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We investigate the scattering of plane harmonic compression and shear waves by a Griffith crack in
an infinite isotropic dielectric polymer. The dielectric polymer is permeated by a uniform electric
field normal to the crack face, and the incoming wave is applied in an arbitrary direction. By
the use of Fourier transforms, we reduce the problem to that of solving two simultaneous dual
integral equations. The solution of the dual integral equations is then expressed in terms of a pair
of coupled Fredholm integral equations of the second kind having the kernel that is a finite integral.
The dynamic stress intensity factor and energy release rate for mode I and mode II are computed
for different wave frequencies and angles of incidence, and the influence of the electric field on the
normalized values is displayed graphically.
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1. Introduction

Elastic dielectrics such as insulating materials have been reported to have poor mechanical
properties. Mechanical failure of insulators is also a well-known phenomenon. Therefore,
understanding the fracture behavior of the elastic dielectrics will provide useful information
to the insulation designers. Toupin [1] considered the isotropic elastic dielectric material and
obtained the form of the constitutive relations for the stress and electric fields. Kurlandzka
[2] investigated a crack problem of an elastic dielectric material subjected to an electrostatic
field. Pak and Herrmann [3, 4] also derived a material force in the form of a path-independent
integral for the elastic dielectric medium, which is related to the energy release rate. Recently,
Shindo and Narita [5] considered the planar problem for an infinite dielectric polymer
containing a crack under a uniform electric field, and discussed the stress intensity factor
and energy release rate under mode I and mode II loadings.

This paper investigates the scattering of in-plane compressional (P) and shear (SV)
waves by a Griffith crack in an infinite dielectric polymer permeated by a uniform electric
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field. The electric field is normal to the crack surface. Fourier transforms are used to reduce
the problem to the solution of two simultaneous dual integral equations. The solution of the
integral equations is then expressed in terms of a pair of coupled Fredholm integral equations
of the second kind. In literature, there are two derivations of dual integral equations. One is
the one mentioned in this paper. The other one is for the dual boundary element methods
(BEM) [6, 7]. Numerical calculations are carried out for the dynamic stress intensity factor
and energy release rate under mode I and mode II, and the results are shown graphically to
demonstrate the effect of the electric field.

2. Basic Equations

Consider the rectangular Cartesian coordinate system with axes x1, x2, and x3. We decompose
the electric field intensity vector Ei, the polarization vector Pi, and the electric displacement
vector Di into those representing the rigid body state, indicated by overbars, and those for
the deformed state, denoted by lower case letters:

Ei = Ei + ei, Pi = Pi + pi, Di = Di + di. (2.1)

We assume that the deformation will be small even with large electric fields, and the second
terms will have only a minor influence on the total fields. The formulations will then be
linearized with respect to these unknown deformed state quantities.

The linearized field equations are obtained as

σLji,j + Ei,jpj + Pjei,j = ρui,tt,

Di,i = 0,

di,i = 0,

(2.2)

where ui is the displacement vector, σLij is the local stress tensor, ρ is the mass density, a comma
followed by an index denotes partial differentiation with respect to the space coordinate xi or
the time t, and the summation convention for repeated indices is applied.

The linearized constitutive equations can be written as

σLij = λuk,kδij + μ
(
ui,j + uj,i

)
+A1

(
EkEk + 2Ekek

)
δij +A2

(
EiEj + Eiej + Ejei

)
,

σMij = ε0εr
(
EiEj + Eiej + Ejei

)
− 1

2
ε0

(
EkEk + 2Ekek

)
δij ,

Di = ε0Ei + Pi = ε0εrEi, di = ε0ei + pi = ε0εrei,

Ei =
1
ε0η

Pi, ei =
1
ε0η

pi,

(2.3)

where σMij is the Maxwell stress tensor, λ and μ are the Lamé constants, A1 and A2 are
the electrostrictive coefficients, ε0 is the permittivity of free space, εr= 1 +η is the specific
permittivity, η is the electric susceptibility, and δij is the Kronecker delta.
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The linearized boundary conditions are found as

[∣∣
∣σLji

∣
∣
∣
]
nj +

1
2ε0

[(
Pknk

)2
+ 2Pkplnknl

]
ni = 0,

[∣∣
∣Di

∣
∣
∣
]
ni = 0,

eijknj
[∣∣
∣Ei

∣
∣
∣
]
= 0,

[|di|]ni −
[∣∣
∣Di

∣
∣
∣
]
ui,jnj = 0,

eijk
{
nj[|ei|] − nlnl,j

[∣∣
∣Ei

∣
∣
∣
]}

= 0,

(2.4)

where ni is an outer unit vector normal to an undeformed body, eijk is the permutation
symbol, and [|fi|] means the jump in any field quantity fi across the discontinuity surface.

3. Problem Statement

Let a Griffith crack be located in the interior of an infinite elastic dielectric. We consider a
rectangular Cartesian coordinate system (x, y, z) such that the crack is placed on the x-axis
from −a to a as shown in Figure 1, and assume that plane strain is perpendicular to the z-axis.
A uniform electric field E0 is applied perpendicular to the crack surface. For convenience, all
electric quantities outside the solid will be denoted by the superscript +. The solution for the
rigid body state is

E
+
y = εrE0, D

+
y = ε0εrE0, P

+
y = 0,

Ey = E0, Dy = ε0εrE0, Py = ε0ηE0.
(3.1)

The equations of motion are given by

∇2
1ux +

1
1 − 2ν

(
ux,x + uy,y

)
,x
+

2A1E0

μ
ey,x +

A3E0

μ
ex,y =

1
c2

2

ux,tt,

∇2
1uy +

1
1 − 2ν

(
ux,x + uy,y

)
,y
+
A2E0

μ
ex,x +

E0

μ
(2A1 +A2 +A3)ey,y =

1
c2

2

uy,tt,

(3.2)

where ∇2
1 = ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplace operator in the variables x, y, ν

is the Poisson’s ratio, c2 = (μ/ρ)1/2 is the shear wave velocity, and A3 = A2 + ε0η. The electric
field equations for the perturbed state are

ex,x + ey,y = 0, e+x,x + e
+
y,y = 0. (3.3)
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Figure 1: Scattering of waves in a dielectric medium with a Griffith crack.

