p. If we chose to disregard
part of the chains that lie in a subdomain Γ ⊂ ∂Ω, covered by cell subcomplex L, we get so-
called relative chain complex C(K,L) [5, 7]. (In a case boundary values of the unknown field
are imposed Γ ⊂ ∂Ω, we are not interested about the field integrals there.) This is done
by forming an inclusion map i : C(L) → C(K) and quotienting to get C(K)/i(C(L)). In
boundary value problem, the quotient can be formed by dropping the rows and columns from
∂p corresponding to elementary p-chains that lie in L(As there are no boundary conditions
concerning a multiplicity of a boundary, this is a practical choice of representatives for the
relative chains of Cp(Ω,Γ).) If L is empty, we call the chain complex absolute. Our discussion
applies to absolute homology as well. Also, the distinction between the domains Ω, Γ and the
FE meshes K, L is disregarded, and Ω and Γ are used throughout. (Chain space Cp(K,L) is
finite dimensional whereas Cp(Ω,Γ) is not, while Hp(K,L) � Hp(Ω,Γ).)

2.1. Decomposition of Chains and Cohomology

It holds that for each p, the relative p-chain space has the nonunique decomposition [5]

Cp(Ω,Γ) � Bp(Ω,Γ) ⊕Hp(Ω,Γ) ⊕ C∂
p(Ω,Γ). (2.1)
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That is, a nonzero relative chain is a relative boundary of some p + 1 chain, that it belongs
to an equivalence class of chains that are neither boundaries of p + 1 relative chains and do
not have a relative boundary in the chain space Cp−1(Ω,Γ), or it is a relative chain that has a
nonzero relative boundary. Spaces Bp(Ω,Γ) andHp(Ω,Γ) constitute a space of p-chains whose
boundaries are empty, the relative p-cycles Zp(Ω,Γ).

It turns out that the relative homology spaces, moduli in general, Hp(Ω,Γ) are
interesting when posing an electromagnetic boundary value problem. (Restriction to space
disregards torsion, which may occur in relative homology of orientable manifolds [7]. Our
implementation uses integer computations to detect it.) They are isomorphic with cohomology
spacesHp(Ω,Γ) of the (relative) cochains Cp(Ω,Γ). Cohomology is constructed on the exterior
derivative, in our context of the de Rham cohomology, d in the similar manner homology
concerns the boundary operator [1, 9]. (In general, this operator is called coboundary operator.)
Cochains can be used to model the electromagnetic fields, and the integration of fields can be
regarded as a bilinear mapping

∫
: Cp(Ω,Γ) × Cp(Ω,Γ) → R of chains and cochains [1, 9].

The subdomain Γ ⊂ ∂Ω is typically a region where a boundary condition is imposed upon an
unknown field.

Cohomology and homology are related by de Rham’s theorem. A field ω ∈ Cp(Ω,Γ)
is closed if dω = 0, and exact if ω = dα holds. By de Rham’s theorem, a field ω ∈ Cp(Ω,Γ) is
exact if and only if

dω = 0,
∫

c

ω = 0, ∀[c] ∈ Hp(Ω,Γ). (2.2)

Fields that are closed but fail to be exact belong to the cohomology class Hp(Ω,Γ). Now, such
fields can only exist if the homology spaceHp(Ω,Γ) contains nonzero elements. Otherwise by
(2.2) and Stokes’ theorem, all closed fields are also exact. This is de Rham isomorphism between
homology and cohomology: Hp(Ω,Γ) � Hp(Ω,Γ) for all p [9]. Therefore, computation of the
relative homology of the boundary value problem domain gives us full understanding of
how the boundary conditions fix the cohomology classes of the unknown fields, what is left
to be determined because of tunnels or voids in the domain.

2.2. Some Properties and Examples of Homology Spaces

The relation between absolute and relative homology spaces can be summarized with the
exact sequence of homology spaces [1]:

· · · −→ Hp(Γ)
i∗−→ Hp(Ω)

j∗−→ Hp(Ω,Γ)
∂p−−→ Hp−1(Γ) −→ · · · . (2.3)

Here i∗ and j∗ are an inclusion and a projection induced by the corresponding mappings
of chain spaces [5, 7]. That is, all the elements of Hp(Ω,Γ) can be decomposed into such
nonunique parts that either have a nonzero preimage in Hp(Ω) or image in Hp−1(Γ). This
twofold structure of Hp(Ω,Γ) emerges when the domain Ω contains tunnels or voids, where
field sources might be present in electromagnetic boundary value problem. Such sources can
be taken into account with the aid of generators of Hp(Ω,Γ), which have a counterpart in
Hp(Ω).
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Figure 1: Two representatives of generators of H1(Ω,Γ). One generator has a nonzero preimage in H1(Ω),
while the other has image in H0(Γ).