The electric field equations (3.3) are satisfied by introducing an electric potential φ(x, y, t)
such that

ei = −φ,i, ∇2
1φ = 0,

e+i = −φ+
,i , ∇2

1φ
+ = 0.

(3.4)

The displacement components can be written in terms of two scalar potentials ϕe(x, y, t) and
ψe(x, y, t) as

ux = ϕe,x + ψe,y, uy = ϕe,y − ψe,x. (3.5)

The equations of motion become

∇2
1ϕe −

E0

μ
(2A1 +A2 +A3)

(
c2

c1

)2

φ,y =
1
c2

1

ϕe,tt,

∇2
1ψe +

E0

μ
A2φ,x =

1
c2

2

ψe,tt,

(3.6)

where c1 = {(λ + 2μ)/ρ}1/2 is the compression wave velocity.
Let an incident plane harmonic compression wave (P-wave) be directed at an angle γ

with the x-axis so that

ϕie = ϕe0 exp
[
−iω

{
t +

x cos γ + y sin γ
c1

}]
, ψie = 0 (P-wave), (3.7)
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where ϕe0 is the amplitude of the incident P-wave, and ω is the circular frequency. The
superscript i stands for the incident component. Similarly, if an incident plane harmonic shear
wave (SV-wave) impinges on the crack at an angle γ with x-axis, then

ϕie = 0, ψie = ψe0 exp
[
−iω

{
t +

x cos γ + y sin γ
c2

}]
(SV-wave), (3.8)

where ψe0 is the amplitude of the incident SV-wave. In view of the harmonic time variation of
the incident waves given by (3.7) and (3.8), the field quantities will all contain the time factor
exp(−iωt) which will henceforth be dropped.

The problem may be split into two parts: one symmetric (opening mode, Mode I) and
the other skew-symmetric (sliding mode, Mode II). Hence, the boundary conditions for the
scattered fields are

Mode I:

σLyx(x, 0) = 0 (0 ≤ |x| <∞),

φ,x(x, 0) = −ηE0uy,x(x, 0) + φ+
,x(x, 0) (0 ≤ |x| < a),

φ(x, 0) = 0 (a ≤ |x| <∞),

σLyy(x, 0) = −ε0η
2E0φ,y − pj exp

(
−iαjx cos γ

) (
j = 1, 2

)
(0 ≤ |x| < a),

uy(x, 0) = 0 (a ≤ |x| <∞),

(3.9)

Mode II:

σLyy(x, 0) = 0 (0 ≤ |x| <∞),

φ,x(x, 0) = −ηE0uy,x(x, 0) + φ+
,x(x, 0) (0 ≤ |x| < a),

φ,y(x, 0) = 0 (a ≤ |x| <∞),

σLxy(x, 0) = −qj exp
(
−iαjx cos γ

) (
j = 1, 2

)
(0 ≤ |x| < a),

ux(x, 0) = 0, (a ≤ |x| <∞),

(3.10)

where the subscript j = 1 and 2 correspond to the incident P- and SV-waves, p1 = μα2
2ϕe0(1 −

2σ2cos2γ), p2 = μα2
2ψe0 sin 2γ , q1 = μα2

2ϕe0σ
2 sin 2γ , q2 = μα2

2ψe0 cos 2γ , α1 = p/c1 and, α2 =
p/c2 are the compression and shear wave numbers, respectively, and σ = c2/c1.

4. Method of Solution

The desired solution of the original problem can be obtained by superposition of the solutions
for the two cases: mode I and mode II. The problem will further be divided into two parts:
(1) symmetric with respect to x and (2) antisymmetric with respect to x.
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4.1. Mode I Problem

4.1.1. Symmetric Solution for Mode I Crack

The boundary conditions for symmetric scattered fields can be written as

σLyxs(x, 0) = 0 (0 ≤ x <∞), (4.1)

φs,x(x, 0) = −ηE0uys,x(x, 0) + φ+
s,x(x, 0) (0 ≤ x < a),

φs(x, 0) = 0 (a ≤ x <∞),
(4.2)

σLyys(x, 0) = −ε0η
2E0φs,y − pj cos

(
αjx cos γ

) (
j = 1, 2

)
(0 ≤ x < a),

uys(x, 0) = 0 (a ≤ x <∞),
(4.3)

where the subscript s stands for the symmetric part. It can be shown that solutions φs, ϕes,
ψes, and φ+

sof (3.4) and (3.6) for y ≥ 0 are

φs = −
2
π

∫∞

0
as(α)e−αy cos(αx)dα,

ϕes =
2
π

∫∞

0

{

A1s(α)e−γ1(α)y +
(
c2

p

)2E0

μ
(2A1 +A2 +A3)αas(α)e−αy

}

cos(αx)dα,

(4.4)

ψes =
2
π

∫∞

0

{

A2s(α)e−γ2(α)y −
(
c2

p

)2E0

μ
A2αas(α)e−αy

}

sin(αx)dα, (4.5)

φ+
s = − 2

π

∫∞

0
a+s (α) sinh

(
αy

)
cos(αx)dα, (4.6)

where as(α), A1s(α), A2s(α), and a+s (α) are unknown functions, and γ1(α) and γ2(α) are

γ1(α) =

{

α2 −
(

p
c1

)2
}1/2

, γ2(α) =

{

α2 −
(

p
c2

)2
}1/2

. (4.7)

The functions γ1(α) and γ2(α) should be restricted as

Re γk(α) > 0, Imγk(α) < 0 (k = 1, 2) (4.8)

in the upper half-space y ≥ 0, because of a radiation condition at infinity and an edge
condition near the crack tip. A simple calculation leads to the displacement and stress
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expressions:

uxs = −
2
π

∫∞

0

[

αA1s(α)e−γ1(α)y + γ2(α)A2s(α)e−γ2(α)y

+
(
c2

p

)2E0

μ
(2A1 +A3)α2as(α)e−αy

]

sin(αx)dα,

uys = −
2
π

∫∞

0

[

γ1(α)A1s(α)e−γ1(α)y + αA2s(α)e−γ2(α)y

+
(
c2

p

)2E0

μ
(2A1 +A3)α2as(α)e−αy

]

cos(αx)dα,

σLxxs = −
4
π
μ

∫∞

0

[{
λ

2μ

(
p

c1

)2

+ α2

}

A1s(α)e−γ1(α)y + αγ2(α)A2s(α)e−γ2(α)y

+
E0

μ

{(
c2

p

)2

(2A1 +A3)α2 +A1

}

αas(α)e−αy
]

cos(αx)dα +A1E
2
0,

σLxys =
2
π
μ

∫∞

0

[

2αγ1(α)A1s(α)e−γ1(α)y +

{

2α2 −
(
p

c2

)2
}

A2s(α)e−γ2(α)y

+
E0

μ

{

2
(
c2

p

)2

(2A1 +A3)α2 −A2

}

αas(α)e−αy
]

sin(αx)dα,

σLyys =
4
π
μ

∫∞

0

[{

−1
2

(
p

c2

)2

+ α2

}

A1s(α)e−γ1(α)y + αγ2(α)A2s(α)e−γ2(α)y

+
E0

μ

{(
c2

p

)2

(2A1+A3)α2−(A1+A2)