Example 2.1. A toroid Ω where Γ consists of the two shaded walls in is shown Figure 1. 1-
chain cosets [γ] and [ζ] generate H1(Ω,Γ). Generator [ζ] has a nonzero preimage in H1(Ω),
while generator [γ] has image in H0(Γ): [β − α].

Let Ω be an n-dimensional manifold. Then there exists an isomorphism [1, 9]

Hp(Ω) � Hn−p(Ω, ∂Ω). (2.4)

If the boundary ∂Ω is divided into two complementary nonoverlapping parts Γ1 and Γ2, there
exists an isomorphism [1, 9]

Hp(Ω,Γ1) � Hn−p(Ω,Γ2). (2.5)

These are so-called duality theorems, actually, compositions of the Lefschetz and de Rham
duality theorems [1, 9], (It is crucial that the coefficient fields are the same on the homology
and cohomology side.), which turn out to be useful together with the isomorphism between
chains and cochains when considering dual formulations of an electromagnetic boundary
value problem.

Example 2.2. Dual generators of a bar Ω in are shown Figure 2. Γ1 consists of the opposite
shaded ends of the tube, and Γ2 consists of the jacket. 1-chain coset [γ] generates H1(Ω,Γ1),
while 2-chain coset [Σ] generates the dual space H2(Ω,Γ2).

3. Computation

From the data structure representing a cellular mesh, that is a regular cell complex, we can
deduce the incidence matrices representing the boundary operators. The pth matrix contains
the information about the boundary p−1-cells of p-cells. If a p−1-cell is on the boundary of a p-
cell, the corresponding incidence index is either 1 or −1, depending whether their orientations
match or not [5, 7]. Otherwise the incidence index is 0. The boundary operator matrices and
knowledge about the cells belonging to K and L hold all the information we need.
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Figure 2: Representatives of dual generators.

The computation of the p : th homology space is about finding the quotient
space ker(∂p)/im(∂p+1). In other words, the p : th relative homology-space is Hp(Ω,Γ) =
Zp(Ω,Γ)/Bp(Ω,Γ). The computation of a basis of this quotient space using the bases for Cp

and Cp+1 can be done with integer matrix decompositions of the boundary operator matrices,
as discussed in [7, 8]. The decompositions are called Hermite normal form and Smith normal
form. The problem is divided into three parts: finding bases for ker(∂p) and im(∂p+1), finding
an inclusion map i : im(∂p+1) → ker(∂p), and finding a basis for quotient ker(∂p)/i(im(∂p+1)).

Unfortunately, the computation of the relevant integer matrix decompositions has
worse than O(max(Np,Np+1)

3) upper bound for computational time complexity, where Np

is the number of p-cells in the complex [10]. This is unacceptable, as finite element solution of
a boundary value problem is a lot cheaper. However, the number of generators of Hp(Ω,Γ)
is practically always substantially smaller than Np, which suggests that we need to look for
means to reduce the size of the bases of p-chain spaces without altering the relative homology
spaces. Only after that, the integer matrix decompositions of the reduced boundary operator
matrices are used to compute the generators of homology spaces.

3.1. Problem Size Reduction

Homology spaces are topological invariants and they are isomorphic under weak homotopy
equivalences [7, 11, 12]. Those properties provide that homeomorphisms and homotopy
invariant mappings between topological spaces also preserve the homology spaces.
Therefore, it is possible to apply certain homotopical operations to the problem domain Ω,
which keep the homology spaces Hp(Ω,Γ) invariant. When the domain Ω is covered by a
regular cell complex C, two operations of this kind can easily be exploited [7, 13] as follows.

(i) First is removing a cell that bounds only one cell, together with the cell it bounds.
This makes a dent in the domain but not any holes. The corresponding homotopy
invariant mapping of the underlying space Ω, is called deformation retraction [12].
In [13], this is referred to as exterior face collapsing.

(ii) Second is combining neighboring p-cells that share on their boundary a common
p − 1-cell that is not bounding any other p-cells. This mapping leaves Ω intact. It
only alters the chain complex C, which still covers the same domain. Therefore, the
topology of Ω doesnot change. In [13], this is referred to as interior face reduction.

The aim is to perform and implement these two operations in such manner that as many
cells as possible get removed with as little computational effort as possible. We have avoided
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C := cell complex
Repeat

for all p−1-cells cp−1 ∈ C do
if cp−1 is on the boundary of exactly one p-cell cp and
(cp, cp−1 ∈ Ω \ Γ or cp, cp−1 ∈ Γ) then
C := C \ {cp−1, cp}

end if
end for
until no cell has been removed

Algorithm 1: p-Reduce.

nonlocal reduction methods in order to avoid algebraic computations until the sizes of the
bases of p-chain spaces are modest. The reason we split the reduction techniques in [13] in
two separate algorithms is that the former alone is found more computationally efficient, and
one should only after that resort to the latter.