}

αas(α)e−αy
]

cos(αx)dα + (A1 +A2)E2
0,

σMxxs =
2
π
ε0E0

∫∞

0
αas(α)e−αy cos(αx)dα −

ε0E
2
0

2
,

σMxys = −
2
π
ε0εrE0

∫∞

0
αas(α)e−αy sin(αx)dα,

σMyys = −
2
π

(
1 + 2η

)
ε0E0

∫∞

0
αas(α)e−αy cos(αx)dα +

ε0E
2
0

(
1 + 2η

)

2
.

(4.9)

The boundary condition of (4.1) leads to the following relation between unknown
functions:

2αγ1(α)A1s(α) +

{

2α2 −
(
p

c2

)2
}

A2s(α) +
E0

μ

{

2
(
c2

p

)2

(2A1 +A3)α2 −A2

}

αas(α) = 0.

(4.10)
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The satisfaction of the two mixed boundary conditions (4.2) and (4.3) leads to two
simultaneous dual integral equations of the following form:

∫∞

0
α
[
as(α) + ηE0As(α)

]
sin(αx)dα = 0 (0 ≤ x < a),

∫∞

0
as(α) cos(αx)dα = 0 (a ≤ x <∞),

(4.11)

∫∞

0
α

[
fe(α)As(α)+

E0

μ
fm(α)as(α)

]
cos(αx)dα=− π

4μ
pj cos

(
αjx cos γ

)
(0≤x<a),

∫∞

0
As(α) cos(αx)dα = 0 (a ≤ x <∞),

(4.12)

in which fe(α) and fm(α) are known functions given by

fe(α) =
1

γ1(α)
(
p/c2

)2

⎡

⎣−
{

2α2 −
(
p

c2

)2
}2

+ 4α2γ1(α)γ2(α)

⎤

⎦ 1
2α
,

fm(α) =
1

γ1(α)(p/c2)
2

[

−
{

2α2 −
(
p

c2

)2
}
(
2A1 + ε0η

)
+ 2γ1(α)γ2(α)A2

+2αγ1(α)(2A1+A3)−
1
α
γ1(α)

(
p

c2

)2(
2A1+2A2−ε0η

2
)]α

2
,

(4.13)

and the original unknowns A1s(α) and A2s(α) are related to the new one As(α) through

A1s(α) = −
1

γ1(α)
(
p/c2

)2

[{
2α2 −

(
p/c2

)2
}
As(α) +

E0

μ

(
2A1 + ε0η

)
α2as(α)

]
,

A2s(α) =
1

(
p/c2

)2

[
2αAs(α) −

E0

μ
A2αas(α)

]
.

(4.14)

The set of two simultaneous dual integral equations (4.11) and (4.12) may be solved
by using a new function Φs(u), and the result is

As(α) =
π

4

(
pja

2

μc0y0

)∫1

0
u1/2Φs(u)J0(αau)du,

as(α) = −
π

4

(
ηE0pja

2

μc0y0

)∫1

0
u1/2Φs(u)J0(αau)du,

(4.15)
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where J0() is the zero-order Bessel function of the first kind, and c0 and y0 are

c0 =
(
c2

c1

)2

− 1,

y0 = 1 +
1
2

[
(1 − 2ν)

(
2A1 + ε0η

)
− 2(1 − ν)

(
ε0η

2 + ε0η −A2

)]η
μ
E2

0.

(4.16)

The function Φs(u) is governed by the following Fredholm integral equation of second kind:

Φs(u) −
∫1

0
Φs(s)(su)1/2Ks(u, s)ds = u1/2J0

(
αjau cos γ

)
, (4.17)

where the kernel Ks(u, s) is given by

Ks(u, s) =
∫∞

0

[
α +

1
c0y0P 2

{
f∗e (α) − ηE2

μf
∗
m(α)

}]
J0(αu)J0(αs)dα, (4.18)

f∗e (α) =
1

2γ∗1 (α)

[
−
(

2α2 − P 2
)2

+ 4α2γ∗1 (α)γ
∗
2 (α)

]
,

f∗m(α) =
1

2γ∗1 (α)

[
−α2

(
2α2 − P 2

)(
2Ae1 + η

)
− 2α2γ∗1 (α)γ

∗
2 (α)Ae2

+ 2α3γ∗1 (α)
(
2Ae1 +Ae2 + η

)
− αγ∗1 (α)P

2
(

2Ae1 +Ae2 − η2
)]
,

(4.19)

γ∗1 (α) =
{
α2 − (Pσ)2

}1/2
, γ∗2 (α) =

(
α2 − P 2

)1/2
,

E2
μ =

ε0E
2
0

μ
, Ae1 =

A1

ε0
, Ae2 =

A2

ε0
, P =

ap

c2
, σ =

c2

c1
.

(4.20)

The kernel function Ks(u, s) (4.18) is an infinite integral that has a rather slow of
convergence. To improve this problem the infinite integral is converted into integrals with
finite limits. Thus, for the calculation of the integral, we consider the contour integrals

Ie1 =
∮

Γ1

Le
(
k, γ∗1 ,−γ

∗
2
)
J0(ks)H

(1)
0 (ku)dk (u > s),

Ie2 =
∮

Γ2

Le
(
k, γ∗1 , γ

∗
2
)
J0(ks)H

(2)
0 (ku)dk (u > s),

(4.21)

where the contours Γ1,Γ2 are defined in Figure 2, H(1)
0 (),H(2)

0 () are, respectively, the zero-
order Hankel functions of the first and second kinds, and

Le
(
k, γ∗1 , γ

∗
2
)
= k +

1
c0y0P

{
f∗e (k) − ηE2

μf
∗
m(k)

}
. (4.22)
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ImK

Branch line

−α1−α2 O
ReK

Γ1

Γ2
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Figure 2: The counters of integration.

The integrands in (4.21) satisfy Jordan’s lemma on the infinite quarter circles, so that,

Ie1 + Ie2 =
∫α1

0

{
Le
(
α, iν′1, iν

′
2
)
H

(1)
0 (αu)dα + Le

(
α,−iν′1,−iν′2

)
H

(2)
0 (αu)

}
J0(αs)dα

+
∫α2

α1

{
Le
(
α, ν1, iν

′
2
)
H

(1)
0 (αu)dα + Le

(
α, ν1,−iν′2

)
H

(2)
0 (αu)

}
J0(αs)dα

+ 2
∫∞

α2

Le(α, ν1, ν2)J0(αs)J0(αu)dα

+
∫0

∞

{
Le
(
iα, iν′1, iν

′
2
)
+ Le

(
−iα,−iν′1,−iν′2

)}
J0

(
eiπ/2αs

)
H

(1)
0

(
eiπ/2αu

)
i dα = 0,

(4.23)

where

ν1 =
(
α2 − P 2σ2

)1/2
, ν2 =

(
α2 − P 2

)1/2
,

ν′1 =
(
P 2σ2 − α2

)1/2
, ν′2 =

(
P 2 − α2

)1/2
.

(4.24)

Because of the second of (4.8), the integral in (4.18) must be taken along a path located slightly
below the real k-axis as in Γ2. Therefore Ks(u, s) for u > s can be finally written as

Ks(u, s) = iP 2
∫1

0

{
M1(α)J0(αPs)H

(1)
0 (αPu) +M2(α)J0(ασPs)H

(1)
0 (ασPu)

}
dα, (u > s),

(4.25)
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where

M1(α) = −
1

c0y0

(
2 + ηE2

μAe2

)
α2
(

1 − α2
)1/2

,

M2(α) = −
1

c0y0

1

2(1 − α2)1/2

{(
2α2σ2 − 1

)2
− ηE2

μσ
2
(

2α2σ2 − 1
)
α2(2Ae1 + η

)
}
.

(4.26)

The kernel Ks(u, s) is symmetric in u, s, and the value of this kernel for u < s is obtained by
interchanging u and s in (4.25).

4.1.2. Antisymmetric Solution for Mode I Crack

The boundary conditions for anti-symmetric scattered fields can be written as

σLyxa(x, 0) = 0 (0 ≤ x <∞), (4.27)

φa,x(x, 0) = −ηE0uya,x(x, 0) + φ+
a,x(x, 0), (0 ≤ x < a),

φa(x, 0) = 0 (a ≤ x <∞),
(4.28)

σLyya(x, 0) = −ε0η
2E0φa,y − pj sin

(
αjx cos γ

) (
j = 1, 2

)
(0 ≤ x < a),

uya(x, 0) = 0 (a ≤ x <∞),
(4.29)

where the subscript a stands for the anti-symmetric part. The solutions φa, ϕea, ψea and φ+
a

are

φa = −
2
π

∫∞

0
aa(α)e−αy sin(αx)dα,

ϕea =
2
π

∫∞

0

{

A1a(α)e−γ1(α)y +
(
c2

p

)2E0

μ
(2A1 +A2 +A3)αaa(α)e−αy

}

sin(αx)dα,

(4.30)

ψea =
2
π

∫∞

0

{

A2a(α)e−γ2(α)y −
(
c2

p

)2E0

μ
A2αaa(α)e−αy

}

cos(αx)dα, (4.31)

φ+
a = − 2

π

∫∞

0
a+a(α) cosh

(
αy

)
sin(αx)dα, (4.32)
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where aa(α), A1a(α), A2a(α), and a+a(α) are unknown functions. The displacements and
stresses are obtained as

uxa =
2
π

∫∞

0

{

αA1a(α)e−γ1(α)y − γ2(α)A2a(α)e−γ2(α)y

+
(
c2

p

)2E0

μ
(2A1 +A3)α2aa(α)e−αy

}

cos(αx)dα,

uya = −
2
π

∫∞

0

{

γ1(α)A1a(α)e−γ1(α)y − αA2a(α)e−γ2(α)y

+
(
c2

p

)2E0

μ
(2A1 +A3)α2aa(α)e−αy

}

sin(αx)dα,

(4.33)

σLxxa = −
4
π
μ

∫∞

0

[{
λ

2μ

(
p

c1

)2

+ α2

}

A1a(α)e−γ1(α)y − αγ2(α)A2a(α)e−γ2(α)y

+
E0

μ

{(
c2

p

)2

(2A1 +A3)α2 +A1

}

αaa(α)e−αy
]

sin(αx)dα,

σLxya = −
2
π
μ

∫∞

0

[

2αγ1(α)A1ae
−γ1(α)y −

{

2α2 −
(
p

c2

)2
}

A2a(α)e−γ2(α)y

+
E0

μ

{

2
(
c2

p

)2

(2A1 +A3)α2 −A2

}

αaa(α)e−αy
]

cos(αx)dα,

σLyya =
4
π
μ

∫∞

0

[{

−1
2

(
p

c2

)2

+ α2

}

A1a(α)e−γ1(α)y − αγ2(α)A2a(α)e−γ2(α)y

+
E0

μ

{(
c2

p

)2

(2A1 +A3)α2 − (A1 +A2)

}

αaa(α)e−αy
]

sin(αx)dα,

(4.34)

σMxxa =
2
π
ε0E0

∫∞

0
αaa(α)e−αy sin(αx)dα,

σMxya =
2
π
ε0εrE0

∫∞

0
αaa(α)e−αy cos(αx)dα,

σMyya = −
2
π

(
1 + 2η

)
ε0E0

∫∞

0
αaa(α)e−αy sin(αx)dα.

(4.35)

The relation between unknown functions can be found by the same procedure as in
the symmetric case. The boundary condition of (4.27) leads to the following relation:

2αγ1(α)A1a(α) −
{

2α2 −
(
p

c2

)2
}

A2a(α) +
E0

μ

{

2
(
c2

p

)2

(2A1 +A3)α2 −A2

}

αaa(α) = 0.