3.1.1. Reduction of Cells

If a p-cell cp has a boundary p − 1-cell cp−1 that does not bound any other p-cell, both of these
cells can be removed from the cell complex without altering the relative homology spaces
Hp(Ω,Γ) [7, 13]. These cell pairs (cp−1, cp) satisfying the above condition are called elementary
reduction pairs. Let Np be the number of p-cells in the cell complex C.

An estimate for the computational complexity Algorithm 1 is in our interest. The
order in which the cells are removed affects the efficiency of the algorithm, which ultimately
depends on the index numbering of the cells. It is possible to construct examples where the
repeat-until-loop must be ran max(Np,Np−1) times, resulting to at least quadratic worst case
computational complexity. However, for a typical manifold of a boundary value problem,
the loop runs only a couple of times. That gives us more promising estimate when the cell
complex C is implemented as a binary search tree and the cells carry the information about
their boundary cells. The computational complexity is then essentially due to the linear-time
for-loop and the logarithmic-time operation of removing items from a binary search tree. This
estimate is O(Np−1 log(max(Np,Np−1)).

The removal of a p- and a p − 1-cell corresponds to the removal of a row and a column
from the matrix of ∂p and the removal of a row from the matrix of ∂p−1. The matrix of ∂p+1

does not change as the removed p-cell cannot be on the boundary of any p+1-cell. In such
case, no p − 1-cell can be found that satisfies the if-clause in the algorithm. The algorithm can
be applied to the cell complex in succession from the dimension n of the cell complex down
to p = 1. Note though, that the matrix operations are not definitely the most efficient way of
implementation.

The number of pairs (cp−1, cp) the algorithm is able to remove from the cell complex
ranges from zero to all of them. Usually one successful removal triggers an avalanche of
removals. Therefore, the cases where no cells can be removed are the most dramatic, and
we enumerate the three possible cases (Figure 3) for each connected component Ωi of the
problem domain Ω when p is equal to the dimension n of the cell complex:
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Ω

Σ Θ

Figure 3: Three manifolds: a 3-dimensional tube Ω, the surface of a toroid Σ (∂Σ = ∅), and a solid Θ (∂Θ = Γ),
where Γ consists of the shaded regions. Reduction is able to reduce cells from cell complex C(Ω,ΓΩ), but
not from complexes C(Σ) and C(Θ,ΓΘ).

(1) ∂Ωi /= ∅, ∂Ωi /⊆Γ: elementary reduction pairs (cn−1, cn) can be found. There exist n−1-
cells in ∂Ωi \ Γ that bound only one n-cell of Ωi;

(2) ∂Ωi = ∅: no elementary reduction pairs (cn−1, cn) can be found. A manifold without
a boundary: there can be no n − 1-cells bounding only one n-cell, otherwise they
would belong to the boundary;

(3) ∂Ωi ⊂ Γ: no elementary reduction pairs (cn−1, cn) can be found. This is similar to the
first case, but all the n− 1-cells in possible elementary reduction pair candidates for
removal belong to Γ.

In the last two cases no n − 1-cells can be found that satisfy the if-clause in the n-Reduce
algorithm. The inability to remove any pairs (cn−1, cn) implies that no lower dimensional
pairs can be removed either (true for cell complexes whose underlying space is a manifold.)
It seems that p-Reduce algorithm is toothless in many situations, but fortunately we can resort
to an approach derived from the Coreduction homology algorithm [14].

3.1.2. The Reduce-Omit Algorithm

Coreduction, as opposed to reduction, is the procedure of removing p-cell and p− 1-cell pairs
(cp, cp−1) when the p-cell cp has only one p − 1-cell cp−1 on its boundary. This pair (cp, cp−1) is
called an elementary coreduction pair. As no such pairs can be found from a complete cellular
mesh, the algorithm is started by arbitrarily removing a single 0-cell, leaving pairs (c1, c0)
which satisfy the condition. The algorithm goes on by removing one 0-cell each time there
are no elementary coreduction pairs (cp, cp−1) left, while there are still 0-cells left. The number
of arbitrary removals needed to be done in order to banish all 0-cells equals the Betti number
β0, the number of connected components of the domain [14].

The 0-cell removal is justified by treating the cell complex as the reduced cell complex
(constituting together with the augmentation map ε : C0 → Z an augmented chain complex
[11].), where there is one additional −1-cell in each connected component of Ω. Thus, the
removal of 0-cell is interpreted as the removal of the coreduction pair (c0, c−1). For the
reduced homology (homology for the augmented chain complex, an example of an extraordinary
homology theory [11]). H̃(C) � H̃(C \ {c0, c−1}) holds [14]. For the reduced cell complex
H̃0(Ωi) = 0 holds for each connected component, and H̃p(Ω) = Hp(Ω) holds for all p /= 0
[11]. The information lost about H0(Ω) due to computing the reduced homology instead can
be recovered by storing the arbitrarily removed 0-cells: they are the generators of H0(Ω).