(4.36)
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The boundary conditions in (4.28) and (4.29) lead to two simultaneous dual integral
equations of the following form:

∫∞

0
α
{
aa(α) + ηE0Aa(α)

}
cos(αx)dα = 0 (0 ≤ x < a),

∫∞

0
aa(α) sin(αx)dα = 0 (a ≤ x <∞),

(4.37)

∫∞

0
α

{
fe(α)Aa(α) +

E0

μ
fm(α)aa(α)

}
sin(αx)dα = − π

4μ
pj sin

(
αjx cos γ

)
(0 ≤ x < a),

∫∞

0
Aa(α) sin(αx)dα = 0 (a ≤ x <∞),

(4.38)

in which the original unknowns A1a(α), A2a(α) are related to the new one Aa(α) through

A1a(α) = −
1

γ1(α)
(
p/c2

)2

[{

2α2 −
(
p

c2

)2
}

Aa(α) +
E0

μ

(
2A1 + ε0η

)
α2aa(α)

]

,

A2a(α) = −
1

(
p/c2

)2

{
2αAa(α) −

E0

μ
A2αaa(α)

}
.

(4.39)

The unknowns Aa(α) and aa(α) can be found by the same method of approach as in
the symmetric case. The results are

Aa(α) =
π

4

(
pja

2

μc0y0

)∫1

0
u1/2Φa(u)J1(αau)du,

aa(α) = −
π

4

(
ηE0pja

2

μc0y0

)∫1

0
u1/2Φa(u)J1(αau)du,

(4.40)

where J1() is the first-order Bessel function of the first kind, and Φa(u) in (4.40) is the solution
of the following Fredholm integral equation of the second kind:

Φa(u) −
∫1

0
Φa(s)(su)1/2Ka(u, s)ds = u1/2J1

(
αjau cos γ

)
, (4.41)

where

Ka(u, s) =
∫∞

0

[
α +

1
c0y0P 2

{
f∗e (α) − ηE2

μf
∗
m(α)

}]
J1(αu)J1(αs)dα (u > s). (4.42)
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By using the contours of integration in Figure 2, the kernel Ka(u, s) for u > s can be rewritten
in the form

Ka(u, s) = iP 2
∫1

0

{
M1(α)J1(αPs)H

(1)
1 (αPu) +M2(α)J1(ασPs)H

(1)
1 (ασPu)

}
dα (u > s),

(4.43)

whereH(1)
1 () is the first-order Hankel function of the first kind. The value ofKa(u, s) for u < s

is obtained by interchanging u and s in (4.43).

4.1.3. Mode I Dynamic Singular Stresses Near the Crack Tip

The mode I dynamic electric stress intensity factor KID is

KID = lim
x→a+

{2π(x − a)}1/2
{
σLyys + σ

L
yya + σ

M
yys + σ

M
yya

}

y=0

= pj(πa)1/2 z0

y0
[Φs(1) − iΦa(1)],

(4.44)

where

z0 = 1 +
1
2
{
(1 − 2ν)

(
2Ae1 + η

)
+ 2(1 − ν)

(
Ae2 + η + 1

)}
ηE2

μ. (4.45)

Next, we examine the static electroelastric crack problem. The boundary conditions may be
written as

σLyx(x, 0) = 0 (0 ≤ x <∞), (4.46)

φ,x(x, 0) = −ηE0uy,x(x, 0) + φ+
,x(x, 0), (0 ≤ x < a),

φ(x, 0) = 0 (a ≤ x <∞),
(4.47)

σLyy(x, 0) = ε0η
2

{
E2

0

2
− E0φ,y

}

(0 ≤ x < a),

uy(x, 0) = 0 (a ≤ x <∞).

(4.48)

The electric stress intensity factor KIS may be obtained as

KIS = μE2
μ(πa)

1/2
(
z0

y0

)
2Ae1 + 2Ae2 − η2

2
. (4.49)

The dynamic stress intensity factor KI can be found as

KI = |KID| +KIS. (4.50)
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The dynamic electroelastic stress is given by

σcij = σ
L(i)
ij + σL(s)ij + σM(i)

ij + σM(s)
ij . (4.51)

The singular parts of the dynamic local stresses and Mexwell stresses near the crack tip can
be expressed as

σLxx ∼
KI

2z0

{[
2 +

{
2(1 − 2ν)Ae1 + 2(1 − ν)Ae2 − η

}
E2
μη

]

−
[
2 +

{
(1 − 2ν)

(
2Ae1 + η

)
+ 2(1 − ν)Ae2

}
E2
μη

]
sin

θ

2
sin

3θ
2

}
cos

θ

2
1

(2πr)1/2
,

σLxy ∼
KI

2z0

[
2 +

{
2(1 − 2ν)

(
2Ae1 + η

)
+ 2(1 − ν)Ae2

}
E2
μη

]
sin

θ

2
cos

θ

2
cos

3θ
2

1

(2πr)1/2
,

σLyy ∼
KI

2z0

{[
2 +

{
2(1 − 2ν)Ae1 + 2(1 − ν)Ae2 − η

}
E2
μη

]

+
[
2 +

{
(1 − 2ν)

(
2Ae1 + η

)
+ 2(1 − ν)Ae2

}
E2
μη

]
sin

θ

2
sin

3θ
2

}
cos

θ

2
1

(2πr)1/2
,

(4.52)

σMxx ∼ −
KI

z0
(1 − ν)ηE2

μ cos
θ

2
1

(2πr)1/2
,

σMxy ∼ −
KI

z0
(1 − ν)ηεrE2

μ sin
θ

2
1

(2πr)1/2
,

σMyy ∼
KI

z0
(1 − ν)

(
1 + 2η

)
ηE2

μ cos
θ

2
1

(2πr)1/2
,

(4.53)

where r = {(x − a)2 + y2}1/2
and θ = tan−1(y/(x − a)) are the polar coordinates. Also, the

singular parts of the displacements and electric fields near the crack tip are

ux ∼
KI

2z0μ

(
r

2π

)1/2{
2(1 − 2ν) −

{
(1 − 2ν)

(
Ae1 + η

)
− 2(1 − ν)Ae2

}
E2
μη

+
[
2 +

{
(1 − 2ν)

(
Ae1 + η

)
+ 2(1 − ν)Ae2

}
E2
μη

]
sin2 θ

2

}
cos

θ

2
,

uy ∼
KI

2z0μ

(
r

2π

)1/2{
4(1 − ν) +

[
2 +

{
(1 − 2ν)

(
Ae1 + η

)
+ 2(1 − ν)Ae2

}
E2
μη

]
cos2 θ

2

}
sin

θ

2
,

(4.54)

Ex ∼ −
KI

z0μ

1

(2πr)1/2
(1 − ν)ηE0 sin

θ

2
,

Ey ∼
KI

z0μ

1

(2πr)1/2
(1 − ν)ηE0 cos

θ

2
.