The algebraic dual of a cellular mesh is a mesh where the roles of the cells in the
boundary relation of cells have been interchanged. We say c1 is on the coboundary of cell c2, if
c2 is on the boundary of c1. So in the dual mesh, boundary cells of a cell become coboundary
cells and vice versa. Also the dimensions of the cells get flipped over: if the dimension of
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the manifold is n, the dual cell of a p-cell is an n − p-cell. For the dual mesh, the boundary
operator matrices are ∂̃p = ∂Tn−p for each p, that is, the transposes of the boundary operators
of the primal mesh [5].

Coreduction is a dual algorithm to reduction in the sense that, instead of checking
whether a p − 1-cell is on the boundary of a single p-cell only, it checks whether a p-cell is
on the coboundary of a single p − 1-cell only. So the Coreduction can be interpreted as a reduction
algorithm for the dual mesh in terms of primal mesh cells. Due to the isomorphism between primal
and dual cells, the coreductions can be regarded as weak homotopy equivalences.

A dual version of the launch of the Coreduction can be used to devise an extension to
p-Reduce algorithm, but only in the case p equals n: Applying the arbitrary removal to n-cells
from the cell complex each time it notices no elementary reduction pairs (cn−1, cn) could be
found in the previous run, yet there still are n-cells left. The three cases enumerated earlier
tell us that this is the case only when ∂Ωi is either empty or a subset of Γ. The p-Reduce
algorithm detects this nonexistence of elementary reduction pairs in linear time. Similarly
to the Coreduction, the number of arbitrary removals needed to banish all the n-cells from
the cell complex tells us the dimension of Hn(Ω,Γ), the Betti number βn. By duality theorem
Hn(Ωi, ∂Ωi) � H0(Ωi), βn is equal to the number of connected components Ωi of Ω, for which
either ∂Ωi = ∅ or ∂Ωi ⊂ Γ holds.

Therefore, each arbitrary removal of a n-cell leads to a removal of all the n-cells in the
given connected component of Ω and the removed n-cells together with the “trigger” n-cell
constitute a generator of Hn(Ω,Γ). This procedure of course leaves the n-generators out of
the final algebraic problem and without orientation, but they can be recovered afterwards.
The operation also clearly alters the topology of the domain, but in a controlled fashion. It
is known exactly how many and which n-generators were omitted: one for each connected
component Ωi of Ω, for which either ∂Ωi = ∅ or ∂Ωi ⊂ Γ holds. We call Algorithm 2 Reduce-
Omit.

This strategy cannot be applied further down in the dimension p < n, as there is
no guarantee that the p-generators have separate supports. Therefore, the arbitrary removal
of a p-cell could lead to a removal of such set of p-cells, from which no representative of
the generator of Hp(Ω,Γ) can be constructed. The dimension n was exceptional, as all the
n-generators had separate supports, and therefore all the removed n-cells constituted one
n-generator. For this reason, it seems that the power of the Coreduction algorithm in Betti
number computations does not carry over to homology generator computation.

3.1.3. Combining Cells

If a p−1-cell resides on the boundary of exactly two p-cells, it is possible to combine these two
p-cells to form single p-cell and remove the p − 1-cell from the cell complex without altering
the covered domain Ω. [7, 13].

Algorithm 3 has worst-case computational complexity of O(NpNp−1), where Np is
the number of p-cells in the cell complex. This is due to the fact that eventually most of the
p−1-cells get enqueued in Q. Another option would be a faster version without a queue,
but experience on test runs suggests that the end-state of such algorithm will leave more
cells in the cell complex. This trade-off gets worse as the size of the problem is increased,
as one needs to face the algebraic decomposition in the end. Furthermore, accessing the
boundary information of a cell is a constant-time operation, if memory is sacrificed to carry
this information. The check whether a queue already contains an element, can be done in
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C := cell complex
n := dimension of the cell complex C
βn := 0
for p = n to 1 do
p-Reduce (C, p)

end for
while cell complex C has n-cells cn such that cn ∈ Ω \ Γ do

choose n-cell cn ∈ C such that cn /∈ Γ
C := C \ {cn}
βn := βn + 1
for p = n to 1 do
p-Reduce (C, p)

end for
store cn and n-cells removed by p-Reduce (C, n) in previous loop.

end while

Algorithm 2: Reduce-Omit.