(4.55)
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4.2. Mode II Problem

Since the mode II problem may also be reduced to the solution of two simultaneous dual
integral equations in the same way as the mode I, many of the details of solution procedure
will be omitted and only the essential steps will be provided.

4.2.1. Symmetric Solution for Mode II Crack

The boundary conditions for symmetric scattered fields are

σLyys(x, 0) = 0 (0 ≤ x <∞), (4.56)

φs,x(x, 0) = −ηE0uys,x(x, 0) + φ+
s,x(x, 0) (0 ≤ x < a),

φs,y(x, 0) = 0 (a ≤ x <∞),
(4.57)

σLxys(x, 0) = −qj cos
(
αjx cos γ

) (
j = 1, 2

)
(0 ≤ x < a),

uxs(x, 0) = 0 (a ≤ x <∞).
(4.58)

Replace the subscript a by s, aa(α), A1a(α), A2a(α), and a+a(α) by bs(α), B1s(α), B2s(α), and
b+s (α), respectively, in (4.30)–(4.35). The boundary condition of (4.56) leads to

{

2α2 −
(
p

c2

)2
}

B1s(α) − 2αγ2(α)B2s(α) + 2
E0

μ

{(
c2

p

)2

(2A1 +A3)α2 − (A1 +A2)

}

αbs(α) = 0.

(4.59)

Introducing the abbreviation

Bs(α) = αB1s(α) − γ2(α)B2s(α) +
1

(
p/c2

)2

E0

μ
(2A1 +A3)α2bs(α), (4.60)

and in view of two mixed boundary conditions (4.57) and (4.58), together with (4.59) and
(4.60), we have the following two simultaneous dual integral equations for the determination
of the function Bs(α):

∫∞

0
α
{
ηE0f1(α)Bs(α) + f2(α)bs(α)

}
cos(αx)dα = 0 (0 ≤ x < a),

∫∞

0
αbs(α) sin(αx)dα = 0 (a ≤ x <∞),

(4.61)
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∫∞

0
α

{
f3(α)Bs(α) +

E0

μ
f4(α)bs(α)

}
cos(αx)dα = −

πqj

2μ
cos

(
αjx cos γ

)
(0 ≤ x < a),

∫∞

0
Bs(α) cos(αx)dα = 0 (a ≤ x <∞),

(4.62)

where

f1(α) =
α

γ2(α)
(
p/c2

)2

{(
p

c2

)2

+ 2γ1(α)γ2(α) − 2α2

}

,

f2(α) = 1 +
α

γ2(α)
(
p/c2

)2

ηE2
0

μ

{
−2γ1(α)γ2(α)(A1 +A2) + γ2(α)α(2A1 +A3) + (2A2 −A3)α2

}

f3(α) =
1

γ2(α)
(
p/c2

)2

⎡

⎣−
{(

p

c2

)2

− 2α2

}2

+ 4γ1(α)γ2(α)α2

⎤

⎦ 1
α
,

f4(α) =
α

γ2(α)
(
p/c2

)2

{(

2α2 −
p

c2
2

)

(2A2 −A3) − 4γ1(α)γ2(α)(A1 +A2)

+γ2(α)α(2A1 + A3) −
1
α
γ2(α)

(
p

c2

)2

A2

}

,

(4.63)

The solution of (4.61) and (4.62) are obtained by using two new functions gs(u) and
hs(u), and the results are

Bs(α) =
π

2

(
qja

2

μ

)∫1

0
u1/2gs(u)J0(αau)du,

bs(α) =
π

2

(
ηE0qja

2

μ

)∫1

0
u1/2hs(u)J0(αau)du,

(4.64)

where gs(u) and hs(u) are the solutions of the following Fredholm integral equations of the
second kind:

F1gs(u) + F2hs(u) −
∫1

0
(su)1/2{gs(s)K1s(u, s) + hs(s)K2s(u, s)

}
ds = 0, (4.65)

F3gs(u) + ηE2
μF4hs(u) −

∫1

0
(su)1/2{gs(s)K3s(u, s) + hs(s)K4s(u, s)

}
ds = −u1/2J0

(
αjau cos γ

)
.

(4.66)



18 Boundary Value Problems

The kernels are given by

K1s(u, s) = iP 2
∫1

0

{
M11(α)J0(αPs)H

(1)
0 (αPu) +M12(α)J0(ασPs)H

(1)
0 (ασPu)

}
dα (u > s),

K2s(u, s) = iP 2ηE2
μ

∫1

0

{
M21(α)J0(αPs)H

(1)
0 (αPu) +M22(α)J0(ασPs)H

(1)
0 (ασPu)

}
dα (u > s),

K3s(u, s) = iP 2
∫1

0

{
M31(α)J0(αPs)H

(1)
0 (αPu) +M32(α)J0(ασPs)H

(1)
0 (ασPu)

}
dα (u > s),

K4s(u, s) = iP 2ηE2
μ

∫1

0

{
M41(α)J0(αPs)H

(1)
0 (αPu) +M42(α)J0(ασPs)H

(1)
0 (ασPu)

}
dα (u > s),

(4.67)

where

M11(α) = −
α2 − 2α4

(1 − α2)1/2
,

M12(α) = 2σ4α2
(

1 − α2
)1/2

,

M21(α) = −
α4

(1 − α2)1/2

(
Ae2 − η

)
,

M22(α) = −2σ4α2
(

1 − α2
)1/2

(Ae1 +Ae2),

M31(α) =

(
1 − 2α2)2

(1 − α2)1/2
,

M32(α) = 4σ4α2
(

1 − α2
)1/2

,

M41(α) = −
α2(2α2 − 1

)

(1 − α2)1/2

(
Ae2 − η

)
,

M42(α) = −4σ4α2
(

1 − α2
)1/2

(Ae1 +Ae2),

(4.68)

and Fi= limα→∞fi(α) (i=1, . . . , 4). The kernels Kis(u, s) (i=1, . . . , 4) are symmetric in u and s.