C := cell complex
Q := empty queue of p−1-cells
for all p-cells cp ∈ C do

enqueue boundary p−1-cells of cp into Q
while Q is not empty do

dequeue cp−1 from Q
If cp−1 is on the boundary of exactly two p-cells c1

p, c2
p and

(c1
p, c2

p, cp−1 ∈ Ω \ Γ or c1
p, c2

p, cp−1 ∈ Γ) then
C := C \ {cp−1, c

2
p}

c1
p := c1

p ± c2
p, the sign chosen such that the orientations match

enqueue boundary p−1-cells of c1
p not already in Q to Q

end if
end while

end for

Algorithm 3: p-Combine.

logarithmic time by maintaining a binary search tree of the elements in the queue. Again, the
end-state of the algorithm ultimately depends on the index numbering of the mesh vertices.

The combining of two p-cells and removal of a p − 1-cell correspond to an addition
row-operation of two rows followed by removal of a row and a column in the matrix of ∂p,
an addition column operation of two columns followed by removal of a column in the matrix
of ∂p+1 and a removal of a row in the matrix of ∂p−1. Again, matrix operations are not an
efficient way to reduce the mesh.

p-Combine can be run for each dimension of the cell complex, starting from n down to
1. In addition, after each run of p-Combine, p-Reduce (C, p− 1) can be run to get rid of “loose
tails” that p-Combine leaves behind; see Figure 4.
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Figure 4: A mesh of a square with a hole after cell combining. Loose tails are left behind, which can be
removed with p-Reduce algorithm.

3.2. General Procedure for Homology Computation

Let us now propose a general procedure to find the generators of homology spaces Hp(Ω,Γ)
for all p. Let n be the dimension of the chain complex.

(1) Run Reduce-Omit.

(2) Run p-Combine followed by p-Reduce (C, p − 1) for each p = n − 1, . . . , 1.

(3) Find the generators of Hp(Ω,Γ) using the reduced boundary operator matrices ∂p
for each p by HNF and SNF.

(4) Recover the possible generators of Hn(Ω,Γ) from the cells stored by Reduce-Omit
(optional).

An implementation of this procedure is available in the open source finite element pre- and
postprocessor Gmsh [15].

3.2.1. Performance Discussion

The total computational complexity of the procedure above quite plausibly depends on the
sizes and the ranks of the homology spaces, along with the index numbering of the mesh.
Therefore, it is hard to give any definite estimates other than the complexities for individual
algorithms in it. However, the upper and lower bounds can be given.

The ultimate upper bound is the computational complexity bound of the Smith normal
form decomposition applied to the nonreduced problem [10]. However, it is highly unlikely
that such situation will ever occur in practice with finite element mesh and homology
groups without torsion. The worst-case end-states of p-Reduce and p-Combine are extremely
difficult to discover, as they are homotopy invariances, and homotopy groups are known to
be computationally challenging. In case the ranks of the homology spaces are zero for all
p = n, n − 1, . . . , 1, the procedure has the computational complexity of p-Reduce.

In cases where p-Reduce is unable to ignite, the use of Reduce-Omit significantly
increases the efficiency of this procedure, as it eliminates the need to give large inputs to
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(a) (b)

Figure 5: (a): A representative of the generator of H2(Ω, ∂Ω) of a toroid. (b): A representative of the same
generator but in terms of primal mesh cells, so-called thick-cut, computed by applying coreduction to
C(Ω).

p-Combine. In case only the ranks of the homology spaces are of interest, the Coreduction
homology algorithm can be applied [14]. It has the superior computational complexity of
O(N logN), where N is the total number of cells in the cell complex.

3.2.2. A Strategy for Thick-Cuts

Coreduction was found to be a powerful tool to compute the Betti numbers of a cellular mesh,
but the answer to whether it is suitable for computation of the generators of homology spaces,
seems to be unfortunate. When p < n holds, the supports of the generators may overlap,
because the recovery of the orientations of the generators is complexity theoretically intractable
in general [7]. However, a modified algorithm can be applied to compute the generators, but
in no less computational complexity than the reduction algorithm can.

One can apply Coreduction to the cellular mesh so that only 0-cells are arbitrarily
removed in a similar but dual manner as in the Reduce-Omit algorithm. Then use
straightforward dual versions of p-Combine and p-Reduce. Replace “boundary” with
“coboundary” and “p−1-cell” with “p+1-cell” in Algorithms 3 and 1. After that, the homology
computation with the reduced and transposed boundary operator matrices will find out the
dual generators of the homology spaces, but in terms of primal cells. An example of this is
so-called thick-cut, which we shall discuss more later.

Example 3.1. The established method for finding the generators of Hp(Ω, ∂Ω) is to apply
Reduce-Omit and p-Combine to C(Ω, ∂Ω) and then compute the decompositions of ∂p and
∂p+1. Alternatively, one can apply this modified coreduction technique to C(Ω), as Hp(Ω) �
Hn−p(Ω, ∂Ω) holds. Then compute the decompositions of ∂Tn−p and ∂Tn−p−1 to find the same
generators, but represented by the primal mesh cells; see Figure 5.
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4. Uses

In this section we motivate the interest of computational electromagnetics community in
homology computation. The purpose is to show its benefits in an electromagnetic modeling
software.

Homology often relates to the electromagnetic phenomena outside the domain Ω,
when we want to couple them with the electromagnetic fields defined on the domain. In
contrast, modeling decisions are also made to barricade certain kinds of coupling with the
outside world. Nevertheless, the interface is always present, and its homological character is
an intrinsic part of an electromagnetic boundary value problem.

Before the understanding of the role of homology and cohomology in electromagnetic
modeling, case-specific and limited solutions have been used as substitutes. The genuine use
of homology can offer a generally applicable and systematic framework for electromagnetic
modeling and computation.

4.1. Setting up an Electromagnetic Boundary Value Problem

Setting up an electromagnetic boundary value problem with unique solution involves a
variety of questions that, in general, are about the sources of the electromagnetic fields
modeled. How does one set the field sources in Ω together with the boundary conditions
consistently? What does imposing a voltage between terminals actually mean? How does
one impose a net current through a conducting domain that has terminals on the domain
boundary Γ? Given multiple terminals, how many and which voltages/currents does one
need to impose in order to get a unique solution? When is a field potential sufficient to
describe alone the unknown field in electromagnetic boundary value problem?

In simple problems, the above questions can be answered with reasoning based on
knowledge about Maxwell’s integral equations and circuit theory. But what if the problem at
hand was so complex that simple reasoning would not help or if we wanted to automate the
problem posing and validation in order to save human effort. Of course, the software cannot
tell what the user wants, but it can help the user to do what he wants as soon as he tells it.

With the aid of homology computation, the software’s answer to all of the above
questions would be something like “Impose N of these integrals of these field quantities
over these generators of homology spaces in order to get a unique solution.” Next we will
present some tangible examples.

4.2. Cuts for Scalar Potential

The use of scalar potential where possible is preferable in field computation, as it reduces the
size of the system matrix: there are far less nodes than edges in a typical mesh. Let a closed
field h ∈ Z1(Ω) = {h ∈ C1(Ω) | dh = 0} be the field of interest. Due to de Rham’s theorem,
field h can be exhaustively represented with a scalar potential φ ∈ C0(Ω) such that h = dφ
holds, if and only if

∫
c h = 0 holds for all c ∈ Z1(Ω) [9]. That is, the circulation of h must

vanish on all closed chains.
Whether this holds for all closed chains c depends on the homology of the problem

domain. It holds by Stokes’ theorem for all chains, that are boundaries, but not all cycles
are necessarily boundaries. What is left to be determined are the integrals over nonbounding
cycles, values Ii =

∫
ci
h, [ci] ∈ H1(Ω), that is, the field circulations around the generators of the
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c1

c2

S1 S2

Figure 6: Representatives c1 and c2 of generators of H1(Ω) and the corresponding representatives S1 and
S2 of the dual generators of H2(Ω, ∂Ω).

homology space H1(Ω), which is nonempty when the problem domain Ω contains tunnels.
However, this fails for a scalar potential alone, as

∫
ci
dφ =

∫
∂ci
φ = 0 for all [ci] ∈ H1(Ω).

Therefore, the field h is decomposed into two parts, h = dφ + T , where T satisfies dT = 0,
and

∫
ci
T = Ii for all [ci] ∈ H1(Ω). A systematic approach to fix these circulations for T and

thereby for h, is to produce so-called thick-cuts, where the support of T entirely lies. This will
guarantee sparse system matrix, and the problem is computationally cheap to solve.

There is a multiplicity of methods for finding the thick-cuts. They often mix in
homotopy, or rely on some strict assumptions about the domain Ω. However, the cut surfaces
are actually the corresponding duals for the generators of H1(Ω), elements of H2(Ω, ∂Ω),
reliably computable with our methods. The thick-cuts are the dual 1-chains of the 2-chain
generators of H2(Ω, ∂Ω).

Example 4.1. Consider a magnetic core Ω shaped like Figure 8, with coils wound around its
branches. The cut surfaces S1 and S2, the generators of H2(Ω, ∂Ω), are shown in Figure 6.

Example 4.2. Consider a wire wound around a magnetic core that is surrounded by air. Let Ω
consist of the core and air, see Figure 7. Now, the single generator of H1(Ω) is a simple loop
around the wire. Its dual generator of H2(Ω, ∂Ω) does not share this virtue, as it “cuts” all
such loops.