4.2.2. Antisymmetric Solution for Mode II Crack

The boundary conditions for anti-symmetric scattered fields are

σLyya(x, 0) = 0 (0 ≤ x <∞), (4.69)

φa,x(x, 0) = −ηE0uya,x(x, 0) + φ+
a,x(x, 0) (0 ≤ x < a),

φa,y(x, 0) = 0 (a ≤ x <∞),
(4.70)
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σLxya(x, 0) = −qj sin
(
αjx cos γ

) (
j = 1, 2

)
(0 ≤ x < a),

uxa(x, 0) = 0, (a ≤ x <∞).
(4.71)

Let replace the subscript s by a, as(α), A1s(α), A2s(α), and a+s (α) by ba(α), B1a(α), B2a(α) and
b+a(α) in (4.4)–(4.6). The boundary condition of (4.69) leads to

{

2α2 −
(
p

c2

)2
}

B1a(α) + 2αγ2(α)B2a(α) + 2
E0

μ

{(
c2

p

)2

(2A1 +A3)α2 − (A1 +A2)

}

αba(α) = 0.

(4.72)

Introducing the abbreviation

Ba(α) = αB1a(α) + γ2(α)B2a +
1

(
p/c2

)2

E0

μ
(2A1 +A3)α2ba(α), (4.73)

and in view of boundary conditions (4.70) and (4.71), together with (4.72) and (4.73), we
have the following two simultaneous dual integral equations:

∫∞

0
α
{
ηE0f1(α)Ba(α) + f2(α)ba(α)

}
sin(αx)dα = 0 (0 ≤ x < a),

∫∞

0
αbs(α) cos(αx)dα = 0 (a ≤ x <∞),

(4.74)

∫∞

0
α

{
f3(α)Ba(α) +

E0

μ
f4(α)ba(α)

}
sin(αx)dα = −

πqj

2μ
sin

(
αjx cos γ

)
(0 ≤ x < a),

∫∞

0
Ba(α) sin(αx)dα = 0 (a ≤ x <∞).

(4.75)

Equations (4.74) and (4.75) yield the solutions

Ba(α) =
πqja

2

2μ

∫1

0
u1/2ga(u)J1(αau)du,

ba(α) = ηE0
πqja

2

2μ

∫1

0
u1/2ha(u)J1(αau)du,

(4.76)
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ga(u) and ha(u) are the solutions of the following Fredholm integral equations of the second
kind:

F1ga(u) + F2ha(u) −
∫1

0
(su)1/2{ga(s)K1a(u, s) + ha(s)K2a(u, s)

}
ds = 0, (4.77)

F3ga(u) + ηE2
μF4ha(u) −

∫1

0
(su)1/2{ga(s)K3a(u, s) + ha(s)K4a(u, s)

}
ds = −u1/2J1

(
αjau cos γ

)
,

(4.78)

where

K1a(u, s) = iP 2
∫1

0

{
M11(α)J1(αPs)H

(1)
1 (αPu) +M12(α)J1(ασPs)H

(1)
1 (ασPu)

}
dα (u > s),

K2a(u, s) = iP 2ηE2
μ

∫1

0

{
M21(α)J1(αPs)H

(1)
1 (αPu) +M22(α)J1(ασPs)H

(1)
1 (ασPu)

}
dα (u > s),

K3a(u, s) = iP 2
∫1

0

{
M31(α)J1(αPs)H

(1)
1 (αPu) +M32(α)J1(ασPs)H

(1)
1 (ασPu)

}
dα (u > s),

K4a(u, s) = iP 2ηE2
μ

∫1

0

{
M41(α)J1(αPs)H

(1)
1 (αPu) +M42(α)J1(ασPs)H

(1)
1 (ασPu)

}
dα (u > s),

(4.79)

and Kia(u, s) (i = 1, . . . , 4) are symmetric in u and s.

4.2.3. Mode II Dynamic Singular Stresses Near the Crack Tip

The dynamic stress intensity factor KIID is obtained as

KIID = lim
x→a+

{2π(x − a)}1/2
{
σLxys + σ

L
xya + σ

M
xys + σ

M
xya

}

y=0

= qj(πa)1/2{−F3
[
gs(1) − iga(1)

]
+ z2[hs(1) − iha(1)]

}

= Kg

II +K
h
II ,

(4.80)

where

K
g

II = −qj(πa)
1/2F3

[
gs(1) − iga(1)

]
,

Kh
II = qj(πa)

1/2z2[hs(1) − iha(1)],

z2 =
[
2σ2(Ae1 +Ae2) −

(
Ae2 + η + 1

)]
ηE2

μ.

(4.81)
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The singular parts of the dynamic local stresses and Maxwell stresses near the crack tip can
be derived as follows:

σLxx ∼ −
K
g

II

(2πr)1/2

[
2 + cos

θ

2
cos

3θ
2

]
sin

θ

2
−

Kh
II

z2(2πr)1/2

[
2E2

μηF4 + F5 cos
θ

2
cos

3θ
2

]
sin

θ

2
,

σLxy ∼
K
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(4.82)

The singular parts of the displacements and electric fields near the crack tip can be expressed
as
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(4.83)

where

F5 =
[
2σ2(Ae1 +Ae2) −

(
Ae2 − η

)]
ηE2

μ,

F6 =
[
2σ2(Ae1 +Ae2) +

(
Ae2 − η

)]
ηE2

μ.

(4.84)
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Table 1: Material properties of PMMA.