4.3. Detection of Contradicting Source Quantities and Boundary Conditions

Field sources inside the problem domain Ω and the boundary conditions on domain
boundary ∂Ω are often interrelated: the user can set source quantities and boundary
conditions in such a fashion that Maxwell’s equations cannot hold in the problem domain
and a solution is unattainable. Typically, the only symptom is the linear solver’s failure to
converge. In such cases, a simple sanity check can be made using homology computation
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Figure 7: On the left: a representative of the generator of H1(Ω). On the right, the representative of the
generator of H2(Ω, ∂Ω).

Ω

C

Figure 8: Coupled field-circuit problem. The circuit and field domains are isolated everywhere else except
on the shaded region Γ ⊂ ∂Ω.

before the solver is launched, to inform the user about possible clashes. For a more detailed
discussion, see [16].

Example 4.3. Consider a magnetostatic problem where the domain Ω is a current-carrying
toroid. The problem is governed by the equations dh = j and db = 0. The source term
j /= 0 is set inside the domain, and the boundary conditions th = f and tb = g are set on
nonoverlapping regions Γh,Γb ⊂ ∂Ω, which cover the whole domain boundary. Now, the
magnetostatic equations require that

∫

∂S

h =
∫

S

j, ∀S ∈ C2(Ω),

∫

∂V

b = 0, ∀V ∈ C3(Ω)

(4.1)
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Ωc

c3

c2

Ωa

c1

Figure 9: Multiformulational field problem. It is often economical to use different field problem
formulations in the conducting domain Ωc and in the nonconducting domain Ωa. 1-chain cosets [c1], [c2],
and [c3] generate H1(∂Ωc ∩ ∂Ωa).

hold. In order to check whether our boundary conditions comply to those requirements, it is
sufficient to check that [16]

∫

∂s

th =
∫

s

j, ∀[s] ∈ H2(Ω,Γh),

∫

∂v

tb = 0, ∀[v] ∈ H3(Ω,Γb),

(4.2)

where s and v are representatives of the generators of the homology spaces, readily
computable with our methods. If the space H2(Ω,Γh) is not empty and the user has for
example, set th = 0 on Γh and nonzero net current through s, then a clash will occur.

This procedure generalizes to all electromagnetic boundary value problems because
all of the Maxwell’s equations are of the form

∫

∂c

α =
∫

c

ω, (4.3)

where ω is the field source, set in the domain Ω \ Γ, and α is the unknown field, subject to a
boundary condition tα = f on Γ. A clash will occur, if

∫
∂c tα/=

∫
c ω for some [c] ∈ Hp(Ω,Γ).

4.4. Setting Up Coupled Circuit-Field Problems

Consider a coupled electric circuit-field problem, where Kirchhoff’s laws hold in the circuit
domain C and Maxwell’s equations hold in the field domain Ω (Figure 8). To make sure that
the field problem constitutes a circuit element, we restrict to the case where the domain Ω
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contains no tunnels and subject it to the Kirchhoff’s current law:
∫
∂Ω j = 0. The state variables

of the circuit problem are voltages and currents, which describe the power in the system.
The circuit problem and the field problem are isolated in such manner that the field problem
constitutes a circuit element. The interfaces between the circuit and the field problem are
the conductor terminals on Γ ⊂ ∂Ω. All the power flux by voltages and currents between C
and Ω is accounted by this interface only, on which voltage and current must have a precise
meaning. The isolation is built by boundary conditions

te = 0, on Γ,

td = 0, on ∂Ω,

tb = 0, on ∂Ω,

tj = 0, on ∂Ω \ Γ.

(4.4)

That is, no magnetic or electric flux passes through the boundary ∂Ω, and current can only
pass through the terminals Γ. By tb = 0 on ∂Ω we are guaranteed to have scalar potential
there. Terminals Γ must be equipotential surfaces to be eligible nodes of the circuit. In order
to get an unique solution for the field problem, one needs to set a number of voltages between
the terminals and/or currents through them. These constraints are either the state variables
of the circuit problem, or preset variables [17].

The generators of the relative homology spaces can be used to interpret the coupling
through the terminals on the field problem side. Imposing field integrals along the generators
corresponds to providing enough information to construct an impedance matrix of the field
problem. We will represent two examples where this is intuitively clear. However, homology
computation can bring this “intuition” to the computer, and aid the human intuition in more
complex problems. It can tell exactly how many “nonlocal” constraints are needed, and the
visualizations of the generators help to understand their meaning.

Example 4.4. Consider a DC resistor model in Figure 2 with conducting region Ω, two
terminals on Γ and an insulating surface ∂Ω\Γ. By intuition and experience, one can tell that a
unique solution is found by imposing a voltage difference V between the terminals. In terms
of homology, that is, the integral of electric field e along the single generator [γ] of H1(Ω,Γ):∫
γ e = V . This reveals that we are actually interested in the EMF between the terminals, and

the familiar scalar potential is just one way to impose it. This widens the understanding of
the situation beyond the cases where the existence of a scalar potential can be guaranteed
everywhere in Ω. However, in coupled field-circuit problems, the scalar potential must exist
on the surface ∂Ω.