μ(M/m2) ν Ae1 Ae2 η εr

1.1 × 109 0.4 0 3.61 2 3

5. Dynamic Energy Release Rate

The dynamic energy release rate G is obtained as

G =
∫

S

ρui,ttui,xdS +
∫

Γ

{(
ρΣ + Φ

)
δjx −

(
σLij + σ

M
ij

)
ui,x +DiEx

}
njdΓ, (5.1)

where S is the region with the contour Γ. This expression may be thought of as an extension
to the J-integral given in [3]. If all the electrical field quantities are made to vanish, then (5.1)
reduces to the dynamic energy release rate for the elastic materials [8]. Writing the dynamic
energy release rate expression in terms of the mode I dynamic stress intensity factor, there
results

G =
1

(1 − 2ν)
K2
I

128μz2
0

{
C1E

4
μ + C2E

2
μ + 64(1 − ν)(1 − 2ν)

}
, (5.2)

where

C1 = 2k2
2 + k

2
3 + 4(1 − 2ν)k1k3 + 2(1 − 2ν)k1k2 + (1 + 4ν)k3k2 + 4(1 − ν)(1 − 2ν)η

(
k2 − 2ηk3

)
,

C2 = 4(1 − 2ν)
[
3k1 − 4νk2 − 3k3 + 2(1 − ν)

{
12 − 16ν + (7 − 8ν)η − 8(1 − ν)η2

}
η
]
,

k1 =
{

2(1 − 2ν)Ae1 + 2(1 − ν)Ae2 − η
}
η,

k2 =
{
(1 − 2ν)

(
2Ae1 + η

)
+ 2(1 − ν)Ae2

}
η,

k3 =
{
(1 − 2ν)

(
2Ae1 + η

)
− 2(1 − ν)Ae2

}
η.

(5.3)

6. Results and Discussion

To examine the effect of electroelastic interactions on the dynamic stress intensity factor
and dynamic energy release rate, the solutions of the Fredholm integral equations of the
second kind (4.17), (4.41) for Mode I and (4.65), (4.66), (4.77), (4.78) for Mode II have
been computed numerically by the use of Gaussian quadrature formulas. We can consider
polymethylmethacrylate (PMMA), and the engineering material constants of PMMA are
listed in Table 1. The dynamic stress intensity factor KI can be found as KI = |KID| + KIS.

Figure 3 exhibits the variation of the normalized mode I dynamic stress intensity factor
|KI/p0P (πa)

1/2|(p0P = μα2
2ϕe0) against the normalized frequency Ω = aα2 subjected to P-

waves for the normalized electric field Eμ = (η/ε0)
1/2E0 = 0.0, 0.1 and the angle of incidence

γ = π/2. The dynamic stress intensity factor drops rapidly beyond the first maximum and
exhibits oscillations of approximately constant period as Ω increases. The peak value of
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Figure 3: Mode I dynamic stress intensity factor versus frequency (P-waves, γ = π/2).
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Figure 4: Mode I dynamic energy relrase rate versus frequency (P-waves, γ = π/2).
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Figure 5: Mode I dynamic stress intensity factor versus frequency (P-waves, γ = π/4).
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Figure 6: Mode II dynamic stress intensity factor versus frequency (P-waves, γ = π/4).

|KI/p0P (πa)
1/2| under Eμ = 0.0 is 1.364. Also, the peak values of |KI/p0P (πa)

1/2| under
Eμ = 0.1 are 1.522, 2.416, 3.310 for p0P/μ = ∞, 0.02, 0.01, respectively. As Ω → 0, the
dynamic stress intensity factor tends to static stress intensity factor [5]. In the absence of
the electric fields, the dynamic stress intensity factor becomes the solution for the elastic
solid (see e.g. [9]). Figure 4 also shows the variation of the normalized mode I dynamic
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Figure 7: Mode I dynamic stress intensity factor versus angle of incidence (P-waves).
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Figure 8: Mode II dynamic stress intensity factor versus frequency (SV-waves, γ = π/2).

energy release rate G/G0, where G0 = πa(1 − ν)p2
0P/2μ is the static energy release rate. The

peak values of G/G0 under Eμ = 0.0, 0.1 for p0P/μ = ∞, 0.02, 0.01 are 1.861, 2.361, 5.838,
10.96, respectively. Figure 5 shows the normalized mode I dynamic stress intensity factor
|KI/p0P (πa)

1/2| versus Ω subjected to P-waves for Eμ = 0.0, 0.1 and γ = π/4. The peak values
of |KI/p0P (πa)

1/2| under Eμ = 0.0, 0.1 are 1.078, 1.198 for p0P/μ = ∞, respectively. Figure 6



26 Boundary Value Problems

SV-waves
γ = π/4Mode I

p0S/μ = 0.01

1

2

3

4

0.02

∞|K
I/
p

0S
(π
a
)1/

2 |

0 1 2 3 4 5

Ω

Eμ = 0
Eμ = 0.1

Figure 9: Mode I dynamic stress intensity factor versus frequency (SV-waves, γ = π/4).

shows the normalized mode II dynamic stress intensity factor |KII/q0P (πa)
1/2|(q0P = μα2

2ϕe0)
versus Ω subjected to P-waves for Eμ = 0.0, 0.1 and γ = π/4. The effect of electric fields on
the mode II dynamic stress intensity factor is small. Figure 7 displays the normalized mode I
dynamic stress intensity factor |KI/p0P (πa)

1/2| against the angle of incidence γ subjected to
P-waves for Eμ = 0.0, 0.1 and Ω = 0.4, 0.8 (p0P/μ = 0.02). The mode I dynamic stress intensity
factors for Ω = 0.4 and 0.8 attain its maximum values at an incident angle of approximately
π/2.

Figure 8 shows the variation of the normalized mode II dynamic stress intensity factor
|KII/q0S(πa)

1/2|(q0S = μα2
2ψe0) versus Ω subjected to SV-waves for Eμ = 0.0, 0.1 and γ = π/2.

The electric fields have small effect on the mode II dynamic stress intensity factor. Figure 9
shows the normalized mode I dynamic stress intensity factor |KI/p0S(πa)

1/2| (p0S = μα2
2ψe0)

against Ω subjected to SV-waves for Eμ = 0.0, 0.1 and γ = π/4. Similar trend to the case under
P-waves is observed.

7. Conclusions

The dynamic electroelastic problem for a dielectric polymer having a finite crack has been
analyzed theoretically. The results are expressed in terms of the dynamic stress intensity
factor and dynamic energy release rate. It is found that the dynamic stress intensity factor
and dynamic energy release rate tend to increase with frequency reaching a peak and then
decrease in magnitude. These peaks depend on the angle of incidence. Also, applied electric
fields increase the mode I dynamic stress intensity factor and dynamic energy release rate,
whereas the mode II dynamic stress intensity factor is less dependent on the electric field.
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