Alternatively, instead of the voltage between the terminals, one can set the net current I
through the resistor. Again, in the language of homology, this is the integral of current density
j over the single generator [Σ] of H2(Ω,Ω \ Γ), which is the dual generator of [γ]. So the user
needs to set

∫
Σ j = I. This together with dj = 0 guarantees that

∫
Γ j = 0 will hold. If neither

or both the voltage and the net current are set, one is left with an under/over-determined
system with no unique solution [2], about which homology-aware software is able to inform
the user.

Example 4.5. Consider a general problem with the full set of Maxwell’s equations. Let the
domain Ω have four terminals on Γ ⊂ ∂Ω, as in Figure 8, and it may consist of conducting
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and nonconducting regions. Not all terminals are necessarily galvanically connected to each
other. Now we can find three generators ofH1(Ω,Γ) andH2(Ω, ∂Ω\Γ), respectively. Imposing
voltages between the terminals on Γ corresponds to imposing EMFs along the generators of
H1(Ω,Γ).

More interestingly, imposing integral of j + ∂td over generators of H2(Ω, ∂Ω \ Γ)
corresponds to imposing currents through terminals, as no displacement current ∂td escapes
from Ω and the continuity equation

∫
∂v(j + ∂td) = 0 must hold for all volumes v inside

Ω. Conversely, imposing currents through terminals may impose displacement currents in
nonconducting parts of the domain Ω, as well as currents in conducting parts. Homology-
aware software would be able to help the user to perceive what has been imposed. In total,
three EMFs or fluxes of j + ∂td must be imposed to get an unique solution to the problem.

4.5. Multiformulational Field Problem

In many problems, it is possible to use computationally more efficient formulations in some
parts the computational domain Ω. For example, the conducting and nonconducting parts of
the domain can be treated separately. However, the price for the computational efficiency is
the increased effort to set up the problem, as the coupling between the subdomains must be
taken into account.

Example 4.6. Let the domain Ω consist of a conducting subdomain Ωc and nonconducting
subdomain Ωa. In Ωc, we can either have an imposed time-varying source current, or it can
be coupled to an external circuit through terminals on Γ ⊂ ∂Ωc, as described in previous
section. However, let Ωa have tunnels, through which the conducting domain Ωc extends.

Now, in the air region Ωa, we seek for the solution of the magnetic field h only, for
which dh = 0 holds. We are able to use a scalar potential formulation with the thick-cut
technique, with expression h = Ta + dφa. But what should be the total currents Ii through the
holes in region Ωa, fixing the circulations

∫
ci
h =

∫
ci
Ta , [ci] ∈ H1(∂Ωc ∩ ∂Ωa)?

In the conductor region Ωc, in addition to the magnetic field, we are interested in
the electric field and the corresponding currents. Therefore, we look for the solution of the
(coupled) magnetoquasistatic problem defined there. In other words, dh = j, db = 0, and
de + ∂tb = 0 must hold, where j consists of imposed source current and eddy currents
generated by the time-varying magnetic flux, and tj = 0 on ∂Ωc ∩ ∂Ωa. The problem is solved
by decomposition h = Tc + dφc in Ωc, and on ∂Ωc ∩ ∂Ωa by setting φa = φc and outside the
thick-cuts tTc = 0 [6]. We note that the required currents

Ii =
∫

si

j =
∫

si

dTc =
∫

∂si

Tc =
∫

∂si

Ta, [si] ∈ H2(Ωc, ∂Ωc ∩ ∂Ωa), (4.5)

which are also the independent currents of the coupled problem, as ∂Ωc ∩ ∂Ωa = ∂Ωc \ Γ.

5. Conclusions

A compilation of mesh reduction methods was presented, leading to a general procedure
for practical homology computation. The procedure was implemented within this work, and
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the benefits of homology computation to electromagnetic modeling were discussed. It was
suggested that the homology computation, when efficiently implemented, can be a useful
preprocessing aid in electromagnetic modeling software. It can be used as a problem posing
companion as well as a guardian of the solver, reducing the human effort put to the problem.

Many engineering problems, solved with methods of computational electromag-
netism, fall into predefined problem categories, for which templates are readily available in
the software. This is helpful for the engineer, but it also narrows down the class of problems a
software is able to solve. A minor variant of a commonplace problem can make it unsolvable
because of some needless but guiding restriction within the software. Homology computation
can help the software designer to give freer hands to the user without reducing the software’s
usability.
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